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We investigate the asymptotic behavior of scalar diffusion equation with small time delay ut−Δu =
f(u(t), u(t− τ)). Roughly speaking, any bounded solution will enter and stay in the neighborhood
of one equilibrium when the equilibria are discrete.

1. Introduction

With delay systems appearing frequently in science, engineering, physics, biology, econom-
ics, and so forth, many authors have recently devoted their interests to the effect of small
delays on the dynamics of some system. This problem is relatively well understood for linear
systems, including both finite-dimensional and infinite-dimensional situations, see [1–5].
However, for nonlinear systems, the problem is much more complicated, but there are some
very nice results in [6–10].

In this paper, we consider the following scalar reaction-diffusion equation with a time
delay

ut −Δu = f(u(t), u(t − τ))
(
x ∈ Ω ⊂ RN

)
. (1.1)

It is proved in [11–13] that for such diffusion equation without delay,

ut −Δu = f(u), (1.2)
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subject to homogeneous boundary conditions, all globally defined bounded solutions must
approach the set of equilibria as t tends to infinity. This depends heavily on the fact that (1.2)
is a gradient system with the Lyapunov function

V (u) :=
1
2

∫

Ω
|∇u|2 −

∫

Ω
F(u), (1.3)

where F is a primitive of f . It is well known that solutions of (1.1) will typically oscillate in
t as t → ∞ if the delay is not sufficiently small. However, we will point out such interesting
result that oscillations do not happen for sufficiently small delay. Specifically we obtain the
conclusion that for given R, ε > 0 there exists a sufficiently small τ > 0 such that any solution
of (1.1) satisfying lim supt→∞‖u(x, t)‖H1

0 (Ω) ≤ R will ultimately enter and stay in the ε−
neighborhood of some equilibrium.

As a matter of fact, for the finite-dimensional situation, in [6] Li and Wang considered
the general nonlinear gradient system with multiple small time delays

x′(t) = f(x(t − r1(t)), . . . , x(t − rn(t))). (1.4)

Making use of the Morse structure of invariant sets of gradient systems, he obtained a similar
result. Following this idea, we investigate (1.1) in the infinite-dimensional situation. The
difference between the two situations is very great. For example, under the finite-dimensional
situation there must exist convergent subsequence for any bounded sequence. This is not
correct in the infinite-dimensional situation.We only haveweak compactness. In other words,
bounded sequences in a reflexive Banach space are weakly precompact. In order to overcome
this difficulty, we apply the famous Aubin-Lions lemma [14].

2. Preliminaries

In this paper, we assume Ω to be an open, bounded subset of RN and τ to be a positive
parameter (the delay). Consider the following scalar delayed initial boundary value problem:

ut −Δu = f(u(t), u(t − τ)) in Ω × (0, T],

u = u0 on Ω × [−τ, 0],
u = 0 on ∂Ω × (0, T],

(2.1)

where the nonlinear f : R2 → R is assumed to be continuous and to satisfy

∣∣f(u, v)∣∣ ≤ C
[
1 + |u|ρ + |v|ρ], (2.2)

f(u, v)u ≤ C1

(
u2 + uv

)
+ C2. (2.3)

Here C,C1, and C2 are all constants, ρ = 1 + 2/N. Firstly we will give the definition of weak
solution for (2.1).



Abstract and Applied Analysis 3

Definition 2.1. A function u(x, t) is called a weak solution of (2.1) if and only if

(i) u ∈ L2(0, T ;H1
0(Ω)), with u′ ∈ L2(0, T ;H−1(Ω)),

(ii) u|[−τ,0] = u0 ∈ L2(Ω),

(iii)
∫T
0 [〈ut, ϕ〉 + (Du,Dϕ)]dt =

∫T
0 (f(u(t), u(t − τ)), ϕ)dt,

for each ϕ ∈ L2(0, T ;H1
0(Ω)). Here 〈, 〉 and (, ) denote the pair of H−1(Ω) and H1

0(Ω), the
inner product in L2(Ω), respectively. Next we will give two very important lemmas many
times used in the proof of two theorems.

