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Five counterexamples are given, which show relations among the new convexities and some
important convexities in Banach space. Under the assumption that Banach space X is nearly very
convex, we give a sufficient condition that bounded, weakly closed subset of X has the farthest
points. We also give a sufficient condition that the farthest point map is single valued in a residual
subset of X when X is very convex.

1. Introduction

Let X be a Banach space, and let X∗ be its dual space. Let us denote by B(X) and S(X) the
closed unit ball and the unit sphere of X, respectively. Let x ∈ S(X),Σ(x) = {x∗ ∈ S(X∗) :
x∗(x) = 1}. For any sequence {xn} ⊂ X, define sep(xn) ≡ inf{‖xn − xm‖ : n/=m}. Let B be a
bounded subset of X. We define a real-valued function rB : X → R by

rB(x) = sup
{∥∥x − y

∥∥ : y ∈ B
}

(1.1)

and call rB(x) the farthest distance from x to B. The function rB is convex and Lipschitz-
continuous. In fact, |rB(x) − rB(y)| ≤ ‖x − y‖ for all x, y ∈ X.

A point z ∈ B is called a farthest point of B if there exists an x ∈ X such that ‖x − z‖ =
rB(x).

The mapping FB : X → 2B defined by FB(x) = {z ∈ B : ‖x − z‖ = rB(x)} is called the
farthest point map of B.

The existence of a farthest point of B is equivalent to the fact that the set

D = {x ∈ X : ‖x − z‖ = rB(x) for some z ∈ B} (1.2)
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is nonempty. In [1–5], the existence of a farthest point of B is studied. Edelstein [2] showed
that if X is uniformly convex space, then the set D defined above is dense in X. Asplund [1]
showed that ifX is both reflexive and locally uniformly rotund (LUR), then the setD is dense
in X. Lau [4] proved that if B is weakly compact subset of X, then D contains a dense Gδ set
of X, and if X is reflexive Banach space, then for every bounded, weakly closed subset B in
X, D contains a dense Gδ subset of X.

We say that X is strongly convex (resp., very convex/nearly strongly convex/nearly
very convex) if any x ∈ S(X) and {xn} ⊂ B(X)with x∗(xn) → 1 as n → ∞ for some x∗ ∈ Σ(x)
imply xn → x as n → ∞ (resp., xn

w−→ x as n → ∞/{xn} is relatively compact/{xn} is
weakly relatively compact).

The author [6] proved that strong convexity (resp., very convex/nearly strong
convexity/nearly very convex) has important applications in approximation theory.
Bandyopadhyay et al. [7] also proposed two generalizations of LUR and weakly locally
uniform rotundity (WLUR), which were called almost locally uniform rotundity (ALUR)
and weakly almost locally uniform rotundity (WALUR). A Banach space X is said to be
ALUR (resp., WALUR) if for any x ∈ S(X), {xn} ⊂ B(X) and {x∗

m} ⊂ B(X∗), the condition
limm limn x

∗
m((xn + x)/2) = 1 implies xn → x (reps., xn

w−→ x). Recently, we have proved
that ALUR and strong convexity, WALUR and very convex are equivalent, respectively [8].
Sullivan [9] defined very rotund space. A Banach space X is known as very rotund if no
x∗ ∈ S(X∗) is simultaneously a norming element for some x ∈ S(X) and x∗∗ ∈ S(X∗∗), where
x /=x∗∗. The author [10] proved that very rotund space coincides with very convex space. By
[6–12], we know that the four new convexities mentioned above have a lot of good properties
and applications.

It is known that LUR, WLUR, midpoint locally uniform rotundity (MLUR) and
weakly midpoint locally uniform rotundity (WMLUR) are four important convexities in the
geometric theory of Banach spaces. By [9–12], the relation of the convexities mentioned above
is shown in Figure 1 below.

The structure of this paper is as follows. In Section 2, We will give five counterexam-
ples, which show the relations among the four new convexities mentioned above and LUR,
WLUR, MLUR, WMLUR, and rotund (R).

