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This paper is devoted to the analysis of the travelling waves for a class of generalized nonlinear
Schrödinger equations in a cylindric domain. Searching for travelling waves reduces the problem
to the multiparameter eigenvalue problems for a class of perturbed p-Laplacians. We study
dispersion relations between the eigenparameters, quantitative analysis of eigenfunctions and
discuss some variational principles for eigenvalues of perturbed p-Laplacians. In this paper
we analyze the Dirichlet, Neumann, No-flux, Robin and Steklov boundary value problems.
Particularly, a “duality principle” between the Robin and the Steklov problems is presented.

1. Introduction

The main concerns of the paper are the travelling waves for the generalized nonlinear
Schrödinger (NLS) equation with the free initial condition in the following form (see [1]
for generalized NLS):

ivt − div
(
|∇v|p−2∇v

)
= ν|v|q−2v, p > 1,

v|∂Q = 0,
(1.1)

where v := v(t, x1, x2, . . . , xn+1) and ν is a parameter. Q = R ×Ω is a cylinder, ∂Q is the lateral
boundary of Q, t > 0, x1 ∈ R, and (x2, x3, . . . , xn+1) ∈ Ω. Assume that Ω is a bounded domain
in R

n with the smooth boundary. Particularly, in the case of p = 2 we get

ivt −Δv = ν|v|q−2v, (1.2)
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which is a nonlinear Scrödinger equation (see [1]). On the other hand problem (1.1) can be
considered as an evolution pq-Laplacian equation. Different aspects of such kind of problems,
with some initial conditions, have been studied in [2]. Thus problem (1.1) models the linear
Schrödinger equations (p = q = 2), NLS (p = 2, q /= 2), evolution pq-Laplacians, and
generalized NLS. This definitely means that we have a good motivation for problem (1.1).

In this paper by the travelling waves we mean the solutions of (1.1) in the form v =
ei(wt−kx)u(x2, . . . , xn+1), where x := x1 and u is a real-valued function. A simple computation
yields vt = iwei(wt−kx)u, vx = −ikei(wt−kx)u, and vxi = ei(wt−kx)uxi , i = 2, 3, . . . , n + 1. Hence,
∇v := (vx, vx2 , . . . , vxn+1) = (−iku,∇u)ei(wt−kx) and |∇v| = (k2u2+u2

x2
+· · ·+u2

xn+1
)1/2. By using the

notation ∇ku(x2, x3, . . . , xn+1) := (ku, ux2 , . . . , uxn+1) we obtain |∇v| = |∇ku|. Finally, by setting
all of these into (1.1) we can obtain the following nonstandard multiparameter eigenvalue
problems for perturbed p-Laplacians:

−wu + k2|∇ku|p−2u − div
(
|∇ku|p−2∇u

)
= ν|u|q−2u, p > 1,

u|∂Ω = 0.
(1.3)

In what follows, by shifting the variables x2, . . . , xn+1, we have used the following notations:
u := u(x1, . . . , xn), |∇ku| = (k2u2 + u2

x1
+ · · · + u2

xn
)1/2, and ∇u = (ux1 , ux2 , . . . , uxn).

At this point we have to note that by searching for the standing waves v =
eiwtu(x1, x2, . . . , xn+1) for the NLS equation

ivt −Δv = ν|v|q−2v (1.4)

we obtain the following eigenvalue problem:

−wu −Δu = ν|u|q−2u. (1.5)

On the other hand by setting the travelling wave solutions of the form v =
ei(wt−kx)u(x2, . . . , xn+1) into the NLS equation we obtain

−
(
w + k2

)
u −Δu = ν|u|q−2u. (1.6)

Thus we obtain the same type eigenvalue problems for both standing and travelling waves
for the NLS equation (see [3] and references therein for standing waves for NLS). However,
standing and travelling waves for generalized NLS are associated with quite different type
of eigenvalue problems. Particularly, the eigenvalue problem associated to the travelling
wave solutions is problem (1.3), which is clearly a nonstandard multiparameter eigenvalue
problem in the nonlinear analysis, andwe are not aware of any known result for this problem.