Lemma 2.2. If {un} is bounded in L2(−τ, T ;H1
0(Ω))∩L∞(−τ, T ;L2(Ω)), then {f(un(t), un(t−τ))}

is bounded in L2(0, T ;L2(Ω)).

Proof. Let a = (N − 2)/N ∈ (0, 1), and because ρ = 1 + 2/N, 2ρ = a(2N/(N − 2)) + 2(1 − a).
Before testing the boundedness of ‖f‖L2(0,T ;L2(Ω)), we firstly estimate ‖un‖L2ρ(Ω)

‖un‖2ρL2ρ(Ω) =
∫

Ω
|un|a(2N/(N−2)) · |un|2(1−a)dx

≤
[∫

Ω
|un|2N/(N−2)dx

]a[∫

Ω
|un|2dx

]1−a

= ‖un‖2Na/(N−2)
L2N/(N−2)(Ω) · ‖un‖2(1−a)L2(Ω)

≤ C1‖un‖2Na/(N−2)
H1

0 (Ω)
= C1‖un‖2H1

0 (Ω).

(2.4)

Here we utilize the Hölder inequality, the fact ofH1
0(Ω) ⊂ L2N/(N−2) continuously and {un} is

bounded in L∞(−τ, T ;L2(Ω)). So

∫T

0

∫

Ω
|un(x, t)|2ρdx dt ≤ C1‖un(x, t)‖2L2(−τ,T ;H1

0 (Ω)),

∫T

0

∫

Ω
|un(x, t − τ)|2ρdx dt

t−τ=s=
∫T−τ

−τ

∫

Ω
|un(x, s)|2ρdx ds

≤
∫T

−τ

∫

Ω
|un(x, t)|2ρdx dt ≤ C1‖un(x, t)‖2L2(−τ,T ;H1

0 (Ω)).

(2.5)

In view of (2.2), we can easily see

∣∣f(un(t), un(t − τ))
∣∣2 ≤ C

[
1 + |un(t)|2ρ + |un(t − τ)|2ρ

]
. (2.6)

Integrating the above inequality with t and x, we complete the proof.

Remark 2.3. If {un} is bounded in L∞(−τ, T ;H1
0(Ω)), we can also get the same conclusion.

The underlying lemma is the famous Aubin-Lions lemma. We only give the statement of the
lemma.
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Lemma 2.4. Let X0, X, and X1 be three Banach spaces with X0 ⊆ X ⊆ X1. Suppose that X0 is
compactly embedded in X and X is continuously embedded in X1. Suppose also that X0 and X1 are
reflexive spaces. For 1 < p, q < ∞, let W = {u ∈ Lp([0, T ;X0)|u′ ∈ Lq([0, T];X1)}. Then the
embedding of W into Lp[0, T ;X) is also compact.

Finally we give the definition of equilibrium solution of (1.2) and omega limit setω(u),
where u(x, t) is a bounded solution of (1.1). Selecting H1

0(Ω) as our phase space, we denote
by ω(u) the limit set

ω(u) =
{
v | there exists tn −→ ∞ such that ‖u(·, tn) − v‖H1

0 (Ω) −→ 0
}
. (2.7)

As usual, an equilibrium solution of (1.2) is defined as a solution which does not de-
pend on t; the equilibrium states are thus the functions u ∈ H1

0(Ω) ∩ H2(Ω) satisfying the
elliptic boundary value problem

−Δu = f(u, u) in Ω,

u = 0 on Ω
(2.8)

in the weak sense.
Let each equilibrium be isolated and let u(·, t) be the bounded complete solution of

(1.2). Then we have

lim
t→−∞

u(·, t) = E1, lim
t→+∞

u(·, t) = E2 (2.9)

for some equilibrium E1 and E2 with V (E1) > V (E2), where V is the Lyapunov function
(1.3). A complete solution of (1.2)means a solution u(·, t) defined on (−∞,+∞). Now we will
introduce our main results.

3. Main Results

In this section, we will prove two theorems. One is the existence of global solution. The other
is our core, Theorem 3.2.

Theorem 3.1. For given τ > 0, u0 ∈ L2(Ω), problem (2.1) has a global weak solution.