In Section 3, we prove that ifX is nearly very convex space and if for every x ∈ X, there
exists x∗

0 ∈ ∂rB(x) which attains its norm, then for every bounded, weakly closed subset B of
X, the setD defined above contains a Gδ subset of X, which improves the results of Edelstain
[2], Asplund [1], and Lau [4]. Finally, we also prove a sufficient condition that the farthest
point map FB is single valued in a residual subset of X when X is very convex.

2. Some Counterexamples about Convexities

Lemma 2.1 (see [13]). Let {xα : α ∈ D} be a net in X if for every ε > 0, there exists αs ∈ D such
that the tail {xα : α ≥ αs} has a finite ε-net, then {xα} is a relatively compact subset in X.

Lemma 2.2. If X is nearly strongly convex space, then X has Kadec property, that is, if whenever
x ∈ S(X) and {xα} is a net in S(X) such that xα

w−→ x, then xα → x. Particularly, X has property
H, that is, if whenever x ∈ S(X) and {xn} is a sequence in S(X) such that xn

w−→ x, then xn → x.

Proof. Suppose that net {xα : α ∈ D} ⊂ S(X), x ∈ S(X) such that xα
w−→ x, we will prove that

xα → x.
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Figure 1: The relationship between the convexities.

Case 1. If for every ε > 0, there exists αs ∈ D such that {xα : α ≥ αs} has a finite ε-net, by
Lemma 2.1 and xα

w−→ x, we may obtain that xα → x.

Case 2. If for every ε0 > 0 such that all tails of net {xα : α ∈ D} have no finite ε0-net, we take
f ∈ S(X∗) with f in Σ(x). Since xα

w−→ x, f(xα) → f(x) = 1. Choosing {βn} ⊂ D, β1 ≤ β2 ≤
· · · ≤ βn ≤ · · · , we know that

f(xα) > 1 − 1
n
, (2.1)

for any α ∈ D with α ≥ βn. Take α1 ∈ D such that α1 ≥ β1. For xα1 and β2, we can choose
α2 ∈ D, α2 ≥ β2 such that ‖xα2 − xα1‖ ≥ ε0. Otherwise, {xα : α ≥ β2} ⊂ {x ∈ X : ‖x − xα1‖ < ε0},
that is, the tail {xα : α ≥ β2} has finite ε0-net. This is a contradiction with the assumption. For
xα1 , xα2 , and β3, there exists α3 ∈ D, α3 ≥ β3 such that ‖xα3 − xα1‖ ≥ ε0 and ‖xα3 − xα2‖ ≥ ε0.
Otherwise, {xα : α ≥ β3} ⊂ {x ∈ X : ‖x − xα1‖ < ε0} ∪ {x ∈ X : ‖x − xα2‖ < ε0}, that
is, the tail {xα : α ≥ β3} has finite ε0-net. This is a contradiction with the assumption.
According to the same method, we may choose a sequence {xαn} ⊂ {xα : α ∈ D} such
that

sep(xαn) = inf{‖xαn − xαm‖ : n/=m} ≥ ε0, αn ≥ βn, n = 1, 2, . . . . (2.2)

Hence, we know that {xαn} is not relatively compact.
On the other hand, by (2.1), we have that

1 ≥ f(xαn) > 1 − 1
n
. (2.3)

This shows that f(xαn) → 1. Since X is nearly strongly convex, {xαn} is relatively compact
which is a contradiction.

Example 2.3. There exists an MLUR space which is not a nearly strongly convex space.
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Recall the equivalent norm defined on c0 by Smith [14]. For k ∈ N, define a mapping
Vk : c0 → R

1, Vk(x) = Vk(ξ1, ξ2, . . .) = sup{|ξ1 − ξi| : i ≥ k}. Let {αn} be a sequence of positive
real numbers, and

∑∞
n=2 α2

n = 1. Define two mappings V and T from c0 → l2 as follows:

V (x) = (α2V2(x), α3V3(x), . . .), T(x) = (ξ1, α2ξ2, α3ξ3, . . .). (2.4)

Since {Vk(x)} and {ξk} are both bounded sequences, and
∑∞

n=2 α2
n = 1, then we know that

{Vk(x)} and T(x) are in l2. For x in c0, let

‖x‖G =
(
‖x‖2∞ + ‖V (x)‖22 + ‖T(x)‖22

)1/2
. (2.5)

Since T is one to one continuous, linear, and V (x+y) ≤ V (x) +V (y) for all x, y in c0, the ‖ · ‖G
is a norm, and ‖ · ‖∞ ≤ ‖ · ‖G ≤ √

6‖ · ‖∞. This shows that ‖ · ‖G is an equivalent norm on c0.
Smith shows that (c0, ‖ · ‖G) is MLUR. We say that (c0, ‖ · ‖G) has no property H.

