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We study the almost surely asymptotic stability of exact solutions to neutral stochastic pantograph
equations (NSPEs), and sufficient conditions are obtained. Based on these sufficient conditions,
we show that the backward Euler method (BEM) with variable stepsize can preserve the almost
surely asymptotic stability. Numerical examples are demonstrated for illustration.

1. Introduction

The neutral pantograph equation (NPE) plays important roles inmathematical and industrial
problems (see [1]). It has been studied by many authors numerically and analytically. We
refer to [1–7]. One kind of NPEs reads

[
x(t) −N

(
x
(
qt
))]′ = f

(
t, x(t), x

(
qt
))
. (1.1)

Taking the environmental disturbances into account, we are led to the following neutral
stochastic pantograph equation (NSPE)

d
[
x(t) −N

(
x
(
qt
))]

= f
(
t, x(t), x

(
qt
))
dt + g

(
t, x(t), x

(
qt
))
dB(t), (1.2)

which is a kind of neutral stochastic delay differential equations (NSDDEs).
Using the continuous semimartingale convergence theorem (cf. [8]), Mao et al. (see

[9, 10]) studied the almost surely asymptotic stability of several kinds of NSDDEs. As most
NSDDEs cannot be solved explicitly, numerical methods have become essential. Efficient
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numerical methods for NSDDEs can be found in [11–13]. The stability theory of numerical
solutions is one of fundamental research topics in the numerical analysis. The almost surely
asymptotic stability of numerical solutions for stochastic differential equations (SDEs) and
stochastic functional differential equations (SFDEs) has received much more attention (see
[14–19]). Corresponding to the continuous semimartingale convergence theorem (cf. [8]),
the discrete semimartingale convergence theorem (cf. [17, 20]) also plays important roles in
the almost surely asymptotic stability analysis of numerical solutions for SDEs and SFDEs
(see [17–19]). To our best knowledge, no results on the almost surely asymptotic stability
of exact and numerical solutions for the NSPE (1.2) can be found. We aim in this paper to
study the almost surely asymptotic stability of exact and numerical solutions to NSPEs by
using the continuous semimartingale convergence theorem and the discrete semimartingale
convergence theorem. We prove that the backward Euler method (BEM) with variable
stepsize can preserve the almost surely asymptotic stability under the conditions which
guarantee the almost surely asymptotic stability of the exact solution.

In Section 2, we introduce some necessary notations and elementary theories of NSPEs
(1.2). Moreover, we state the discrete semimartingale convergence theorem as a lemma. In
Section 3, we study the almost surely asymptotic stability of exact solutions to NSPEs (1.2).
Section 4 gives the almost surely asymptotic stability of the backward Euler method with
variable stepsize. Numerical experiments are presented in the finial section.

2. Neutral Stochastic Pantograph Equation

Throughout this paper, unless otherwise specified, we use the following notations. Let
(Ω,F, {Ft}t≥0, P) be a complete probability space with filtration {Ft}t≥0 satisfying the usual
conditions (i.e., it is right continuous, and F0 contains all P -null sets). B(t) is a scalar
Brownian motion defined on the probability space. | · | denotes the Euclidean norm in Rn.
The inner product of x, y in Rn is denoted by 〈x, y〉 or xTy. If A is a vector or matrix, its
transpose is denoted by AT . If A is a matrix, its trace norm is denoted by |A| =

√
trace(ATA).

Let L1([0, T];Rn) denote the family of all Rn-value measurable Ft-adapted processes f =
{f(t)}0≤t≤T such that

∫T
0 |f(t)|dt < ∞w.p.1. Let L2([0, T];Rn) denote the family of all Rn-value

measurable Ft-adapted processes f = {f(t)}0≤t≤T such that
∫T
0 |f(t)|2dt < ∞ w.p.1.

Consider an n-dimensional neutral stochastic pantograph equation

d
[
x(t) −N

(
x
(
qt
))]

= f
(
t, x(t), x

(
qt
))
dt + g

(
t, x(t), x

(
qt
))
dB(t), (2.1)

on t ≥ 0 withF0-measurable bounded initial data x(0) = x0. Here 0 < q < 1, f : R+×Rn×Rn →
Rn, g : R+ × Rn × Rn → Rn, and N : Rn → Rn.