Proof. We will use classical Galerkin’s method to build a weak solution of (2.1). Consider the
approximate solution um(t) of the form

um(t) =
m∑
k=1

um
k (t)ωk, (3.1)



Abstract and Applied Analysis 5

where {ωk}∞k=1 is an orthogonal basis ofH1
0(Ω) and {ωk}∞k=1 is an orthonormal basis of L2(Ω).

We get um from solving the following ODES:

(
u′
m,ωk

)
+ (Dum,Dωk) =

(
f(um(t), um(t − τ)), ωk

)
(0 < t ≤ T, k = 1, 2, . . . m),

um
k (t) = (u0, ωk) (−τ ≤ t ≤ 0, k = 1, 2, . . . m).

(3.2)

According to standard existence theory of ODES, we can obtain the local existence of um.
Next we will establish some priori estimates for um. Multiplying (2.1) by um and

integrating over Ω, we have

1
2
d

dt
‖um‖2L2(Ω) + ‖um‖2H1

0 (Ω) =
∫

Ω
f[um(t), um(t − τ)]um dx. (3.3)

Because of (2.3) and the Cauchy inequality, we can get

d

dt
‖um‖2L2(Ω) + 2‖um‖2H1

0 (Ω) ≤ C′
1‖um‖2L2(Ω) + C′

2. (3.4)

Getting rid of the term 2‖um‖2H1
0 (Ω)

, from the differential form of Gronwall’s inequality, we

yield the estimate

max
0≤t≤T

‖um‖2L2(Ω) ≤ C1‖u0‖2L2(Ω) + C2. (3.5)

Returning once more to inequality (3.4), we integrate from 0 to T and employ the inequality
above to find

‖um‖2L2(0,T ;H1
0 (Ω)) ≤ C1‖u0‖2L2(Ω) + C2. (3.6)

Multiplying (2.1) by u′
m and then integrating over Ω, we have

∥∥u′
m

∥∥2
L2(Ω) +

∫

Ω
Dum ·Du′

m dx =
∫

Ω
f[um(t), um(t − τ)]u′

m dx. (3.7)

Using the Cauchy inequality and Lemma 2.2, we get

∥∥u′
m

∥∥2
L2(Ω) +

d

dt
‖um‖2H1

0 (Ω) ≤ C. (3.8)

Again from the differential form of Gronwall’s inequality, we integrate from 0 to T

∥∥u′
m

∥∥2
L2(0,T ;L2(Ω)) ≤ C1‖u0‖2L2(Ω) + C2. (3.9)
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Since L2(Ω) ⊂ H−1(Ω), so

∥∥u′
m

∥∥2
L2(0,T ;H−1(Ω)) ≤ C1‖u0‖2L2(Ω) + C2. (3.10)

According to estimates (3.6), (3.10), Lemma 2.2, and weak compactness, we see that

um ⇀ u weakly in L2
(
0, T ;H1

0(Ω)
)
,

u′
m ⇀ u′ weakly in L2

(
0, T ;H−1(Ω)

)
,

f[um(t), um(t − τ)] ⇀ η weakly in L2
(
0, T ;L2(Ω)

)
.

(3.11)

Here a subsequence of {um}∞m=1 is still denoted by {um}∞m=1. Applying Lemma 2.2, we can
conclude that um → u strongly in L2(0, T ;L2(Ω)). Hence um → u A.E. in Ω × (0, T). Since f
is continuous, it follows that f[um(t), um(t− τ)] → f[u(t), u(t− τ)] A.E. inΩ× (0, T). Thanks
to (3.11) and Lemma 1.3 in [14], one has

f[um(t), um(t − τ)] ⇀ f[u(t), u(t − τ)] weakly in L2
(
0, T ;L2(Ω)

)
. (3.12)

Next fix an integer N0 and choose a function v ∈ C1([0, T];H1
0(Ω)) having the form

v(t) =
N0∑
k=1

dk(t)ωk, (3.13)

where {dk}N0
k=1 are given smooth functions. Choosing m ≥ N0 and multiplying (3.2) by dk(t)

sum k = 1, 2, . . . ,N0, and then integrating with respect to t, we can find

∫T

0

〈
u′
m, v

〉
+ (Dum,Dv)dt =

∫T

0

(
f[um(t), um(t − τ)], v

)
dt. (3.14)