A solution of (1.3) is a weak solution, defined in the following way.

Definition 1.1. 0/=u ∈ W
1,p
0 (Ω) is a solution of (1.3) if and only if

−w
∫

Ω
uv dx + k2

∫

Ω
|∇ku|p−2uv dx +

∫

Ω
|∇ku|p−2∇u · ∇v dx = ν

∫

Ω
|u|q−2uv dx (1.7)
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holds for all v ∈ W
1,p
0 (Ω), where W

1,p
0 (Ω) is the Sobolev space (for Sobolev spaces, see [4]).

In this case, we say that u is an eigenfunction, corresponding to the eigenpair (w, k) and
ν, where w is a frequency, k is a wave number, and the parameter ν comes from the initial
equation (1.1). We prefer to denote the test functions in (1.7) by v, which is clearly different
from the notation that is used in (1.1). Let us define

F(u) = −w
2

∫

Ω
u2dx +

1
p

∫

Ω
|∇ku|pdx − ν

q

∫

Ω
|u|qdx,

Gk(u) =
1
p

∫

Ω
|∇ku|pdx.

(1.8)

We setX := W
1,p
0 (Ω). Then, u ∈ X is a solution of (1.7) if and only if u is a free critical point for

F(u), that is, 〈F ′(u), v〉 = 0, for all v ∈ X, where F ′ : X → X∗ is the Fréchet derivative of F,
X∗ is the dual space, and 〈F ′(u), v〉 denotes the value of the functional F ′(u) at v ∈ X. Indeed,
the existence of Fréschet derivative implies the existence of directional (Gateaux) derivative.
Using the definition of Gateaux derivative, we can obtain

〈
G′

k(u), v
〉
=

d

dt
Gk(u + tv)

∣∣∣∣
t=0

= k2
∫

Ω
|∇ku|p−2uv dx +

∫

Ω
|∇ku|p−2∇u · ∇vdx, (1.9)

which is enough to see that (1.7) is the variational equation for the functional F(u).
As u ∈ W

1,p
0 (Ω), by Sobolev embedding theorems (see [4]) the functional F(u) can be

well defined if

(i) p ≥ n or

(ii) 1 < p < n and max{2, q} ≤ np/(n − p).

In the next section two cases ν = 0 and ν /= 0 will be studied separately. If ν = 0, then
we may rewrite (1.7) in the form

k2
∫

Ω
|∇ku|p−2uvdx +

∫

Ω
|∇ku|p−2∇u · ∇v dx = w

∫

Ω
uvdx, (1.10)

which is the equation for free critical points of the functional

F(u) =
1
p

∫

Ω
|∇ku|pdx − w

2

∫

Ω
u2dx. (1.11)

Evidently, there are not nontrivial solutions of (1.10) in the case of w ≤ 0. Thus, w > 0, and
by the scaling property, we obtain that if p /= 2 and (1.10) has a nontrivial solution for some
w > 0, then it has nontrivial solutions for all w > 0.

In what follows, ‖u‖ := [
∫
Ω |∇u|pdx]1/p denotes the standard norm in W

1,p
0 (Ω) and

‖u‖k := [
∫
Ω |∇ku|pdx]1/p, which is equivalent to the norm ‖u‖.

This paper consists of an introduction (Section 1) and two sections. In Section 2 we
study the structure of the eigenparameters ν, k, w and the eigenfunctions for problem (1.3),
including the dispersion relations between w, k, and ν and variational principles in some
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special cases. We consider separately two cases: ν = 0 and ν /= 0. In the case of ν = 0 we
have estimated bounds for the set of eigenfunctions, proved the existence of infinitely many
eigenfunctions, corresponding to an eigenpair (w, k), w > 0, and demonstrated that, in the
case of p > 2, the set critF is compact. For the general case ν /= 0 we study the existence of
positive solutions and variational principles in some special cases. The proofs are based on
the Sobolev imbedding theorems, the Palais-Smale condition, variational techniques, and the
Ljusternik-Schnirelman critical point theory. Various boundary problems and some relations
between them are studied in Section 3.