Let C(Rn;R+) denote the family of continuous functions from Rn to R+. Let C1,2(R+ ×
Rn;R+) denote the family of all nonnegative functions V (t, x) on R+ × Rn which are
continuously once differentiable in t and twice differentiable in x. For each V ∈ C1,2(R+ ×
Rn;R+), define an operator LV from R+ × Rn × Rn to R by

LV
(
t, x, y

)
= Vt

(
t, x −N

(
y
))

+ Vx

(
t, x −N

(
y
))
f
(
t, x, y

)

+
1
2
trace

[
gT(t, x, y

)
Vxx

(
t, x −N

(
y
))
g
(
t, x, y

)]
,

(2.2)
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where

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(
∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xn

)
,

Vxx(t, x) =

(
∂2V (t, x)
∂xi∂xj

)

n×n
.

(2.3)

To be precise, we first give the definition of the solution to (2.1) on 0 ≤ t ≤ T .

Definition 2.1. A Rn-value stochastic process x(t) on 0 ≤ t ≤ T is called a solution of (2.1) if it
has the following properties:

(1) {x(t)}0≤t≤T is continuous and Ft-adapted;

(2) f(t, x(t), x(qt)) ∈ L1([0, T];Rn), g(t, x(t), x(qt)) ∈ L2([0, T];Rn):

(3) x(0) = x0, and (2.1) holds for every t ∈ [0, T]with probability 1.

A solution x(t) is said to be unique if any other solution x(t) is indistinguishable from it, that
is,

P{x(t) = x(t), 0 ≤ t ≤ T} = 1. (2.4)

To ensure the existence and uniqueness of the solution to (2.1) on t ∈ [0, T], we impose
the following assumptions on the coefficients N, f , and g.

Assumption 2.2. Assume that both f and g satisfy the global Lipschitz condition and the
linear growth condition. That is, there exist two positive constants L and K such that for
all x, y, x, y ∈ Rn, and t ∈ [0, T],

∣∣f
(
t, x, y

) − f
(
t, x, y

)∣∣2 ∨ ∣∣g
(
t, x, y

) − g
(
t, x, y

)∣∣2 ≤ L
(
|x − x|2 + ∣∣y − y

∣∣2
)
, (2.5)

and for all x, y ∈ Rn, and t ∈ [0, T],

∣∣f
(
t, x, y

)∣∣2 ∨ ∣∣g
(
t, x, y

)∣∣2 ≤ K
(
1 + |x|2 + ∣∣y

∣∣2
)
. (2.6)

Assumption 2.3. Assume that there is a constant κ ∈ (0, 1) such that

∣∣N(x) −N
(
y
)∣∣ ≤ κ

∣∣x − y
∣∣, ∀x, y ∈ Rn. (2.7)

Under Assumptions 2.2 and 2.3, the following results can be derived.
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Lemma 2.4. Let Assumptions 2.2 and 2.3 hold. Let x(t) be a solution to (2.1) with F0-measurable
bounded initial data x(0) = x0. Then

E

(

sup
0≤t≤T

|x(t)|2
)

≤
(

1 +
(1 − κ)κ + 3

(
1 − √

κ
)

(
1 − √

κ
)2(1 − κ)

E|x0|2
)

exp

{
6K(T + 4)T

(1 − κ)
(
1 − √

κ
)

}

. (2.8)

The proof of Lemma 2.4 is similar to Lemma 6.2.4 in [21], so we omit the details.

Theorem 2.5. Let Assumptions 2.2 and 2.3 hold, then for any F0-measurable bounded initial data
x(0) = x0, (2.1) has a unique solution x(t) on t ∈ [0, T].

Based on Lemma 6.2.3 in [21] and Lemma 2.4, this theorem can be proved in the same
way as Theorem 6.2.2 in [21], so the details are omitted.

The discrete semimartingale convergence theorem (cf. [17, 20])will play an important
role in this paper.

Lemma 2.6. Let {Ai} and {Ui} be two sequences of nonnegative random variables such that both
Ai and Ui are Fi-measurable for i = 1, 2, . . ., and A0 = U0 = 0 a.s. Let Mi be a real-valued local
martingale with M0 = 0 a.s. Let ζ be a nonnegative F0-measurable random variable. Assume that
{Xi} is a nonnegative semimartingale with the Doob-Mayer decomposition

Xi = ζ +Ai −Ui +Mi. (2.9)

If limi→∞Ai < ∞ a.s., then for almost all ω ∈ Ω:

lim
i→∞

Xi < ∞, lim
i→∞

Ui < ∞, (2.10)

that is, both Xi and Ui converge to finite random variables.