Recalling (3.11) and (3.12) and passing to weak limits, we get

∫T

0

〈
u′, v

〉
+ (Du,Dv)dt =

∫T

0

(
f[u(t), u(t − τ)], v

)
dt. (3.15)

Because functions of the form v(t) are dense in L2(0, T ;H1
0(Ω)), so the above equality holds

for all functions v ∈ L2(0, T ;H1
0(Ω)).

Lastly we will show u|[−τ,0] = u0 ∈ L2(Ω). Notice that for each v ∈ C1([0, T];H1
0(Ω))

with v(T) = 0 we get the following from (3.15):

∫T

0
−〈v′, u

〉
+ (Du,Dv)dt =

∫T

0

(
f[u(t), u(t − τ)], v

)
dt + (u(0), v(0)). (3.16)
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Similarly, from (3.14), we deduce

∫T

0
−〈v′, um

〉
+ (Dum,Dv)dt =

∫T

0

(
f[um(t), um(t − τ)], v

)
dt + (um(0), v(0)). (3.17)

In view of (3.2), um(0) → u0 in L2(Ω); once again employ (3.11) and (3.12) to find

∫T

0
−〈v′, u

〉
+ (Du,Dv)dt =

∫T

0

(
f[u(t), u(t − τ)], v

)
dt + (u0, v(0)). (3.18)

As v(0) is arbitrary, so we get the result u(0) = u0. Since for t ∈ [−τ, 0], um(t) → u0 in L2(Ω),
we can obtain the result. As for T being arbitrary, we see the global existence of (2.1).

Theorem 3.2. Assume that each equilibrium of (1.2) is isolated. Let R, ε > 0 be given ar-
bitrarily. Then there exists a sufficiently small τ > 0 such that any solution of (1.1) with
lim supt→+∞‖u(·, t)‖H1

0 (Ω) ≤ R will eventually enter and stay in the ε− neighborhood of some equi-
librium.

Proof. Here we selectH1
0(Ω) as our phase space. For simplicity, we will verify the correctness

of the conclusion for such bounded solutions u(x, t) of (1.1) as ‖u(·, t)‖H1
0 (Ω) ≤ R for all t ∈

[0,∞). That is to say they are in BR.
Assume there are n equilibria of (1.2) {E1, . . . , En}, ordered by V (En) ≥ V (En−1) ≥

· · ·V (E1), where V is the Lyapunov function (1.3). We will follow two steps to prove our
result.

Step 1. We firstly verify that for any δ > 0, there exists a sufficiently small τ > 0 such that

ω(u)
⋂

⎛
⎝ ⋃

1≤j≤n
Bδ

(
Ej

)
⎞
⎠/= ∅ (3.19)

for any solution u(x, t) of (1.1) in BR.
In order to prove (3.19), we proceed by contradiction, which is used repeatedly in the

following proof. Assume that there was a decreasing sequence τk → 0 and a corresponding
solution sequence uk of (1.1) in BR satisfying

d
(
Ej, ω(uk)

) ≥ 2δ (3.20)

for all 1 ≤ j ≤ n and k ∈ N. According to the definition ofω(u), for each k we can take a tk > 0
such that for t ≥ tk, 1 ≤ j ≤ n

∥∥uk(·, t) − Ej

∥∥
H1

0 (Ω) ≥ δ. (3.21)

Let ũk(t) = uk(t + tk) for t ≥ 0. It is easy to see ũk is the weak solution of

∂tũk −Δũk = f(ũk(t), ũk(t − τk)). (3.22)
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Next we will show there is a strong convergent subsequence of {ũk}∞k=1 in L2(t, t + 1;H1
0(Ω))

for t ≥ 0. Still denoting ũk, we can also prove the limit ũ is in fact the weak solution of (1.2).
From the elliptic equation regularity theorem, we can multiply (3.22) by −Δũk and integrate
over Ω