Indeed, let x = e1, xn = e1 + en, then ‖xn‖G → ‖x‖G =
√
3 and xn

w−→ x, but xn � x. By
Lemma 2.2, we know that (c0, ‖ · ‖G) is not nearly strongly convex.

Example 2.4. There exists a very convex space which is not nearly strongly convex space.
Recall the equivalent norm on Hilbert space by Troyanski in Isratescu [15]. Let X be

a Hilbert space, and let {ei}∞i=0 be an orthogonal basis. For any x ∈ X, x = λ0e0 + λ1e1 + · · · +
λnen + · · · , let

‖x‖21 = max
{
|λ0|2 + |λ2|2 + · · · + |λ2n|2 + · · · , |λ1|2 + |λ3|2 + · · · + |λ2n+1|2 + · · ·

}
. (2.6)

It is obvious that ‖ · ‖1 is an equivalent norm on X. Further, we set

‖x‖ =

(

‖x‖21 +
∞∑

i=1

1
2i
|λi|2

)1/2

. (2.7)

Clearly, this is again a norm on X which is an equivalent original one. Troyanski shows that
(X, ‖ · ‖) is R and reflexive [15], but it has no property H. Hence, (X, ‖ · ‖) is very convex, but
is not nearly strongly convex by Lemma 2.2.

Example 2.5. There exists a nearly very convex space which is neither very convex space nor
nearly strongly convex space.

For any x ∈ l2, let

|‖x‖| = max
{

1√
2
‖x‖2, ‖x‖∞

}
. (2.8)

Since (1/
√
2)‖x‖2 ≤ |‖x‖| ≤ ‖x‖2, |‖x‖| is an equivalent norm on l2. Since (l2, |‖ · ‖|) is reflexive,

we know that (l2, |‖ · ‖|) is nearly very convex space. We say that (l2, |‖ · ‖|) has no property H.
Indeed, let x = e1, xn = e1 + en, then |‖x‖| = |‖xn‖| = 1, but |‖xn − xm‖| = 1. Hence, B (l2, |‖ · ‖|)
is not nearly strongly convex by Lemma 2.2. We say that (l2, |‖ · ‖|) is not very convex. In fact,
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let e1,2 = (1, 1, 0, . . .), e1,3 = (1, 0, 1, 0, . . .), then |‖e1,2 + e1,3‖| = 2. This shows that (l2, |‖ · ‖|) is
not R, and therefore, (l2, |‖ · ‖|) is not very convex.

Example 2.6. There exists a strongly convex space which is not WLUR space.
Let E = (l2, ‖ · ‖), where x = (a1, a2, . . .) ∈ l2,

‖x‖2 =
{
|a1| +

(
a2
2 + a2

3 + · · ·
)1/2

}2

+

{(a2

2

)2
+ · · · +

(
an

n

)2

+ · · ·
}

. (2.9)

LetX = (Σ ⊕ E)l2 . In [16], it is proved thatX is 2R, but is not KUR. Since 2R implies R, reflexive
and property H, we get that X is strongly convex space.

X is notWLUR space. Indeed, let {ei}∞i=1 be the natural basis, and x = (e1, e1, 0, . . .), xn =
(1/2(e1 + en), e1, 0, . . .), then limn→∞‖xn‖ =

√
2 = ‖x‖ and limn→∞‖xn + x‖ =

√
8. However,

d
(
xn, span{x}

)
= inf

{∥∥xn − y
∥∥ : y ∈ span{x}} ≥ 1

2
. (2.10)

Choose f ∈ S(X∗) such that f(xn) ≥ 1/2, f(y) = 0, for all y ∈ span{x}. It is easily proved
that

lim
n→∞

∥∥∥∥
x

‖x‖ +
xn

‖xn‖
∥∥∥∥ =

1√
2
lim
n→∞

‖x + xn‖ = 2, (2.11)

but f((x/‖x‖)+(xn/‖xn‖)) ≥ |f(xn/‖xn‖)| = 1/(2
√
2). This shows thatX is not WLUR space.