3. Almost Surely Asymptotic Stability of Neutral Stochastic
Pantograph Equations

In this section, we investigate the almost surely asymptotic stability of (2.1). We assume (2.1)
has a continuous unique global solution for given F0-measurable bounded initial data x0.
Moreover, we always assume that f(t, 0, 0) = 0, g(t, 0, 0) = 0, N(0) = 0 in the following
sections. Therefore, (2.1) admits a trivial solution x(t) = 0.

To be precise, let us give the definition on the almost surely asymptotic stability of
(2.1).

Definition 3.1. The solution x(t) to (2.1) is said to be almost surely asymptotically stable if

lim
t→∞

x(t) = 0 a.s. (3.1)

for any bounded F0-measurable bounded initial data x(0).
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Lemma 3.2. Let ρ : R+ → (0,∞) and z : [0,∞) → Rn be a continuous functions. Assume that

σ1 := lim sup
t→∞

ρ(t)
ρ
(
qt
) <

1
κ

,

σ2 := lim sup
t→∞

[
ρ(t)

∣∣z(t) −N
(
z
(
qt
))∣∣] < ∞.

(3.2)

Then,

lim sup
t→∞

[
ρ(t)|z(t)|] ≤ σ2

1 − κσ1
. (3.3)

Proof. Using the idea of Lemma 3.1 in [9], we can obtain the desired result.

Lemma 3.3. Suppose that (2.1) has a continuous unique global solution x(t) for givenF0-measurable
bounded initial data x0. Let Assumption 2.3 hold. Assume that there are functions U ∈ C1,2(R+ ×
Rn;R+), w ∈ C(Rn;R+), and four positive constants λ1 > λ2, λ3, λ4 such that

LU
(
t, x, y

) ≤ −λ1w(x) + qλ2w
(
y
)
,

(
t, x, y

) ∈ R+ × Rn × Rn,

U
(
t, x −N

(
y
)) ≤ λ3w(x) + λ4w

(
y
)
, (t, x) ∈ R+ × Rn.

(3.4)

Then, for any ε ∈ (0, γ∗)

lim sup
t→∞

t(γ
∗−ε)U

(
t, x(t) −N

(
x
(
qt
)))

< ∞ a.s., (3.5)

where γ∗ is positive and satisfies

λ1 = λ2q
−γ∗ . (3.6)

That is,

lim
t→∞

U
(
t, x(t) −N

(
x
(
qt
)))

= 0 a.s. (3.7)

Proof. Choose V (t, x(t)) = tγU(t, x(t) −N(x(qt))) for (t, x) ∈ R+ × Rn and γ > 0. Similar to the
proof of Lemma 2.2 in [9], the desired conclusion can be obtained by using the continuous
semimartingale convergence theorem (cf. [8]).

Theorem 3.4. Suppose that (2.1) has a continuous unique global solution x(t) for given F0-
measurable bounded initial data x0. Let Assumption 2.3 hold. Assume that there are four positive
constants λ1 − λ4 such that

2
(
x −N

(
y
))T

f
(
t, x, y

) ≤ −λ1|x|2 + λ2
∣∣y
∣∣2,

∣∣g
(
t, x, y

)∣∣2 ≤ λ3|x|2 + λ4
∣∣y
∣∣2

(3.8)
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for t ≥ 0 and x, y ∈ Rn. If

λ1 − λ3 >
λ2 + λ4

q
, (3.9)

then, the global solution x(t) to (2.1) is almost surely asymptotically stable.

Proof. Let U(t, x) = w(x) = |x|2. Applying Lemma 3.3 and Lemma 3.2 with ρ = 1, we can
obtain the desired conclusion.

Theorem 3.4 gives sufficient conditions of the almost surely asymptotic stability of
NSPEs (2.1). Based on this result, we will investigate the almost surely asymptotic stability
of the BEM with variable stepsize for (2.1) in the following section.