1
2
d

dt
‖ũk‖2H1

0 (Ω) + ‖ũk‖2H2(Ω) ≤
1
2

(∥∥f∥∥2
L2(Ω) + ‖ũk‖2H2(Ω)

)
. (3.23)

Because of the remark in Section 2, we can get

d

dt
‖ũk‖2H1

0 (Ω) + ‖ũk‖2H2(Ω) ≤ C. (3.24)

Integrating from t to t + 1, from the boundedness of ‖ũk(·, t)‖2H1
0 (Ω)

and ‖ũk(·, t + 1)‖2
H1

0 (Ω)
, we

conclude that {ũk} is bounded in L2(t, t + 1;H2(Ω)). Multiplying (3.22) by ∂tũk and utilizing
the same method above, we can also conclude that {∂tũk} is bounded in L2(t, t + 1;L2(Ω)).
Applying the Aubin-Lions lemma, we can conclude that there is a strong convergent subse-
quence of {ũk}∞k=1 in L2(t, t + 1;H1

0(Ω)) for t ≥ 0. We may set ũk → ũ strongly in L2(t, t +
1;H1

0(Ω)). Of course ũk → ũ strongly in L2(t, t+ 1;L2(Ω)). Hence ũk → ũ a.e. inΩ× (t, t+ 1).
Since f is continuous, it follows that f[ũk(t), ũk(t − τk)] → f(ũ, ũ) a.e. in Ω × (0, T). Thanks
to the weak convergence of f[ũk(t), ũk(t− τk)] in L2(t, t+1;L2(Ω)) and lemma 1.3 in [14], one
has

f[ũk(t), ũk(t − τk)] ⇀ f(ũ, ũ) weakly in L2
(
0, T ;L2(Ω)

)
. (3.25)

So we prove that ũ is the weak solution of (1.2). Considering (3.21), we have the following
estimate for ũ:

∫ t+1

t

∥∥ũ − Ej

∥∥
H1

0 (Ω)ds =
∫ t+1

t

∥∥ũk − Ej + ũ − ũk

∥∥
H1

0 (Ω)ds

≥
∫ t+1

t

∥∥ũk − Ej

∥∥
H1

0 (Ω)ds −
∫ t+1

t

‖ũk − ũ‖H1
0 (Ω)ds

≥ δ −
∫ t+1

t

‖ũk − ũ‖H1
0 (Ω)ds ≥ δ

2
.

(3.26)

From the above inequality, we can surely know limt→∞‖ũ − Ej‖H1
0 (Ω) /= 0 for all 1 ≤ j ≤ n.

However, because (1.2) is a gradient system, this contradicts the fact that limt→∞u(·, t) = Ej

for some Ej . We obtain the correctness of (3.19).

Step 2. We will complete the proof of the theorem that if τ is sufficiently small, then for any
bounded solution u(·, t) of (1.1) there must exist a Ej and sufficiently large T such that for
t > T

∥∥u(·, t) − Ej

∥∥
H1

0 (Ω) < ε. (3.27)
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Here we also adopt contradiction method to prove the result. If the desired conclusion
was not correct, there would be a decreasing sequence τk → 0 and a corresponding solution
sequence uk of (1.1) in BR which does not satisfy (3.27).

In view of τk → 0, it is easy to infer that

lim
k→∞

min
1≤j≤n

d
(
Ej, ω(uk)

)
= 0. (3.28)

Without loss of generality, we can assume that for all k ≥ 1

ω(uk)
⋂

⎛
⎝ ⋃

1≤j≤n
Bε

(
Ej

)
⎞
⎠/= ∅. (3.29)

Denote by jk the smallest j satisfying

ω(uk)
⋂

Bε

(
Ej

)
/= ∅. (3.30)

It is easy to see that there exists a subsequence {k1
i }∞i=1 of {k}∞k=1 such that for some j1 ∈ [1, n],

we have jk
1
i = j1.

