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We apply mollifiers to study the properties of real functions which satisfy mean value conditions
and present new equivalent conditions for complex analytic functions. New properties of complex
functions with mean value conditions are given.

1. Introduction

There are many good properties of complex analytic function. In the references on complex
function theory (see [1] and the references therein), we see that analytic function satisfies
mean value theorem but the converse is wrong. Hence, mean value condition is weaker than
analytic condition.

The mean value problem has been a very active area in recent years. The mean
value theorem for real-valued differentiable functions defined on an interval is one of the
most fundamental results in analysis. However, the theorem is incorrect for complex-valued
functions even if the function is differentiable throughout the complex plane. Qazi [2]
illustrated that by examples and presented three results of a positive nature. A mean value
theorem for continuous vector functions was introduced bymollified derivatives and smooth
approximations in [3]. Crespi et al. [4] and La Torre [5] gave some characterizations of
convex functions by means of second-order mollified derivatives. Second-order necessary
optimality conditions for nonsmooth vector optimization problems were given by smooth
approximations in [6]. Eberhard and Mordukhovich [7] mainly concerned deriving first-
order and second-order necessary (and partly sufficient) optimality conditions for a general
class of constrained optimization problems via convolution smoothing. Eberhard et al. [8]
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demonstrated that second-order subdifferentials were constructed via the accumulation of
local Hessian information provided by an integral convolution approximation of the function.
In [9], Aimar et al. showed the parabolic mean value formula.

In this paper, we will apply mollifiers to study the properties of real functions which
satisfy mean value conditions and present new equivalent conditions for complex analytic
functions. New properties of complex functions with mean value conditions will be given.

We introduce the notations: z = x + iy, z = x − iy, p0 = (x0, y0), p = (x, y), Br(p0) =
{p | dist(p, p0) ≤ r}, ∂Br(p0) = {p | dist(p, p0) = r}. Using the chain rule of derivation, we
have

∂

∂z
=
(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=
(
∂

∂x
+ i

∂

∂y

)
, Δ =

∂

∂z∂z
=

∂

∂z∂z
=

∂2

∂x2
+

∂2

∂y2
. (1.1)

The Cauchy-Riemann equation of analytic function f(z) = u(x, y) + iv(x, y) can be written as

∂f(z)
∂z

= 0. (1.2)

We will use the following classical definitions and results of functional analysis.

Definition 1.1 (see [10]). The functions

ϕε(x) =

⎧⎪⎨
⎪⎩

c

εn
exp

(
ε2

|x|2 − ε2

)
, |x| < ε,

0, |x| ≥ ε,
(1.3)

with c ∈ R such that
∫
Rn ϕε(x)dx = 1, are called standard mollifiers.

From the definition, we see the functions ϕε are C∞.

Definition 1.2 (see [3]). Give a locally integrable function f : Rn → Rm and a sequence of
bounded mollifiers, and define the functions fε by the convolution

fε(x) :=
∫
Rn
f
(
x − y)ϕε(y)dy =

∫
Rn
f
(
y
)
ϕε
(
x − y)dy. (1.4)

The sequence fε(x) is said to be a sequence of mollified functions.

Proposition 1.3 (Properties of mollifiers, see [10]). Suppose that Ω ⊂ Rn is open, ε > 0, write
Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}. Then,

(i) fε ∈ C∞(Ωε),

(ii) fε → f a.e. as ε → 0,

(iii) if f ∈ C(Ω), then fε → f uniformly on compact subsets of Ω,

(iv) If 1 ≤ p <∞ and f ∈ Lploc(Ω) then fε → f in Lploc(Ω).
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This paper is organized as follows. In Section 2, we give the definitions of mean value
conditions and their equivalent forms. Applying mollifiers, we show some properties of real
functions with mean value conditions in Section 3. Section 4 contains our main results for
complex functions satisfying mean value condition, that is, the new equivalent condition of
complex analytic function and the new properties of complex functions. At last, we present
two problems with their answers.