4. Almost Surely Asymptotic Stability of the Backward Euler Method

To define the BEM for (2.1), we introduce a mesh H = {m; t−m, t−m+1, . . . , t0, t1, . . . , tn, . . .} as
follows. Let hn = tn+1 − tn, h−m−1 = t−m. Set t0 = γ0 > 0 and tm = q−1γ0. We define m − 1 grid
points t1 < t2 < · · · < tm−1 in (t0, tm) by

ti = t0 + iΔ0, for i = 1, 2, . . . , m − 1, (4.1)

where Δ0 = (tm − t0)/m and define the other grid points by

tkm+i = q−kti, for k = −1, 0, 1, . . . , i = 0, 1, 2, . . . , m − 1. (4.2)

It is easy to see that the grid point tn satisfies qtn = tn−m for n ≥ 0, and the step size hn satisfies

qhn = hn−m, for n ≥ 0, lim
n→∞

hn = ∞. (4.3)

For the given mesh H, we define the BEM for (2.1) as follows:

Yn+1 −N(Yn+1−m) = Yn −N(Yn−m) + hnf(tn+1, Yn+1, Yn+1−m)

+ g(tn, Yn, Yn−m)ΔBn, n ≥ −m,

Y−m −N(Y−m−m) = x0 −N(x0) + h−m−1f(t−m, Y−m, Y−m−m)

+ g(0, x0, x0)B(t−m).

(4.4)

Here, Yn(n ≥ −m) is an approximation value of x(tn) and Ftn -measurable. ΔBn = B(tn+1) −
B(tn) is the Brownian increment. The approximations Yn−m(n = −m,−m + 1, . . . ,−1) are
calculated by the following formulae:

Yn−m = (1 − θn)x0 + θnY−m, n = −m,−m + 1, . . . ,−1, (4.5)

where θn = qtn/t−m. As a standard hypothesis, we assume that the BEM (4.4) is well defined.
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To be precise, let us introduce the definition on the almost surely asymptotic stability
of the BEM (4.4).

Definition 4.1. The approximate solution Yn to the BEM (4.4) is said to be almost surely
asymptotically stable if

lim
n→∞

Yn = 0 a.s. (4.6)

for any bounded F0-measurable bounded initial data x0.

Theorem 4.2. Assume that the BEM (4.4) is well defined. Let Assumption 2.3 hold. Let conditions
(3.8) and (3.9) hold. Then the BEM approximate solution (4.4) obeys

lim
n→∞

Yn = 0 a.s. (4.7)

That is, the approximate solution Yn to the BEM (4.4) is almost surely asymptotically stable.

Proof. Set Yn = Yn −N(Yn−m). For n ≥ 0, from (4.4), we have

∣∣∣Yn+1 − hnf(tn+1, Yn+1, Yn+1−m)
∣∣∣
2
=
∣∣∣Yn + g(tn, Yn, Yn−m)ΔBn

∣∣∣
2
. (4.8)

Then, we can obtain that

∣∣∣Yn+1

∣∣∣
2 ≤

∣∣∣Yn

∣∣∣
2
+ 2hn

〈
Yn+1, f(tn+1, Yn+1, Yn+1−m)

〉
+
∣∣g(tn, Yn, Yn−m)ΔBn

∣∣2

+ 2
〈
Yn, g(tn, Yn, Yn−m)

〉
ΔBn,

(4.9)

which subsequently leads to

∣∣∣Yn+1

∣∣∣
2 ≤

∣∣∣Yn

∣∣∣
2
+ 2hn

〈
Yn+1, f(tn+1, Yn+1, Yn+1−m)

〉

+
∣∣g(tn, Yn, Yn−m)

∣∣2hn +mn,

(4.10)

where

mn = 2
〈
Yn, g(tn, Yn, Yn−m)

〉
ΔBn +

∣∣g(tn, Yn, Yn−m)
∣∣2
(
ΔB2

n − hn

)
. (4.11)

By conditions (3.8) and (3.9), we have

∣∣∣Yn+1

∣∣∣
2 ≤

∣∣∣Yn

∣∣∣
2 − λ1hn|Yn+1|2 + λ2hn|Yn+1−m|2

+
(
λ3|Yn|2 + λ4|Yn−m|2

)
hn +mn.

(4.12)
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Using the equality |a + b|2 ≤ 2|a|2 + 2|b|2, we obtain that

∣∣∣Yn+1

∣∣∣
2 ≥ 1

2
|Yn+1|2 − |N(Yn+1−m)|2,

∣∣∣Yn

∣∣∣
2 ≤ 2|Yn|2 + 2|N(Yn−m)|2.

(4.13)

Inserting these inequalities to (4.12) and using Assumption 2.3 yield

(
1
2
+ λ1hn

)
|Yn+1|2 ≤ (2 + λ3hn)|Yn|2 +

(
κ2 + λ2hn

)
|Yn+1−m|2

+
(
2κ2 + λ4hn

)
|Yn−m|2 +mn.

