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Nonexistence of global solutions to ultraparabolic equations and systems is presented. Our results
fill a gap in the literature on ultraparabolic equations. Themethod of proof we use relies on a choice
of a suitable test function in the weak formulation of the solutions of the problems under-study.

1. Introduction

In this paper, we will present first nonexistence results for the two-time nonlinear equation

Lu := ut1 + ut2 −Δ
(|u|m) = |u|p, (1.1)

posed for (t1, t2, x) ∈ Q = (0,+∞) × (0,+∞) × R
d, d ∈ N, and subject to the initial conditions

u(t1, 0;x) = ϕ1(t1;x), u(0, t2;x) = ϕ2(t2;x). (1.2)

Here p > 1, m > 0 are real numbers. Then we extend our results to systems of the form

ut1 + ut2 −Δ
(|u|m) = |v|p,

vt1 + vt2 −Δ
(|v|n) = |u|q,

(1.3)
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for (t1, t2, x) ∈ Q, subject to the initial conditions

u(t1, 0, x) = ϕ1(t1, x), u(0, t2, x) = ϕ2(t2, x),

v(t1, 0, x) = ψ1(t1, x), v(0, t2, x) = ψ2(t2, x),
(1.4)

and where p > 1, q > 1, m > 0, andn > 0 are real numbers. We take the nonlinearities
|u|p in (1.1) and (|v|p, |u|q) in (1.3) as prototypes; we could consider much more general
nonlinearities.

Before we present our results, let us dwell a while on the existing literature on
nonlinear ultraparabolic parabolic equations known also as pluri-parabolic equations or
multitime parabolic equations which we are aware of. These types of equations started in the
case of linear equations with Kolmogoroff [1] in 1934; he introduced them in order to describe
the probability density of a system with 2d degrees of freedom. A lot of generalizations have
been made by a large number of authors since then. Nonlinear ultraparabolic equations
arise in the kinetic theory of gases [2, 3]. Some stochastic processes models lead also to
ultraparabolic equations [4–7]. The analysis of nonlinear ultraparabolic equations have been
studied first by Ugowski [8] who studied differential inequalities of parabolic type with
multidimensional time; he established, for example, a maximum principle which is very
useful for applications. His results were reformulated, in a less general setting, by Walter
in [9]. Many nice works on different aspects on ultraparabolic nonlinear equations have
been conducted by Lavrenyuk and his collaborators [10–12], Lanconelli and his collaborators
[13, 14], and Citti et al. [15]; see also [16, 17]. In the absence of diffusion, an interesting
application ismentioned in [18]. Our equation and system have their applications in diffusion
theory in porous media.

For better positioning of our results, let us recall the pioneering results of Fujita [19]
and their complementary results by Hayakawa [20], Kobayashi et al. [21], and Samarskii
et al. [22] concerning nonexistence results for the equation

ut −Δ(um) = |u|p, t > 0, x ∈ R
d, (1.5)

which corresponds to (1.1) in the absence of t2 and with t1 = t.
In his article [19] corresponding tom = 1, Fujita proved that

(i) if 1 < p < 1 + 2/d, then no global positive solutions for any nonnegative initial data
u0 exist;

(ii) if p > 1+ 2/d, global small data solutions exist while global solutions for large data
do not exist.

The borderline case p = 1 + 2/d has been decided by Hayakawa [20] for d = 1, 2 and
then by Kobayashi et al. [21] for any d ≥ 1; In casem = 1, the exponent pcrit = 1+ 2/d is called
the critical exponent.

For (1.5), Samarskii et al. [22] showed that the critical exponent is pcrit = m + 2/d.
The aim of this paper is to obtain the critical exponent in the sense of Fujita for (1.1)

and for system (1.3). Moreover, we present critical exponents for systems of two equations.
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2. Results

Solutions to (1.1) subject to conditions (1.2) are meant in the following weak sense.

Definition 2.1. A function u ∈ Lmloc(Q) ∩ Lploc(Q) is called a weak solution to (1.1) if

∫

Q

|u|pϕ dP +
∫

S

u(0, t2;x)ϕ(0, t2;x)dP2 +
∫

S

u(t1, 0;x)ϕ(t1, 0;x)dP1

= −
∫

Q

uϕt1dP −
∫

Q

uϕt2dP −
∫

Q

|u|mΔϕdP
(2.1)

for any test function ϕ ∈ C∞
0 (Q); S = R+ × R

d, P = (t1, t2, x) and P1 = (t1, x), P2 = (t2, x).

