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We analyze the stability of three classes of distributed order fractional differential equations
(DOFDEs) with respect to the nonnegative density function. In this sense, we discover a robust
stability condition for these systems based on characteristic function and new inertia concept of a
matrix with respect to the density function. Moreover, we check the stability of a distributed order
fractional WINDMI system to illustrate the validity of proposed procedure.

1. Introduction

The fractional differential operator of distributed order

doD
α =

∫u

l

b(α)
dα

dtα
dα, u > l ≥ 0, b(α) ≥ 0 (1.1)

is a generalization of the single order soD
α = dα/dtα which by considering a continuous or

discrete distribution of fractional derivative is obtained.
The idea of fractional derivative of distributed order is stated by Caputo [1] and later

developed by Caputo himself [2, 3], Bagley and Torvik [4, 5]. Other researchers used this
idea, and interesting reviews appeared to describe the related mathematical models of partial
fractional differential equation of distributed order.

For example, Diethelm and Ford [6] used a numerical technique along with its
error analysis to solve the distributed order differential equation and analyze the physical
phenomena and engineering problems, see [6] and references therein.
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Furthermore, some investigation on linear distributed order boundary value problems
of form

∫m

0
b(α)Dαu(x, t)dα = B(D)u(x, t), D =

d

dx
, t > 0, x ∈ R, (1.2)

with pseudodifferential operator B(D) and the Cauchy conditions

∂k

∂tk
u(x, 0+) = fk(x), k = 0, 1, . . . , m − 1, (1.3)

have been discussed [7–12].
In particular cases, the characteristics of time-fractional diffusion equation of

distributed order were studied for treatises in the sub-, normal, and superdiffusions.
The fractional order applied to dynamical systems is of great importance in applied

sciences and engineering [13–19]. The stability results of the fractional order differential
equations (FODEs) systems have been a main goal in researches. For example, Matignon
considers the stability of FODE system in control processing and Deng has studied the
stability of FODE system with multiple time delays [20–23].

Now, in this paper, we consider the distributed order fractional differential equations
systems (DOFDEs) with respect to the density function b(α) ≥ 0 as follows:

C
doD

α
t x(t) = Ax(t), x(0) = x0, 0 < α ≤ 1, (1.4)

where x(t) ∈ R
n, A ∈ R

n×n, and C
doD

α
t =

∫1
0 b(α)

C
soD

α
t x(t)dα is the Caputo fractional

derivative operator of distributed order with respect to the order-density function b(α).
Since the solution of the above system is rather complicated similar to FODE systems,

therefore, the study of stability for DOFDE is a main task.
In this paper, we introduce three classes of DOFDE systems including

(1) distributed order fractional differential systems;

(2) distributed order fractional differential evolution systems with control vector;

(3) distributed order fractional differential evolution systems without control vector.

For studying the stability of these classes of DOFDE systems, first, we introduce a
characteristic function of a matrix with respect to the distribute function B(s) where
B(s) =

∫1
0 b(α)s

αdα. Then, we establish a general theory based on new inertia concept for
analyzing the stability of distributed order fractional differential equations. The concepts and
theorems presented in this paper for DOFDE systems can be considered as generalizations of
FODE and ODE systems [21, 24, 25].

In Section 2, we recall some basic definitions of the Caputo fractional derivative
operator, the Mittag-Leffler function, and their elementary properties used in this paper.
Section 3 contains the main definitions and theorems for checking the stability of DOFDE
systems. Also, we study a distributed order fractionalWINDMI system [26] generalized from
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fractional order to distributed order fractional. In Section 4, we introduce the distributed order
fractional evolution systems

C
doD

α
t x(t) = AC

doD
β
t x(t) + Bu(t), x(0) = x0, 0 < β < α ≤ 1, (1.5)

where u(t) is control vector, and generalize the results obtained in Section 3 for this case.
Finally, the conclusions are given in the last section.

2. Elementary Definitions and Theorems

In this section, we consider the main definitions and properties of fractional derivative
operators of single and distribute order and the Mittag-Leffler function. Also, we recall two
important theorems in inverse of the Laplace transform.