2. Mean Value Conditions

Definition 2.1 (Mean value condition). LetΩ be a domain in complex number field (bounded
or unbounded) and f(z) = u(x, y)+ iv(x, y) a continuous complex function defined inΩ. For
any z0 ∈ Ω and {z | |z − z0| ≤ r} ⊂ Ω, if

f(z0) =
1

2πr

∫
|z−z0|=r

f(z)ds, (2.1)

we say that f(z) satisfies the mean value condition in domain Ω.

Remark 2.2. If f(z) is an analytic function in domain Ω, then f(z) satisfies the mean value
condition in domain Ω (see [1]), the converse is wrong. For example, f(z) = 1 + iy satisfies
the mean value condition in the complex number field, but it is not analytic. Hence, mean
value condition is weaker than analytic condition.

Definition 2.3 (Mean value condition). Set w(p) ∈ C(Ω).

(i) For any Br(p0) ⊂ Ω, if

w
(
p0
)
=

1
2πr

∫
∂Br(p0)

w
(
p
)
ds, (2.2)

we say that w(p) satisfies the first mean value condition.

(ii) For any Br(p0) ⊂ Ω, if

w
(
p0
)
=

1
πr2

∫
Br(p0)

w
(
p
)
dp, (2.3)

we say that w(p) satisfies the second mean value condition.

Proposition 2.4. (1) The first and the second mean value conditions of w(p) are equivalent.
(2)

(i) The first mean value condition of w(p) can be written as

w
(
p0
)
=

1
2π

∫
|ω|=1

w
(
p0 + rω

)
ds. (2.4)
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(ii) The second mean value condition of w(p) can be written as

w
(
p0
)
=

1
π

∫
|ω|≤1

w
(
p0 + rω

)
dω. (2.5)

(3) The mean value condition of complex function f(z) can be written as

f(z0) =
1
2π

∫2π

0
f
(
z0 + reiθ

)
dθ. (2.6)

(4) The complex function f(z) = u(x, y) + iv(x, y) satisfies mean value condition if and only
if real functions u(x, y) and v(x, y) satisfy mean value conditions.

Proof. (1) Differentiating both sides of

w
(
p0
)
=

1
πr2

∫
Br(p0)

w
(
p
)
dp =

1
πr2

∫ r
0
dρ

∫
∂Bρ(p0)

w
(
p
)
ds, (2.7)

with respect to r, we have

0 = − 2
πr3

∫ r
0
dρ

∫
∂Bρ(p0)

w
(
p
)
ds +

1
πr2

∫
∂Br(p0)

w
(
p
)
ds, (2.8)

that is,

1
2π

∫
∂Br(p0)

w
(
p
)
ds =

1
πr2

∫
Br(p0)

w
(
p
)
dp = w

(
p0
)
. (2.9)

We write the first mean value condition as

w
(
p0
)
ρ =

1
2π

∫
∂Bρ(p0)

w
(
p
)
ds (2.10)

and get the second mean value condition by integrating the both sides of (2.10) with respect
to ρ on [0, r].

(2)

(i) Let p = p0 + rω. Then, by integral transform formula, we get

w
(
p0
)
=

1
2πr

∫
∂Br(p0)

w
(
p
)
ds =

1
2π

∫
|ω|=1

w
(
p0 + rω

)
ds. (2.11)

(ii) In the same way, we get

w
(
p0
)
=

1
πr2

∫
Br(p0)

w
(
p
)
dp =

1
π

∫
|ω|≤1

w
(
p0 + rω

)
dω. (2.12)
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(3) Let z = z0 + reiθ. Then, by integral transform formula, we get

f(z0) =
1

2πr

∫
|z−z0|=r

f(z)ds =
1
2π

∫2π

0
f
(
z0 + reiθ

)
dθ. (2.13)