Example 2.7. There exists a nearly strongly convex space which is not a strongly convex space.
For x = (x1, x2) in R

2, let ‖x‖ = |x1|+ |x2|, then (R2, ‖·‖) is reflexive and has property H.
Hence, it is nearly strongly convex. It is easy to prove that (R2, ‖ · ‖) is not R space. Therefore
(R2, ‖ · ‖) is not strongly convex.

Remark 2.8 (Smith [17]). gave three examples (l2, ‖ · ‖W), (l2, ‖ · ‖A), (l1, ‖ · ‖H). He shows that
(l2, ‖ · ‖W) is WLUR not MLUR, and (l2, ‖ · ‖A) is MLUR not WLUR, and (l1, ‖ · ‖H) is R not
MLUR. It is easily proved that (l1, ‖ · ‖H) is not WMLUR either.

By the above five counterexamples and Remark 2.8, we know that, except for very
convex implied WMLUR, none of the above converse implied relations in the diagram is
generally true.

3. Convexities and Existence of the Farthest Point

Before proceeding to this part, let’s recall that the subdifferential of convex function f on
Banach space X is defined by

∂f(x) =
{
x∗ ∈ X∗ : x∗(y − x

) ≤ f
(
y
) − f(x), ∀y ∈ X

}
. (3.1)

x → ∂f(x) is called subdifferential mapping.
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Remark 3.1. It was shown in [4] that if B is a bounded closed subset in Banach space X, then
for any x ∈ X and x∗ ∈ ∂rB(x), we have that ‖x∗‖ ≤ 1 and thus

sup{x∗(x − z) : z ∈ B} ≤ ‖x∗‖ · rB(x) ≤ rB(x). (3.2)

Hence, for any x ∈ X and x∗ ∈ ∂rB(x), we have that

inf
z∈B

x∗(z − x) ≥ −rB(x). (3.3)

Lemma 3.2 (Lau [4]). Let X be a Banach space and B a bounded subset in X, then the set

F =
{
x ∈ X : inf

z∈B
x∗(z − x) > −rB(x) for some x∗ ∈ ∂rB(x)

}
(3.4)

is a first category in X.

Theorem 3.3. Let X be a nearly very convex Banach space and B a bounded, weakly closed subset of
X. Further, for any x ∈ X, if there exists an x∗

0 ∈ ∂rB(x) which attains its norm, then

D = {x ∈ X : ‖x − z‖ = rB(x) for some z ∈ B} (3.5)

contains a dense Gδ set of X. In particular, the set of farthest points of B is nonempty.

Proof. Define F as in Lemma 3.2 and

Fn =
{
x ∈ B : inf

z∈B
x∗(z − x) ≥ −rB(x) + 1

n
for some x∗ ∈ ∂rB(x)

}
. (3.6)

Let Q = X \ F, then

Q = X \
∞⋃

n=1

Fn =
∞⋂

n=1

(X \ Fn), (3.7)

where each X \ Fn is an open, dense subset in B. Hence, Q is a dense Gδ set in X.
Now, we prove Q ⊂ D as follows. For any x ∈ Q, take x∗

0 ∈ ∂rB(x) such that x∗
0 attains

its norm. Since infz∈B x∗
0(z−x) ≥ −rB(x), by the definition ofQ, we have that infz∈B x∗

0(z−x) ≤
−rB(x). Take sequence {zn} ⊂ B such that

lim
n→∞

x∗
0(zn − x) = −rB(x). (3.8)

Clearly, (zn − x)/(−rB(x)) ∈ B(X). Given that X is nearly very convex and that B is weakly
closed, there exist z0 ∈ B and subsequence {znk} ⊂ {zn} such that (znk − x)/(−rB(x)) w−→
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(z0 − x)/(−rB(x)) as k → ∞, that is, znk

w−→ z0 as k → ∞. Hence, x∗
0(z0 − x) = −rB(x). It

follows that

rB(x) ≥ ‖x − z0‖ ≥ ∣
∣x∗

0(z0 − x)
∣
∣ = rB(x). (3.9)

Thus, ‖z0 − x‖ = rB(x). This shows that Q ⊂ D.