2.1. Fractional Derivative of Single and Distributed Order

The fractional derivative of single order of f(t) in the Caputo sense is defined as [16, 27]

C
soD

α
t f(t) =

1
Γ(m − α)

∫ t

0

f (m)(τ)

(t − τ)α−m+1
dτ, (2.1)

for m − 1 < α ≤ m, m ∈ N, t > 0. The Caputo’s definition has the advantage of dealing
properly with initial value problems in which the initial conditions are given in terms of
the field variables and their integer order which is the case in most physical processes.
Fortunately, the Laplace transform of the Caputo fractional derivative satisfies

L
{
C
soD

α
t f(t)

}
= sαL{

f(t)
} − m−1∑

k=0

f (k)(0+)sα−1−k, (2.2)

wherem−1 < α ≤ m and s is the Laplace variable. Now, we generalize the above definition in
the fractional derivative of distributed order in the Caputo sense with respect to order-density
function b(α) ≥ 0 as follows:

C
doD

α
t f(t) =

∫m

m−1
b(α) C

doD
α
t f(t)dα, (2.3)

and the Laplace transform of the Caputo fractional derivative of distributed order satisfies

L
{
C
doD

α
t f(t)

}
=
∫m

m−1
b(α)

[
sαF(s) −

m−1∑
k=0

sα−1−kf (k)(0+)

]
dα

= B(s)F(s) −
m−1∑
k=0

1
sk+1

B(s)f (k)(0+),

(2.4)
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where

B(s) =
∫m

m−1
b(α)sαdα. (2.5)

2.2. Mittag-Leffler Function

The one-parameter Mittag-Leffler function Eα(z) and the two-parameter Mittag-Leffler
function Eα,β(z), which are relevant for their connection with fractional calculus, are defined
as

Eα(z) =
∞∑
j=0

zj

Γ
(
αj + 1

) , α > 0, z ∈ C, (2.6)

Eα,β(z) =
∞∑
j=0

zj

Γ
(
αj + β

) α, β > 0, z ∈ C. (2.7)

One of the applicable relations in this paper is the Laplace transforms of the Mittag-leffler
function given by

L
(
tβ−1Eα,β(λtα)

)
=

sα−β

(sα − λ)
, R(s) > |λ|1/α. (2.8)

2.3. Main Theorems about Inverse of the Laplace Transform

Theorem 2.1 (Schouten-Vanderpol Theorem [28]). Suppose that the functions F(s), φ(s) are
analytic in the half plane R(s) > s0, then, the Laplace transform inversion of F(φ(s)) can be obtained
as

L−1{F(φ(s))} =
∫+∞

0
f(τ)L−1

{
e−φ(s)τ ; t

}
dτ, (2.9)

where f(t) is the Laplace transform inversion of the function F(s).

Theorem 2.2 (Titchmarsh Theorem [29]). Let F(s) be an analytic function which has a branch cut
on the real negative semiaxis; furthermore, F(s) has the following properties:

F(s) = O(1), |s| −→ ∞,

F(s) = O

(
1
|s|

)
, |s| −→ 0,

(2.10)

for any sector | arg(s)| < π − η where 0 < η < π . Then, the Laplace transform inversion f(t) can be
written as the the Laplace transform of the imaginary part of the function F(re−iπ) as follows:

f(t) = L−1{F(s); t} =
1
π

∫∞

0
e−rtI

(
F
(
re−iπ

))
dr. (2.11)
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Theorem 2.3 (Final Value Theorem [28]). Let F(s) be the Laplace transform of the function f(t).
If all poles of sF(s) are in the open left-half plane, then,

lim
t→∞

f(t) = lim
s→ 0

sF(s). (2.12)

3. Stability Analysis of Distributed Order Fractional Systems

In this section, we generalize the main stability properties for the linear system of distributed
order fractional differential equations in the following form:

C
doD

α
t x(t) = Ax(t), x(0) = x0, 0 < α ≤ 1, (3.1)

where x ∈ R
n, the matrix A ∈ R

n×n, and C
doD

α
t =

∫1
0 b(α)

C
soD

α
t x(t)dα is the Caputo fractional

derivative operator of distributed order with respect to order-density function b(α) ≥ 0.
At first, we obtain the general solution of the system (3.1), and, next, we express the main
theorem for checking the stability of this system.

By implementation of the Laplace transform on the above system and using the initial
condition and relation (2.4), we have

B(s)x(s) = Ax(s) + 1/sB(s)x(0), B(s) =
∫1

0
b(α)sαdα,

x(s) =
B(s)

s[B(s)I −A]
x(0) =

B(s)I −A +A

s[B(s)I −A]
x(0)

=
1
s
x(0) +

A

s[B(s)I −A]
x(0).