(4) Let z = z0 + r(ω1 + iω2) and ω = (ω1, ω2). Then, by integral transform formula,
we see

u
(
x0, y0

)
+ iv
(
x0, y0

)
= f(z0) =

1
2πr

∫
|z−z0|=r

[
u
(
x, y
)
+ iv
(
x, y
)]
ds

=
1
2π

∫
|ω|=1

[
u
(
p0 + rω

)
+ iv
(
p0 + rω

)]
ds,

(2.14)

which implies

u
(
x0, y0

)
=

1
2π

∫
|ω|=1

u
(
p0 + rω

)
ds, v

(
x0, y0

)
=

1
2π

∫
|ω|=1

v
(
p0 + rω

)
ds. (2.15)

3. Preliminaries

In this section, we give the properties of real functions satisfying the mean value conditions.
These properties will be used to prove our main results in Section 4.

Lemma 3.1. If Δw(p) = 0, p = (x, y) ∈ Ω, then, w(x, y) satisfies the mean value condition in
domain Ω.

Proof. For any Br(p0) ⊂ Ω, using Green formula, we have

∫
Bρ(p0)

Δw
(
p
)
dp =

∫
∂Bρ(p0)

∂w

∂ν
ds = ρ

∫
|ω|=1

∂w

∂ρ

(
p0 + ρω

)
ds = ρ

∂

∂ρ

∫
|ω|=1

w
(
p0 + ρω

)
ds.

(3.1)

Since w is harmonic in Ω, we obtain from (3.1) that

∂

∂ρ

∫
|ω|=1

w
(
p0 + ρω

)
ds = 0. (3.2)

Integrating both sides of (3.2) with respect to ρ on [0, r], we get

∫
|ω|=1

w
(
p0 + rω

)
ds =

∫
|ω|=1

w
(
p0
)
ds = 2πw

(
p0
)
, (3.3)
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that is,

w
(
p0
)
=

1
2π

∫
|ω|=1

w
(
p0 + rω

)
ds =

1
2πr

∫
∂Br(p0)

w
(
p
)
ds. (3.4)

Lemma 3.2. Assume (i) ψ(ρ) ∈ C[0, r] and A(r) :=
∫
Br(p0)

ψ(|p − p0|)dp/= 0; (ii) w(p) satisfies the

mean value condition in Br(p0) and w(p) ∈ C(Br(p0)). Then,

w
(
p0
)
=

1
A(r)

∫
Br(p0)

w
(
p
)
ψ
(∣∣p − p0∣∣)dp. (3.5)

Proof. From (i) and (ii), we have

A(r) :=
∫
Br(p0)

ψ
(∣∣p − p0∣∣)dp =

∫ r
0
dρ

∫
∂Bρ(p0)

ψ
(∣∣p − p0∣∣)ds = 2π

∫ r
0
ψ
(
ρ
)
ρ dρ, (3.6)

w
(
p0
)
=

1
2πρ

∫
∂Bρ(p0)

w
(
p
)
ds. (3.7)

Multiplying the both sides of (3.7) by 2πρψ(ρ) and integrating the result with respect to ρ on
[0, r], we have

2πw
(
p0
) ∫ r

0
ψ
(
ρ
)
ρ dρ =

∫ r
0

(∫
∂Bρ(p0)

w
(
p
)
ψ
(
ρ
)
ds

)
dρ =

∫
Br(p0)

w
(
p
)
ψ
(∣∣p − p0∣∣)dp. (3.8)

Combining (3.6) and (3.8), we obtain the conclusion.

Lemma 3.3. If w(p) ∈ C(Ω) satisfies the mean value condition, then, (i) w(p) ∈ C∞(Ω); (ii)
Δw(p) = 0.