(4.14)

Let An = 1 + 2λ1hn, Bn = 3 − 2λ1hn + 2λ3hn, Cn = 2κ2 + 2λ2hn, and Dn = 4κ2 + 2λ4hn. Using
these notations, (4.14) implies that

|Yn+1|2 − |Yn|2 ≤ Bn

An
|Yn|2 + Cn

An
|Yn+1−m|2 + Dn

An
|Yn−m|2 + 2

An
mn. (4.15)

Then, we can conclude that

|Yn|2 ≤ |Y0|2 +
n−1∑

i=0

Bi

Ai
|Yi|2 +

n−1∑

i=0

Ci

Ai
|Yi+1−m|2 +

n−1∑

i=0

Di

Ai
|Yi−m|2 +

n−1∑

i=0

2
Ai

mi. (4.16)

Note that

n−1∑

i=0

Ci

Ai
|Yi+1−m|2 =

n−m∑

i=−m+1

Ci+m−1
Ai+m−1

|Yi|2

=
−1∑

i=−m+1

Ci+m−1
Ai+m−1

|Yi|2 +
n−1∑

i=0

Ci+m−1
Ai+m−1

|Yi|2 −
n−1∑

i=n−m+1

Ci+m−1
Ai+m−1

|Yi|2,

n−1∑

i=0

Di

Ai
|Yi−m|2 =

n−m−1∑

i=−m

Di+m

Ai+m
|Yi|2

=
−1∑

i=−m

Di+m

Ai+m
|Yi|2 +

n−1∑

i=0

Di+m

Ai+m
|Yi|2 −

n−1∑

i=n−m

Di+m

Ai+m
|Yi|2.

(4.17)
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We, therefore, have

|Yn|2 +
n−1∑

i=n−m+1

Ci+m−1
Ai+m−1

|Yi|2 +
n−1∑

i=n−m

Di+m

Ai+m
|Yi|2

≤ |Y0|2 +
−1∑

i=−m+1

Ci+m−1
Ai+m−1

|Yi|2 +
−1∑

i=−m

Di+m

Ai+m
|Yi|2

+
n−1∑

i=0

(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 +

n−1∑

i=0

2
Ai

mi.

(4.18)

Similar to (4.15), from (4.4), we can obtain that

|Y0|2 − |Y−1|2 ≤ B−1
A−1

|Y−1|2 + C−1
A−1

|Y−m|2

+
D−1
A−1

[
2(1 − θ−1)

2|x0|2 + 2θ2
−1|Y−m|2

]
+

2
A−1

m−1,

|Yn|2 − |Yn−1|2 ≤ Bn−1
An−1

|Yn−1|2 + Cn−1
An−1

[
2(1 − θn)

2|x0|2 + 2θ2
n|Y−m|2

]

+
Dn−1
An−1

[
2(1 − θn−1)

2|x0|2 + 2θ2
n−1|Y−m|2

]

+
2

An−1
mn−1, −m + 1 ≤ n ≤ −1,

|Y−m|2 − |x0|2 ≤ B−m−1 +D−m−1
A−m−1

|x0|2 + C−m−1
A−m−1

[
2(1 − θ−m)

2|x0|2 + 2θ2
−m|Y−m|2

]

+
2

A−m−1
m−m−1,

(4.19)

where An, Bn, Cn,Dn (n = −m − 1, . . . ,−1) are defined as before,

mn = 2
〈
Yn −N(Yn−m), g(tn, Yn, Yn−m)

〉
ΔBn

+
∣∣g(tn, Yn, Yn−m)

∣∣2
(
ΔB2

n − hn

)
, −m ≤ n ≤ −1,

m−m−1 = 2
〈
x0 −N(x0), g(0, x0, x0)

〉
B(t−m) +

∣∣g(0, x0, x0)
∣∣2
(
B2(t−m) − t−m

)
.

(4.20)

From (4.19), we have

|Y0|2 ≤ A|x0|2 + B|Y−m|2 +
−1∑

i=−m+1

Bi

Ai
|Yi|2 +

−1∑

i=−m−1

2
Ai

mi, (4.21)



10 Abstract and Applied Analysis

where

A = 1 +
B−m−1 +D−m−1

A−m−1
+

−1∑

i=−m

2Di

Ai

(
(1 − θi)

2
)
+

−2∑

i=−m−1

2Ci

Ai

(
(1 − θi+1)

2
)
,

B =
B−m
A−m

+
B−1
A−1

+
−1∑

i=−m

2Di

Ai
θ2
i +

−2∑

i=−m−1

2Ci

Ai
θ2
i+1.