2. The Structure of Eigenparameters w, k, ν and
Related Eigenfunctions

As mentioned above the problem of the existence of travelling waves and a quantitative
analysis for travelling waves is a multiparameter eigenvalue problem given by (1.7) or (1.10).
This section is devoted to these problems, and the techniques we use in this section are
partially close to that used in [5].

We study separately two cases: ν = 0 and ν /= 0.

Case 1 (ν = 0). This subsection is devoted to the quantitative analysis of solutions of (1.10).
We assume that

(i) p ≥ n or

(ii) 1 < p < n and 2 < np/(n − p).

Our first observation for eigenvalue problem (1.10) is given in the following
proposition.

Proposition 2.1. (a) Let p = 2. In this case, all the eigenpairs (w, k) of problem (1.10) lie in the
parabola λ1 + k2 ≤ w, where λ1 is the first eigenvalue of −Δ in L2(Ω) and λ1 > 0. Moreover, for a
fixedw, there is a finite number of k and for a fixed k, there is a countable number ofwn(k), such that
wn(k) → +∞ as n → ∞,

(b) If p > 2, then for a fixed (w, k) ∈ R × R, the solutions of (1.10) are bounded and

‖u‖k ≤ [
Cp,k(Ω)w

]1/(p−2) (2.1)

holds for some Cp,k(Ω) > 0,
(c) Let p < 2. In this case, one has

‖u‖k ≥
(

1
wCp,k(Ω)

)1/(p−2)
> 0. (2.2)

Proof. The proof easily follows from (1.10), by using the Courant-Weyl variational principle

0 < λ1 = inf
u/= 0

∫
Ω |∇u|2dx∫
Ω |u|2dx

, (2.3)
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the bounded embedding W
1,p
0 (Ω) ↪→ L2(Ω), and the equivalence of the norms ‖ · ‖ and

‖ · ‖k.

In the following theorem, we have proved some properties of the functional F(u) =
(1/p)

∫
Ω |∇ku|pdx−(w/2)

∫
Ω u2 dx inX, which guarantee the existence of nontrivial solutions

of (1.10) for a fixed (w, k) ∈ R × R, w > 0.

Theorem 2.2. Let p > 2 and (w, k) ∈ R × R, w > 0. Then

(i)

(
1
p
− 1
2

)(
wCp,k(Ω)

)p/(p−2) ≤ inf
X

F(u) < 0 (2.4)

for some Cp,k(Ω) > 0.

(ii) F attains its infimum at a nontrivial vector u0 ∈ X.

Proof. One has F(u) = (1/p)
∫
Ω |∇ku|pdx − w/2

∫
Ω u2dx. As p > 2, the Poincaré inequality

yields
∫
Ω u2dx ≤ Cp,k(Ω)‖u‖2k. Hence,

F(u) =
1
p
‖u‖pk −

w

2

∫

Ω
u2dx ≥ 1

p
‖u‖pk −

w

2
Cp,k(Ω)‖u‖2k. (2.5)

Let f(x) = (1/p)xp − (w/2)Cp,k(Ω)x2. We have f(0) = 0 and f(x) → +∞ as n → ∞. This
indicates that f has a global minimum point, and clearly, this point is x = [wCp,k(Ω)]1/(p−2).
Now, by putting the vectors u with ‖u‖k = [wCp,k(Ω)]1/(p−2) into F(u), we obtain

(
1
p
− 1
2

)(
wCp,k(Ω)

)p/(p−2) ≤ inf
X

F(u). (2.6)

Now, we will show that infXF(u) < 0. Let u be a vector such that ‖u‖k = 1. Subsequently, by
setting tu in F(u), we obtain F(tu) = (tp/p) − (w/2)t2c, where c =