Proof. (i)Method 1: choose ϕ(p) ∈ C∞
0 (B1(0))with

∫
B1(0)

ϕ
(
p
)
dp = 1, ϕ

(
p
)
= ψ
(∣∣p∣∣). (3.9)

Using integral transform formulas, we have

2π
∫1

0
rψ(r)dr = 1. (3.10)
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Define ϕε(p) = (1/ε2)ϕ(p/ε), with ε < dist(p, ∂Ω), p ∈ Ω. Using integral transform
formulas and (3.10), we get

∫
Ω
w
(
p
)
ϕε
(
p − p0

)
dp =

1
ε2

∫
|p|<ε

w
(
p0 + p

)
ϕ

(
p

ε

)
dp =

∫
|p|<1

w
(
p0 + εp

)
ϕ
(
p
)
dp

=
∫1

0
dr

∫
∂Br(p0)

w
(
p0 + εp

)
ϕ
(
p
)
ds

=
∫1

0
rdr

∫
∂B1(p0)

w
(
p0 + εrω

)
ϕ(rω)ds

=
∫1

0
ψ(r)rdr

∫
|ω|=1

w
(
p0 + εrω

)
ds = 2πw

(
p0
) ∫1

0
ψ(r)rdr = w

(
p0
)
,

(3.11)

that is,

w
(
p0
)
=
(
ϕε ∗w

)(
p0
)
, ∀p0 =

(
x0, y0

) ∈ Ωε =
{
p0 | p0 ∈ Ω, d

(
p0, ∂Ω

)
> ε
}
. (3.12)

Applying (3.12) and Proposition 1.3, noticing the arbitrariness of ε, we conclude that w(p) ∈
C∞(Ω).

Method 2: choose ϕ(p) as above. Define ϕε(p) = (1/ε2)ϕ(p/ε), with ε < dist(p, ∂Ω),
p ∈ Ω, then,

∫
Br(p0)

ϕε
(
p
)
dp = 1. (3.13)

Using Lemma 3.2, we obtain

w
(
p0
)
=
(
ϕε ∗w

)(
p0
)
, ∀p0 =

(
x0, y0

) ∈ Ωε =
{
p0 | p0 ∈ Ω, d

(
p0, ∂Ω

)
> ε
}
. (3.14)

Applying Proposition 1.3, noticing the arbitrariness of ε, we conclude that w(p) ∈
C∞(Ω).

(ii) Using (3.1) and Proposition 2.4, we get

∫
Br(p0)

Δw
(
p
)
dp = r

∂

∂r

∫
|ω|=1

w
(
p0 + rω

)
ds = r

∂

∂r

(
2πw

(
p0
))

= 0, ∀Br
(
p0
) ⊂ Ω, (3.15)

which implies Δw(p) = 0, p = (x, y) ∈ Ω.

4. Main Results

In this section, we give the main results for the complex functions which satisfy the mean
value conditions.
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Proposition 4.1. f(z) satisfies the mean value condition in Ω if and only if Δf(z) = 0 in Ω.

Proof. Proposition 2.4, Lemmas 3.1, and 3.3 yield the assertion.

Theorem 4.2. f(z) satisfies the mean value condition in Ω and ∂f(z)/∂z = 0 if and only if f(z) is
analytic in Ω.

Proof. Denote f(z) = u(x, y) + iv(x, y).
Firstly, we prove the necessary condition. Employing the assumption and Lemma 3.3,

we can assert u(x, y), v(x, y) ∈ C∞(Ω); hence, the partial derivatives of u(x, y) and v(x, y)
are continuous in Ω. Combining with Cauchy-Riemann equation ∂f(z)/∂z = 0, we conclude
that f(z) is analytic in Ω.

Secondly, we prove the sufficient condition. The assumption that f(z) is analytic in Ω
implies

(i) ux(x, y) = vy(x, y), uy(x, y) = −vx(x, y), that is, ∂f(z)/∂z = 0,

(ii) Δf(z) = 0. Combining with Proposition 4.1 implies f(z) satisfies the mean value
condition in Ω.