(3.2)

Now, by applying the inverse of Laplace transform on the both sides of above relation, we
have

x(t) = x(0) +L−1
{

A

s[B(s)I −A]
x(0)

}

= x(0) +
∫ t

0
L−1

{
1

[B(s)I −A]

}
Ax(0)dt,

(3.3)

which according to the Schouten-Vanderpol and Titchmarsh theorems we get

L−1
{

1
B(s) I −A

}
=
∫∞

0
eAτL−1

{
e−B(s)τ ; t

}
dτ, (3.4)

L−1
{
e−B(s)τ ; t

}
= − 1

π

∫∞

0
e−rtI

(
e−B(s)τ

)
dr

= − 1
π

∫∞

0
e−rt

[
e−ρ cosπγ sin

(
ρ sinπγ

)]
dr,

(3.5)

where B(s) = ρ cosπγ + iρ sinπγ , ρ = |B(s)|, γ = (1/π) arg[B(s)], and r = eiπ .
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Finally, by using (3.4) and (3.5), the general solution of the distributed order fractional
systems (3.1) is written by

x(t) = x(0) +
1
π

∫ t

0

∫∞

0

∫∞

0
e−rt+Aτ−ρ cosπγ sin

(
ρ sinπγ

)
Ax(0)dr dτ dt. (3.6)

Theorem 3.1. The distributed order fractional system of (3.1) is asymptotically stable if and only if
all roots of det(B(s)I −A) = 0 have negative real parts.

Proof. According to the relation (3.2), we have

[B(s)I −A]sX(s) = B(s)x(0), (3.7)

if all roots of the det(B(s)I −A) = 0 lie in open left half complex plane (i.e., R(s ) < 0), then,
we consider (3.7) in R(s) ≥ 0. In this restricted area, the relation (3.7) has a unique solution
sX(s) = (sX1(s) , sX2(s), . . . , sXn(s)). Since lims→ 0B(s) = 0, so we have

lim
s→ 0,R(s)≥0

sXi(s) = 0, i = 1, 2, . . . , n, (3.8)

which from the final value Theorem 2.3, we get

lim
t→∞

x(t) = lim
t→∞

(x1(t), x2(t), . . . , xn(t)) = lim
s→ 0,R(s)≥0

(sX1(s), sX2(s), . . . , sXn(s)) = 0. (3.9)

The above result shows that the system (3.1) is asymptotically stable.

Definition 3.2. The value of det(B(s)I −A) is the characteristic function of the matrix A with
respect to the distributed function B(s), where B(s) =

∫1
0 b(α)s

αdα is the distributed function
with respect to the density function b(α) ≥ 0.

Definition 3.3. The eigenvalues ofAwith respect to the distributed function B(s) are the roots
of the characteristic function of A.
The inertia of amatrix is the triplet of the numbers of eigenvalues ofAwith positive, negative,
and zero real parts. In this section, we generalize the inertia concept for analyzing the stability
of linear distributed order fractional systems. According to the Theorem (3.1), the transient
responses of the system (3.1) are governed by the region where the roots of det(B(s)I−A) = 0
are located in the complex plane.

Definition 3.4. The inertia of a matrix A of order n respect to the order distributed function
B(s) is the triplet

InB(s) (A) =
(
πB(s)(A), νB(s)(A), δB(s)(A)

)
, (3.10)

where πB(s)(A), νB(s)(A), and δB(s)(A) are, respectively, the number of roots of det(B(s)I −
A) = 0 with positive, negative, and zero real parts where B(s) =

∫1
0 b(α)s

αdα.
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Definition 3.5. The matrix A is called a stable matrix with respect to the order distributed
function B(s), if all of the eigenvalue of A with respect to the distributed function B(s) have
negative real parts.

Theorem 3.6. The linear distributed order fractional system (3.1) is asymptotically stable if and only
if any of the following equivalent conditions holds.

(1) The matrix A is stable with respect to the distribute function B(s).

(2) πB(s)(A) = δB(s)(A) = 0.

(3) All roots s of the characteristic function of A with respect to the distributed function B(s)
satisfy | arg(s)| > π/2.

Proof. According to Theorem 3.1 and the above definitions, proof can be easily obtained.