Corollary 3.4 (Lau [4]). If X is a reflexive Banach space. Then for every bounded, weakly closed
subset B in X, the set

D = {x ∈ X : ‖x − z‖ = rB(x) for some z ∈ B} (3.10)

contains a dense Gδ set of X, and hence, the set of farthest points of B is nonempty.

Corollary 3.5 (Asplund [1]). If X is a reflexive LUR Banach space, then Corollary 3.4 holds for
every bounded closed subset B in X.

Theorem 3.6. Let X be a very convex Banach space and B a bounded, weakly closed subset of X. For
any x ∈ X, if there exists an x∗

0 ∈ ∂rB(x) which attains its norm, then the farthest point map FB is
single valued in a residual subset of X.

Proof. By Theorem 3.3,

Q = X \ F =

{

x ∈ X : sup
z∈B

x∗(x − z) = rB(x) for any x∗ ∈ ∂rB(x)

}

(3.11)

is a dense Gδ subset of X, where F is defined as in Lemma 3.2.
Now we prove that FB(x) is single valued for all x ∈ Q.
If FB is not single valued on Q, then there are x0 ∈ Q and z1, z2 ∈ B with z1 /= z2 such

that ‖x0 − zi‖ = rB(x0), i = 1, 2. By Hahn-Banach theorem, we have x∗
i ∈ S(X∗), i = 1, 2 such

that

x∗
i (x0 − zi) = ‖x0 − zi‖, i = 1, 2. (3.12)

For any z′ ∈ B, y ∈ X, we have that

x∗
i

(
y − x0

)
= x∗

i

(
y − z′

) − x∗
i

(
x0 − z′

)

≤ sup
z∈B

sup
x∗∈B(X∗)

x∗(y − z
) − x∗

i

(
x0 − z′

)

= rB
(
y
) − x∗

i

(
x0 − z′

)
.

(3.13)

Thus,

sup
z∈B

x∗
i (x0 − z) ≤ rB

(
y
) − x∗

i

(
y − x0

)
. (3.14)
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Since x0 ∈ Q, rB(x0) ≤ rB(y) − x∗
i (y − x0). This shows that x∗

i ∈ ∂rB(x0). Let x∗
0 = (1/2)x∗

1 +
(1/2)x∗

2, then x∗
0 ∈ ∂rB(x0) due to the convexity of ∂rB(x0), and supz∈B x

∗
0(x0 − z) = rB(x0).

Take a sequence {zn} ⊂ B such that

lim
n→∞

x∗
0(x0 − zn) = rB(x0). (3.15)

It follows that limn→∞ x∗
i (x0 − zn) = rB(x0), i = 1, 2. By (3.12), x∗

i ∈ Σ((x0 − zi)/(rB(x0))), i =
1, 2. Because X is very convex, (x0 − zn)/(rB(x0))

w−→ (x0 − zi)/(rB(x0)), i = 1, 2 as n → ∞.
According to uniqueness of weak limit point, we have that z1 = z2, which is a contradiction.

Remark 3.7. For closed-convex subset B and bounded closed, relatively weakly compact K
in X, Ni and Li [18] proved that the set of all points in B such that the farthest problem
max{x,K} is well posed is a dense Gδ subset in B provided that B is both strictly convex
and Kadec with respect to K. This shows that the farthest point map FB is single valued
in a residual subset of X. By Example 2.4 in this paper, there exists a Banach space where
assumptions in Theorem 3.6 are satisfied, but its unit ball B(X) is not Kadec. Let B(X) = B =
K, then we know that conditions of Theorem 3.6 are different from conditions of the result by
Ni and Li. Hence, the result by Ni and Li does not imply Theorem 3.6.
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