Theorem 4.3. Suppose that f(z) satisfies the mean value condition inΩ, and |f(z)| is bounded. Then
f(z) is a constant in Ω.

Proof. Since f(z) = u(x, y) + iv(x, y) satisfies the mean value condition in Ω, using
Proposition 2.4 and Lemma 3.3, we get Δu = 0, Δv = 0, (x, y) ∈ Ω.

Since |f(z)| is bounded, we obtain u and v are bounded, respectively, Without loss of
generality, we assume that u ≥ 0. For all M0 ∈ R

2, one can choose BR(O) with M0 ∈ BR(O).
Denote R0 = d(M0, O). The Harnack inequality (see [11]) implies

R − R0

R + R0
u(O) ≤ u(M0) ≤ R + R0

R − R0
u(O). (4.1)

LettingR → +∞, we conclude u(M0) = u(O). In the similar way, we conclude v(M0) = v(O).
SinceM0 is arbitrary, we conclude f(z) = u(x, y) + iv(x, y) is a constant in Ω.

Remark 4.4. This theorem may be proved by the local estimates for harmonic functions too.
On the local estimates for harmonic functions, one can see [10].

Theorem 4.5. Suppose that f(z) satisfies the mean value condition in Ω, and |f(z)| is a constant.
Then, f(z) is a constant in Ω.

Proof. Since f(z) = u + iv satisfies the mean value condition in Ω, using Proposition 2.4 and
Lemma 3.3, we obtain

Δu
(
x, y
)
= Δv

(
x, y
)
= 0. (4.2)

Since |f(z)| is a constant, we get the following in Ω

u2
(
x, y
)
+ v2(x, y) ≡ constant. (4.3)
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From (4.3), we get 2uux + 2vvx = 0 and

u2x + v
2
x + uuxx + vvxx = 0. (4.4)

In the similar way, we have

u2y + v
2
y + uuyy + vvyy = 0. (4.5)

Adding (4.4) to (4.5) and noting (4.2), we obtain

u2x + u
2
y + v

2
x + v

2
y = 0, (4.6)

which implies u and v are constants, that is, f(z) is a constant in Ω.

Theorem 4.6. Suppose (1) f(z) = u(x, y) + iv(x, y) satisfies the mean value condition in Ω; (2)
f(z) is continuous on Ω; (3) f(z) is not a constant. Then, maxΩ|f(z)| can be obtained only on the
boundary of Ω.

Proof. Denoting M = maxΩ|f(z)|, then, we have 0 < M < +∞. Suppose there is z0 ∈ Ω
such that |f(z0)| = M. For any Bρ(z0) ⊂ Ω, the mean value condition implies that, for all
z ∈ ∂Bρ, |f(z)| = M. Hence |f(z)| is a constant in the neighborhood of M0. Theorem 4.3
implies f(z) is a constant in this neighborhood of M0. Applying the circular chain method,
we have f(z) is a constant in Ω, which is a contradiction.

In the following, we present two problems.

Problem 1. Suppose (1) f(z) = u(x, y) + iv(x, y) satisfies the mean value condition in Ω; (2)
f(z) is continuous onΩ; (3) f(z) is not a constant; (4) for all z ∈ Ω, f(z)/= 0. Can one confirm
that minΩ|f(z)| is obtained only on the boundary of Ω?

Answer

One can’t confirm. For example, f(z) = 1 + iy in Ω = {z | |z| < 1}. This example shows
that the minimal module principle doesn’t hold for complex function satisfying mean value
condition. But analytic complex function has minimal module principle.

Problem 2. If f(z) satisfies the mean value condition in Ω, can one confirm that f(z) is
infinitely differentiable in Ω?

Answer

One can not confirm. For example, f(z) = 1 + iy in Ω = {z | |z| < 1} does not satisfy the
Cauchy-Riemann equation. This example shows that mean value condition can not imply
the differential property of complex function. But analytic complex function is infinitely
differentiable.
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