Note that every weak solution is classical near the points (t1, t2, x) where u(t1, t2, x) is
positive.

Two words about the local existence of solutions are in order: as it is a rule, one
regularizes (1.1) by adding first a vanishing diffusion term as follows:

Lεu = Lu − εDt1t1 , ε > 0, (2.2)

and then by regularizing the degenerate term Δ(|u|m); so, the regular equation

ut1 + ut2 −Δ
(
min
{
ku, |u|m}) − εDt1t1 = |u|p, ε > 0, k = 1, 2, . . . (2.3)

is obtained. Consequently, one obtains, for small time t1, (ε, k)-uniform estimates of
solutions, namely, estimates which are independent on the “parabolicity” constants of the
equation as it is clearly explained in [23], see also [10, 24].

Our main first result is dealing with (1.1) subject to (1.2); it is given by the following
theorem.

Theorem 2.2. Assume that
∫
S u(0, t2;x)dP2+

∫
S u(t1, 0;x)dP1 > 0. If 1 ≤ m < p ≤ m+2m/(2+d),

then Problem (1.1)-(1.2) does not admit global weak solutions.

Proof. Our strategy of proof is to use the weak formulation of the solution with a suitable
choice of the test function which we learnt from [25]. Assume u is a global solution.

If we write

uϕti = uϕ
1/pϕ−1/pϕti , i = 1, 2, (2.4)

and estimate
∫
Q uϕtidP using the ε-Young inequality, we obtain

∫

Q

uϕtidP ≤ ε
∫

Q

|u|pϕdP + Cε

∫

Q

ϕ−1/(p−1)∣∣ϕti
∣∣p/(p−1)dP. (2.5)



4 Abstract and Applied Analysis

Similarly, we have

∫

Q

|u|mΔϕdP ≤ ε
∫

Q

|u|pϕdP + Cε

∫

Q

ϕ−m/(p−m) ∣∣Δϕ
∣
∣p/(p−m)

dP, (2.6)

where p > m.
Now, using (2.5) and (2.6), we obtain

∫

Q

|u|pϕ dP +
∫

S

u(0, t2;x)ϕ(0, t2;x)dP2 +
∫

S

u(t1, 0;x)ϕ(t1, 0;x)dP1

≤ 2ε
∫

Q

|u|pϕ dP + Cε

∫

Q

(
ϕ−1/(p−1)

(∣
∣ϕt1
∣
∣p/(p−1) +

∣
∣ϕt2
∣
∣p/(p−1)

)
+ ϕ−m/(p−m)∣∣Δϕ

∣
∣p/(p−m)

)
dP.

(2.7)

If we choose ε = 1/4, then we get the estimate

∫

Q

|u|pϕ dP + 2
∫

S

u(0, t2;x)ϕ(0, t2;x)dP2 + 2
∫

S

u(t1, 0;x)ϕ(t1, 0;x)dP1

≤ C
∫

Q

(
ϕ−1/(p−1)

(∣∣ϕt1
∣∣p/(p−1) +

∣∣ϕt2
∣∣p/(p−1)

)
+ ϕ−m/(p−m)∣∣Δϕ

∣∣p/(p−m)
)
dP =: H(ϕ),

(2.8)

for some positive constant C. Observe that the right-hand side of (2.8) is free of the unknown
function u.

At this stage, we introduce the smooth nonincreasing function θ : R+ → [0, 1] such
that

θ(z) =

⎧
⎨

⎩

1, 0 ≤ z ≤ 1,

0, 2 ≤ z.
(2.9)

Let us take in (2.8)

ϕ(t1, t2;x) = θλ
(
t1
R2

+
t2
R2

+
|x|2
R2

)

, (2.10)

with λ > max{p/(p − 1), 2p/(p −m)} and R being positive real number.
Let us now pass to the new variables

τ1 = R−2t1, τ2 = R−2t2, y = R−1x. (2.11)

We have

ϕti = R
−2ϕτi , i = 1, 2, Δxϕ = R−2Δyϕ. (2.12)
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Whereupon

∫

Q

|u|pϕ dP + 2
∫

S

u(0, t2;x)ϕ(0, t2, x)dP2 + 2
∫

S

u(t1, 0;x)ϕ(t1, 0, x)dP1

≤ L
(
R4+d−2p/(p−1) + R4+d−2p/(p−m)