Remark 3.7. In special case, if b(α) = δ(α − β), where 0 < β ≤ 1 and δ(x) is the Dirac delta
function, then, we have the following linear system of fractional differential equations:

dβ

dtβ
x(t) = Ax(t), x(0) = x0, (3.11)

and B(s) = sβ. Also, the characteristic matrix and characteristic equation of (3.11) are reduced
to sβI − A and det(sβI − A) = 0, respectively. Let λ be sβ, then s = λ1/β, and, by using
Theorem 3.6, we have | arg(λ1/β)| > π/2. Thus, all the roots λ of equation det(λI − A) = 0
satisfy | arg(λ)| > βπ/2. This result is Theorem 2 of [22]. Here, we can very easily prove it by
using Theorem 3.6 of the present paper. Particularly, if β = 1, then, we have a linear system
ẋ(t) = Ax(t). In this case, B(s) = s and the characteristic function of (3.1) are det sI − A.
Also, the inertia of matrix A is a triplet (π(A), ν(A), δ(A)), where π(A), ν(A), and δ(A) are,
respectively, the number of eigenvalues ofAwith positive, negative, and zero real parts. This
result is a special case of definition (3.4), which agrees with the typical definitions for typical
differential equations.

Example 3.8. The solar-wind-driven magnetosphere-ionosphere (WINDMI) system is a
complex driven-damped dynamical system which exhibits a variety of dynamical states that
include low-level steady plasma convection, episodic releases of geotail stored plasma energy
into the ionosphere known broadly as substorms, and states of continuous strong unloading
[30, 31]. If we consider the integer-order WINDMI model as follows:

dx1

dt
= x2,

dx2

dt
= x3,

dx3

dt
= −ax3 − x2 + b − ex1 ,

(3.12)
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where x1, x2, and x3 are variables and a, b are positive constants, the corresponding
distributed order fractional WINDMI system (3.12) can be written in the form:

∫1

0
b(α)

dα

dtα
x1(t)dα = x2,

∫1

0
b(α)

dα

dtα
x2(t)dα = x3,

∫1

0
b(α)

dα

dtα
x3(t)dα = −ax3 − x2 + b − ex1 ,

(3.13)

where b(α) ≥ 0 is the density function. As a generalization of nonlinear autonomous
FODE into nonlinear autonomous DOFDE, the linearized form of the system (3.13) at the
equilibrium point x̂ = (ln b, 0, 0), that is, C

doD
α
t x̂(t) = F(x̂) = 0, can be written in the form

C
doD

α
t x(t) = Ax(t), (3.14)

where (t) = (x1(t), x2(t), x3(t)), C
doD

α
t x(t) =

∫1
0 b(α)

C
soD

α
t x(t)dα, and A = (∂F/∂x)|x=x̂, which

is the Jacobian matrix at the equilibrium point [32], is given by

A =

⎛
⎜⎜⎝

0 1 0

0 0 1

−b −1 −a

⎞
⎟⎟⎠. (3.15)

Now, for analyzing the stability of the nonlinear autonomous DFODE, we compute Inb(α)(A)
in the case that the density function varies. The results are shown in Table 1 for some
parameters a and b.

4. Distributed Order Fractional Evolution Systems

In this section, as a generalization of the previous systems, we consider the systems of
distributed order fractional differential evolution equations and state two theorems in
stability of these systems.

Theorem 4.1. Consider linear system of distributed order fractional differential evolution equations,

C
doD

α
t x(t) = AC

doD
β
t x(t), x(0) = x0, 0 < β < α ≤ 1, (4.1)

where A ∈ R
p×p, C

doD
α
t x(t) =

∫1
0 b1(α)

C
soD

α
t x(t)dα, and

C
doD

β
t x(t) =

∫1
0 b2(β)

C
soD

β
t x(t)dβ. Also,

B1(s) =
∫1
0 b1(α)s

αdα and B2(s) =
∫1
0 b2(β)s

βdβ. The system (4.1) is stable if and only if all roots of
characteristic function of matrixA with respect to the distributed function B1(s)/B2(s) have negative
real parts.
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Table 1: Stability analysis of distributed order fractional WINDMI system.