We will claim if j1 < n, then there exists a δ1 ∈ (0, ε) and k∗
1 such that for k1

i > k∗
1

d
(
Ej1 , ω

(
uk1

i

))
≥ δ1. (3.31)

Indeed, if the fact did not hold, there would be a subsequence of {k1
i }∞i=1 (for simplicity still

denoted by {k1
i }∞i=1) such that

lim
i→∞

d
(
Ej1 , ω

(
uk1

i

))
= 0. (3.32)

According to the definition of jk and (3.32), we can choose a sequence ti > 0 satisfying

uk1
i
(ti) ∈ Bε

(
Ej1

)
, lim

i→∞

∥∥∥uk1
i
(ti) − Ej1

∥∥∥
H1

0 (Ω)
= 0,

∥∥∥uk1
i
(t) − Ej

∥∥∥
H1

0 (Ω)
> ε, for t > ti, j < j1.

(3.33)

Now we define

ηi = sup
{
t ≥ ti | uk1

i
([ti, t]) ⊂ Bε

(
Ej1

)}
. (3.34)

Obviously uk1
i
(ηi) ∈ ∂Bε(Ej1). Let

vi(·, t) = uk1
i

(·, t + ηi
)
, t ∈ [−(ηi − ti

)
,+∞)

. (3.35)
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From (3.33) and the definition of ηi, it is clear to see

vi(0) ∈ ∂Bε

(
Ej1

)
, vi(t) ∈ Bε

(
Ej1

)
for − (

ηi − ti
) ≤ t ≤ 0, (3.36)

∥∥vi(t) − Ej

∥∥
H1

0 (Ω) > ε, for t > 0, j < j1. (3.37)

Obviously vi(·, t) is the weak solution of

∂tvi −Δvi = f
(
vi(t), vi

(
t − τk1

i

))
. (3.38)

Following the method above, we can also prove there is a strong convergent subsequence of
{vi}∞i=1 in L2(t, t + 1;H1

0(Ω)) for t ≥ 0. Still denoting {vi}∞i=1 and letting T = lim sup(ηi − ti), the
limit v defined on (−T,∞) is indeed the weak solution of (1.2).

Next we will show that T = +∞. In fact, if T < +∞, then v(t) can be well defined
at t = −T . In view of (3.32), we see v(−T) = Ej1 . Hence v(t) ≡ Ej1 for t ≥ −T . That is to say,
vi(t) → Ej1 strongly in L2(−T, 0;H1

0(Ω)). Because vi(·, t) ∈ L2(−(ηi−ti), 0;H1
0(Ω)) and v′

i(·, t) ∈
L2(−(ηi − ti), 0;L2(Ω)), it follows from Theorem 4 in 5.9.2 of [15] that vi(·, t) ∈ C([−(ηi −
ti), 0];H1

0(Ω)). That is to say

lim
t→ 0−

‖vi(·, t) − vi(·, 0)‖H1
0 (Ω) = 0. (3.39)

By the definition of continuity, there exists t1 < 0 such that

‖vi(·, t) − vi(·, 0)‖H1
0 (Ω) < ε0 < ε for t1 < t < 0. (3.40)

So

ε0 >
∥∥vi(·, t) − Ej1 + Ej1 − vi(·, 0)

∥∥
H1

0 (Ω)

≥ ∥∥vi(·, 0) − Ej1

∥∥
H1

0 (Ω) −
∥∥vi(·, t) − Ej1

∥∥
H1

0 (Ω).
(3.41)

Hence

∥∥vi(·, t) − Ej1

∥∥
H1

0 (Ω) >
∥∥vi(·, 0) − Ej1

∥∥
H1

0 (Ω) − ε0 = ε − ε0 > 0. (3.42)

Thus

∫0

−(ηi−ti)

∥∥vi(·, t) − Ej1

∥∥
H1

0 (Ω)dt ≥
∫0

t1

∥∥vi(·, t) − Ej1

∥∥
H1

0 (Ω)dt ≥ −t1(ε − ε0). (3.43)

Obviously

lim
i→∞

∫0

−(ηi−ti)

∥∥vi(·, t) − Ej1

∥∥
H1

0 (Ω)dt /= 0. (3.44)
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This contradicts the fact vi(t) → Ej1 strongly in L2(−(ηi − ti), 0;H1
0(Ω)). So it must be T = +∞.