)
,

(2.13)

with

L := C
∫

Ω1

(
θ((λ−1)p−λ)/(p−1)

∣
∣θ′
∣
∣p/(p−1) +

∣
∣θ′
∣
∣2p/(p−m)

θ((λ−2)p−λm)/(p−m)

+
∣
∣θ′′
∣
∣p/(p−m)

θ((λ−1)p−λm)/(p−m)
)
< +∞,

(2.14)

where Ω1 = {(τ1, τ2, y) : 1 ≤ |τ1| + |τ2| + y ≤ 2}.
Now, we want to pass to the limit as R → +∞ in (2.13) under the constraint 2p/(p −

m) − 4 − d ≥ 0. We have to consider two cases.

(i) Either 2p/(p − m) − 4 − d > 0 ⇔ 1 < p < m + 2m/(2 + d) = pcrit and in this case,
the right-hand side of (2.13) will go to zero while the left-hand side is positive.
Contradiction.

(ii) Or p = pcrit, and in this case, we get in particular

∫

R
2
+×Rd

|u|pϕ dP ≤ C =⇒ lim
R→+∞

∫

CR

|u|pϕ dP = 0, (2.15)

where CR = {(t1, t2;x) | R2 ≤ t1 + t2 + |x|2 ≤ 2R2}.
Now, to conclude, we rely on the estimate

∫

Q

|u|pϕ dP +
∫

S

u(0, t2;x)ϕ(0, t2;x)dP2 +
∫

S

u(t1, 0;x)ϕ(t1, 0;x)dP1

≤
(∫

CR

|u|pϕ dP
)1/p

H(ϕ),
(2.16)

which is obtained by using the Hölder inequality.
Passing to the limit as R → +∞ in (2.16), we obtain

∫

R
2
+×Rd

|u|pdP +
∫

S

u(0, t2;x)dP2 +
∫

S

u(t1, 0;x)dP1 = 0. (2.17)

Contradiction.
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Remark 2.3. Notice that the critical exponent for the ultraparabolic equation is smaller than the
one of the corresponding parabolic equation.

2.1. The Case of a 2 × 2-System with a 2-Dimensional Time

In this section, we extend the analysis of the previous section to the case of a 2 × 2-system of
2-time equations. More precisely, we consider the system

ut1 + ut2 −Δ
(|u|m) = |v|p,

vt1 + vt2 −Δ
(|v|n) = |u|q,

(2.18)

for (t1, t2;x) ∈ Q, subject to the initial conditions

u(0, t2, x) = ϕ1(t2, x), u(t1, 0, x) = ϕ2(t1, x),

v(0, t2, x) = ψ1(t2, x), v(t1, 0, x) = ψ2(t1, x),
(2.19)

and where 0 < m < p, 0 < n < q, and p, q > 1 are real numbers.
To lighten the presentation, let us set

I0 :=
∫

S

u(t1, 0;x)ϕ(t1, 0;x)dP1 +
∫

S

u(0, t2;x)ϕ(0, t2;x)dP2,

J0 :=
∫

S

v(t1, 0;x)ϕ(t1, 0;x)dP1 +
∫

S

v(0, t2;x)ϕ(0, t2;x)dP2.

(2.20)

Let us start with the following definition.

Definition 2.4. We say that (u, v) ∈ (Lqloc(Q) ∩ Lmloc(Q)) × (Lploc(Q) ∩ Lnloc(Q)) is a weak solution
to system (2.18) if

∫

Q

|v|pϕ dP + I0 = −
∫

Q

uϕt1dP −
∫

Q

uϕt2dP −
∫

Q

|u|mΔϕdP,
∫

Q

|u|qϕ dP + J0 = −
∫

Q

vϕt1dP −
∫

Q

vϕt2dP −
∫

Q

|v|nΔϕdP
(2.21)

for any test function ϕ ∈ C∞
0 (Q).

Note that every weak solution is classical near the points (t1, t2, x) where u(t1, t2, x)
and v(t1, t2, x) are positive.
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Let us set

σ1
(
p, q
)
=
q
(
2 − (d + 2)p

)
+ 4 + d

pq − 1
, σ2

(
p, q
)
=
q
(
2 − (d + 2)p

)
+ (4 + d)m

pq −m ,

σ3
(
p, q
)
=
q
(
2n − (d + 2)p

)
+ (4 + d)n

pq − n , σ4
(
p, q
)
=
q
(
2 − (d + 2)p

)
+ (4 + d)mn

pq −mn .