Parameters b(α) = δ(α − β) b(α) = δ(α − β1) + δ(α − β2) b(α) = 2α
β = 1 β = .95 β = .65 β1 = .5, β2 = .85 β1 = .1, β2 = .9

a = 0, b = 0 (0, 0, 3) (0, 2, 1) (0, 2, 1) (0, 2, 1) (0, 2, 1) (2, 0, 0)
a = 0, b = 1 (2, 1, 0) (1, 0, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0) (1, 0, 0)
a = 1, b = 1 (0, 1, 2) (0, 2, 0) (0, 2, 0) (0, 2, 0) (0, 2, 0) (3, 0, 0)
a = 1, b = 0 (0, 2, 1) (0, 2, 1) (0, 0, 1) (0, 0, 1) (0, 2, 1) (2, 0, 0)
a = 1, b = 0.001 (0, 3, 0) (0, 1, 0) (0, 0, 0) (0, 0, 0) (0, 1, 0) (1, 0, 0)

Proof. Taking the Laplace transform on both sides of (4.1) gives

B1(s)X(s) − B1(s)
s

x(0) = A

[
B2(s)X(s) − B2(s)

s
x(0)

]
,

[B1(s)I −AB2(s)]X(s) =
1
s
[B1(s) −AB2(s)]x(0),

[
B1(s)
B2(s)

I −A

]
(sX(s) − x(0)) = 0.

(4.2)

If all roots of characteristic function of matrix A with respect to the distributed function
B1(s)/B2(s) have negative real parts,that is, R(s) < 0, then, we consider (4.2) in R(s) ≥ 0.
In this restricted area by using final-value theorem of Laplace transform, we have

lim
t→∞

x(t) = lim
s→ 0,R(s)≥0

sX(s) = x0. (4.3)

Theorem 4.2. Consider the linear system of distributed order fractional differential evolution
equations

C
doD

α
t x(t) = AC

doD
β
t x(t) + Bu(t), x(0) = x0, 0 < β < α ≤ 1, (4.4)

with the same hypotheses described in Theorem 4.1 where B ∈ R
n×n and u(t) is a control vector.The

linear distributed order fractional system (4.4) is stabilizable if and only if there exists a linear feedback
u(t) = Y C

doD
β
t x(t), with Y ∈ R

n×n, such thatA+BY is stable with respect to the distributed function
B1(s)/B2(s).

Proof. The proof can be easily expressed similar to Theorem 4.1.

Remark 4.3. If b1(α) = δ(α − α1) and b2(β) = δ(β − β1) where 0 < β1 < α1 ≤ 1 then (4.4) is
reduced to the following linear system of fractional differential equations:

dα1

dtα1
x(t) = A

dβ1

dtβ1
x(t) + Bu(t), x(0) = x0, 0 < β1 < α1 ≤ 1. (4.5)
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By applying the Laplace transform on the above system and using the initial condition, we
have

sα1X(s) − sα1−1x(0) = A
[
sβ1X(s) − sβ1−1x(0)

]
+ BU(s), (4.6)

where X(s) is the Laplace transform of x(t),U(s) is the Laplace transform of u(t), and B(s) =∫1
0 b(α)s

αdα. Thus, we can write X(s) as,

X(s) =
BU(s) + sα1−1x(0)

sα1I −As
β

1

+
sβ1−1Ax(0)

sα1I −As
β

1

=
s−β1

sα1−β1I −A
BU(s) +

sα1−β1−1

sα1−β1I −A
x(0) +

s−1

sα1−β1I −A
Ax(0).

(4.7)

Applying the inverse Laplace transform to (4.7) and using property (2.8), we get

x(t) =
∫ t

0
(t − x)α1−1Eα1−β1,α1

(
A(t − x)α1−β1

)
Bu(x)dx

+ Eα1−β1,1
(
Atα1−β1

)
x(0) + tα1−β1Eα1−β1,α1−β1+1

(
Atα1−β1

)
Ax(0).

(4.8)

Therefore, (4.5) is asymptotically stable if all eigenvalues of Awith respect to the distributed
function B1(s)/B2(s) = sα1−β1 have negative real parts which is a special case of Theorem 4.2.

5. Conclusions and Future Works

In this work, we introduced three classes of the distributed order fractional differential
systems, the distributed order fractional differential evolution systems with control vector,
and the distributed order fractional differential evolution systems without control vector. The
analysis of the asymptotically stability for such systems based on Theorem 3.1 and several
interesting stability criteria are derived according to Theorem 3.6. Moreover, a numerical
example was given to verify the effectiveness of the proposed schemes.

In view of the above result, for future works, our attention may be focused on
generalizing the numerical methods for computing the eigenvalues of amatrix with respect to
the distributed function. The proposed algorithms in [33–35] for computing the eigenvalues
of a matrix may be effective in this case.
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