Let limt→+∞v(t) = Ej . Then there must be j ≥ j1. Otherwise for j < j1

∫ t+1

t

∥∥v(s) − Ej

∥∥
H1

0 (Ω) =
∫ t+1

t

∥∥v(s) − vi(s) + vi(s) − Ej

∥∥
H1

0 (Ω)ds

≥
∫ t+1

t

∥∥vi(s) − Ej

∥∥
H1

0 (Ω) −
∫ t+1

t

‖vi(s) − v(s)‖H1
0 (Ω)ds

≥ ε

2
> 0,

(3.45)

wherewe use (3.37) and the fact vi(s) → v(s) strongly in L2(t, t+1;H1
0(Ω)). So it is impossible

that for j < j1, limt→+∞v(t) = Ej .
Lastly we need to verify limt→−∞v(t) = Ej1 . Considering (3.36), for any ε′ > 0

sufficiently small such that −(ηi − ti) ≤ t ≤ −(ηi − ti) + ε′ ≤ 0, we have

∫−(ηi−ti)+ε′

−(ηi−ti)

∥∥v(t) − Ej1

∥∥
H1

0 (Ω)dt

=
∫−(ηi−ti)+ε′

−(ηi−ti)

∥∥v(t) − vi(t) + vi(t) − Ej1

∥∥
H1

0 (Ω)dt

≤
∫−(ηi−ti)+ε′

−(ηi−ti)
‖vi(t) − v(t)‖H1

0 (Ω)dt +
∫−(ηi−ti)+ε′

−(ηi−ti)

∥∥vi(t) − Ej1

∥∥
H1

0 (Ω)dt

≤
∫−(ηi−ti)+ε′

−(ηi−ti)
‖vi(t) − v(t)‖H1

0 (Ω)dt + ε′ε.

(3.46)

Because vi → v strongly in L2(−(ηi − ti),−(ηi − ti) + ε′;H1
0(Ω)), we easily get the result. In a

word we conclude that

lim
t→−∞

v(·, t) = Ej1 , lim
t→+∞

v(·, t) = Ej

(
j ≥ j1

)
. (3.47)

This obviously contradicts (2.9). So we get the correctness of (3.31).
According the definition of jk

1
i , we can conclude that

d
(
Ej, ω

(
uk1

i

))
≥ δ1 for all k1

i > k∗
1, 1 ≤ j ≤ j1. (3.48)

For convenience we may assume that (3.48) holds for all k1
i .

Fix a 0 < δ′
2 < δ1, and denote by jk

1
i the smallest j satisfying

ω
(
uk1

i

)⋂
Bδ′

2

(
Ej

)
/= ∅. (3.49)
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From (3.48) we know jk1
i
> j1 for all k1

i . Similarly there are a subsequence {k2
i }∞i=1 of {k1

i }∞i=1
and a j2 ∈ (j1, n] such that jk

2
i = j2 for all k2

i . Following the same process above, we can prove
that if j2 < n, then there exists a δ2 ∈ (0, δ′

2) and k∗
2 > k∗

1 such that for k2
i > k∗

2

d
(
Ej2 , ω

(
uk2

i

))
≥ δ2. (3.50)

By the choice of {k2
i }∞i=1, it is easy to see that

d
(
Ej, ω

(
uk2

i

))
≥ δ2 for all k2

i > k∗
2, 1 ≤ j ≤ j2. (3.51)

Repeating the same argument again and again, we finally get sequences

j1 < j2 < · · · < jm = n ε > δ1 > δ2 > · · · > δm > 0, k∗
1 < k∗

2 < · · · < k∗
m, (3.52)

and {kp

i }∞i=1(1 ≤ p ≤ m) such that

d
(
Ej, ω

(
uk

p

i

))
≥ δp, for all kp

i > k∗
p, 1 ≤ j ≤ jp. (3.53)

In particular, of course we have

d
(
Ej, ω

(
ukm

i

))
≥ δm for all km

i > k∗
m, 1 ≤ j ≤ jm = n. (3.54)

This clearly contradicts (3.28). And the proof is completed.
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