(2.22)

Theorem 2.5. Let p > 1, q > 1, p > n, q > m, and assume that

∫

S

u(t1, 0;x)dP1 +
∫

S

u(0, t2;x)dP2 > 0,

∫

S

v(t1, 0;x)dP1 +
∫

S

v(0, t2;x)dP2 > 0.

(2.23)

Then system (2.18)-(2.19) admits no global weak solution whenever

max
{
σ1
(
p, q
)
, . . . , σ4

(
p, q
)
, σ1
(
q, p
)
, . . . , σ4

(
q, p
)} ≤ 0. (2.24)

Proof. Assume that the solution is global. Using Hölder’s inequality, we obtain

∫

Q

|u|m∣∣Δϕ∣∣dP =
∫

Q

|u|mϕm/qϕ−m/q∣∣Δϕ
∣∣dP

≤
(∫

Q

|u|qϕ dP
)m/q(∫

Q

ϕ−m/(q−m)∣∣Δϕ
∣∣q/(q−m)

dP

)(q−m)/q

,

(2.25)

∫

Q

uϕtidP ≤
(∫

Q

|u|qϕ dP
)1/q(∫

Q

ϕ−1/(q−1)∣∣ϕti
∣∣(q−1)/qdP

)(q−1)/q
, (2.26)

for i = 1, 2. Similarly, we have

∫

Q

|v|n∣∣Δϕ∣∣dP ≤
(∫

Q

|v|pϕ dP
)n/p(∫

Q

ϕ−n/(p−n)∣∣Δϕ
∣∣p/(p−n)dP

)(p−n)/p
. (2.27)
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If we set

I :=
∫

Q

|u|qϕ dP, J :=
∫

Q

|v|pϕ dP,

A(p, n) =
(∫

Q

ϕ−n/(p−n)∣∣Δϕ
∣∣p/(p−n)dP

)(p−n)/p
,

Bi

(
q
)
=

(∫

Q

ϕ−1/(q−1)∣∣ϕti
∣
∣q/(q−1)dP

)(q−1)/q
,

B(q) = B1
(
q
)
+ B2

(
q
)
,

(2.28)

then, using (2.23), inequalities (2.26) and (2.27) in (2.21), we my write

I ≤ J1/pB(p) + Jn/pA(p, n),

J ≤ I1/qB(q) + Im/qA(q,m),
(2.29)

so

Jn/p ≤ C
{
In/pqBn/q(q

)
+ Imn/pqAn/p(q,m

)}
(2.30)

for some positive constant C.
Whereupon

I ≤ C
{
I1/pqB1/p(q

)B(p) + Im/pqA1/p(q,m
)B(p)

+In/pqBn/p(q
)A(p, n) + Imn/pqAn/p(q,m

)A(p, n)B(p)
}
.

(2.31)

Using Hölder’s inequality, we may write

I ≤ C
{(

B1/p(q
)B(p)

)pq/(pq−1)
+
(
A1/p(q,m

)B(p)
)pq/(pq−m)

+
(
Bn/p(q

)A(p, n)
)pq/(pq−n)

+
(
An/p(q,m

)A(p, n)
)pq/(pq−mn)}

.

(2.32)

At this stage, using the scaled variables (2.11), we obtain

A(p, n) = CR−2+(4+d)(1−n/p),

Bi

(
q
)
= CR−2+(4+d)(1−1/q), i = 1, 2.

(2.33)
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Hence, for I, we get the estimate

I ≤ C
{
R−σ1(p,q) + R−σ2(p,q) + R−σ3(p,q) + R−σ4(p,q)

}
. (2.34)

Observe that, following the same lines, we can also obtain the following estimate for J:

J ≤ C
{
R−σ1(q,p) + R−σ2(q,p) + R−σ3(q,p) + R−σ4(q,p)

}
. (2.35)

To conclude, we have to consider two cases.

Case 1. If max{σ1(p, q), . . . , σ4(p, q), σ1(q, p), . . . , σ4(q, p)} < 0 then

lim
R→+∞

I =
∫

Q

|u|qdP = 0 =⇒ u = 0, p.p.

lim
R→+∞

J =
∫

Q

|v|pdP = 0 =⇒ v = 0, p.p.

(2.36)

A contradiction.

Case 2. If max{σ1(p, q), . . . , σ4(p, q), σ1(q, p), . . . , σ4(q, p)} = 0, we conclude following the same
argument used for one equation.
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