(4.22)

Obviously A > 0. By (4.18) and (4.21), we can obtain that

|Yn|2 +
n−1∑

i=n−m+1

Ci+m−1
Ai+m−1

|Yi|2 +
n−1∑

i=n−m

Di+m

Ai+m
|Yi|2

≤ A|x0|2 +
(
B +

D0

A0

)
|Y−m|2 +

n−1∑

i=−m+1

(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 +Mn,

(4.23)

where Mn =
∑n−1

i=−m−1(2/Ai)mi. Similar to the proof in [18], we can obtain that Mn is a
martingale with M−m−1 = 0. Note that hi+m−1 ≤ hi+m and hi+m = hi/q for i ≥ −m. Then,
we have

Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m
≤
(
3 + 6κ2) − 2(λ1hi − λ3hi − λ2hi+m−1 − λ4hi+m)

1 + 2λ1hi

≤ 1
1 + 2λ1hi

{(
3 + 6κ2

)
− 2

(
λ1 − λ3 − λ2

q
− λ4

q

)
hi

}
.

(4.24)

Using the condition (3.9) and limi→∞hi = ∞, we obtain that there exists an integer i∗ such
that

Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m
≥ 0, i ≤ i∗,

Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m
< 0, i > i∗.

(4.25)

Set U−m−1 = 0,

U−m =

⎧
⎪⎪⎨

⎪⎪⎩

(
B +

D0

A0

)
|Y−m|2 if

(
B +

D0

A0

)
> 0,

0 if
(
B +

D0

A0

)
≤ 0,
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Un =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U−m +
n−1∑

i=−m+1

(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 if −m + 1 ≤ n ≤ i∗ + 1,

U−m +
i∗∑

i=−m+1

(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 if n > i∗ + 1,

Vn =

⎧
⎪⎪⎨

⎪⎪⎩

0 if −m − 1 ≤ n ≤ i∗ + 1,

−
n−1∑

i=i∗+1

(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 if n > i∗ + 1.

(4.26)

Obviously,

lim
n→∞

Un = U−m +
i∗∑

i=−m+1

(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 < ∞, a.s. (4.27)

Moreover, (4.23) implies that

|Yn|2 ≤ C|x0|2 +Un − Vn +Mn. (4.28)

Here C = max{A, 1}. According to (4.27), using Lemma 2.6 yields

lim sup
n→∞

|Yn|2 < ∞ a.s., lim
n→∞

Vn < ∞ a.s. (4.29)

Then, we have

lim
i→∞

−
(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
|Yi|2 = 0 a.s. (4.30)

Note that

lim
i→∞

−
(
Bi

Ai
+
Ci+m−1
Ai+m−1

+
Di+m

Ai+m

)
=

λ1 − λ2 − λ3 − λ4
λ1

> 0. (4.31)

We therefore obtain that

lim
n→∞

|Yn|2 = 0 a.s. (4.32)

Then, the desired conclusion is obtained. This completes the proof.

5. Numerical Experiments

In this section, we present numerical experiments to illustrate theoretical results of stability
presented in the previous sections.
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Figure 1: Almost surely asymptotic stability with x0 = 2, t0 = 0.01, m = 2.
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Figure 2: Almost surely asymptotic stability with x0 = 10, t0 = 1, m = 1.

Consider the following scalar problem:

d

[
x(t) − 1

2
x(0.5t)

]
= (−8x(t) + x(0.5t))dt + sin(x(0.5t))dB(t), t ≥ 0,

x(0) = x0.

(5.1)
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For the test (5.1), we have λ1 = 11, λ2 = 4, λ3 = 0, and λ4 = 1 corresponding to Theorem 3.4.
By Theorem 3.4, the solution to (5.1) is almost surely asymptotically stable.

Theorem 4.2 shows that the BEM approximation to (5.1) is almost surely asymp-
totically stable. In Figure 1, We compute three different paths (Yn(ω1), Yn(ω2), Yn(ω3))
using the BEM (4.4) with x0 = 2, t0 = 0.01, m = 2. In Figure 2, three different paths
(Yn(ω1), Yn(ω2), Yn(ω3)) of BEM approximations are computed with x0 = 10, t0 = 1, m = 1.
The results demonstrate that these paths are asymptotically stable.
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