∫
Ω u2dx. Thus F(tu) < 0 if

0 < t < [(p/2)wc]1/(p−2).
(ii) We have to show that infXF(u) is attained. Let infXF(u) = α. Then, there exists

a sequence un ∈ X such that F(un) → α as n → ∞. The sequence un should be bounded,
because

F(u) ≥ 1
p
‖u‖pk −

w

2
Cp,k(Ω)‖u‖2k = ‖u‖2k

(
1
p
‖u‖p−2k − w

2
Cp,k(Ω)

)
(2.7)

and F(u) → +∞ as ‖u‖k → +∞, which means that F is coercive. However, X = W
1,p
0 (Ω) is

a reflexive Banach space. Consequently, un ⇀ u0 for some u0 ∈ X, where “⇀” denotes the
weak convergence in X. Evidently, F(u) is sequentially lower semicontinuous, that is,

un ⇀ u0 implies F(u0) ≤ lim
n→∞

infF(un). (2.8)
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Indeed,
∫
Ω |∇ku|pdx = ‖u‖pk, and it is known that the norm is sequentially lower

semicontinuous. The second term of F(u) is
∫
Ω u2dx, and this term is sequentially continuous,

because the embedding W
1,p
0 (Ω) ↪→ L2(Ω) is compact. Now, it follows from (2.8) that

F(u0) ≤ α, which means infXF(u) = F(u0). Finally, u0 /= 0 because infXF(u) < 0 by (i) and
F(0) = 0.

Corollary 2.3. In the case of p > 2, all pairs (w, k) ∈ R×R,w > 0, are eigenpairs of problem (1.10).

Proof. This immediately follows from (ii) of Theorem 2.2.

Now, we will prove that there are infinitely many solutions of (1.10) for all (w, k) ∈ R×
R,w > 0. For this, our main component will be Proposition 2.5 ([6], p. 324 Proposition 44.18)
about free critical points of a functional, that is, about the solutions of the operator equation

F ′(u) = 0, u ∈ X. (2.9)

First, we will give some definitions, including the Palais-Smale (PS-condition) which
are crucial in the theory of nonlinear eigenvalue problems (see [6, 7]).

Definition 2.4. Let F ∈ C′(X,R). F satisfies the PS-condition at a point c ∈ R if each sequence
un ∈ X, such that F(un) → c and F ′(un) → 0 in X∗ has a convergent subsequence.

Particularly, F satisfies (PS)− if and only if it satisfies the PS-condition for all c < 0.

Let us denote byKm the class of all compact, symmetric, and zero-free subsetsK ofX,
such that genK ≥ m. Here, genK is defined as the smallest natural number n ≥ 1 for which
there exists an odd and continuous function f : K → R

n \ {0}. Let

cm = inf
K⊂Km

sup
u∈K

F(u), m = 1, 2, . . . . (2.10)

Suppose that

(H1) X is a real B-space,

(H2) F is an even functional with F ∈ C′(X,R),

(H3) F satisfies (PS)− with respect to X and F(0) = 0.

As mentioned earlier, our main component will be the following proposition.

Proposition 2.5. If (H1), (H2), and (H3) hold and −∞ < cm < 0, then F has a pair of critical
points (u,−u) on X such that F(±u) = cm, to which solutions of (2.9) correspond. Moreover, if
−∞ < cm = cm+1 = · · · = cm+p < 0, p ≥ 1, then gen(critX,cmF) ≥ p + 1, where critX,cmF = {u ∈ X |
F ′(u) = 0, F(u) = cm}.

Now, we are ready to prove the following theorem.

Theorem 2.6. Let p > 2. (a) For each (w, k), w > 0, problem (1.10) has an infinite number of
nontrivial solutions.

(b) The set critF is compact, where critF := {u ∈ X | F ′(u) = 0}.
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Proof. Our proof is based on the previous proposition. Clearly, conditions (H1) and (H2)
are satisfied. The fact that F satisfies (PS)− is standard (see [5]). In our case F satisfies PS-
condition for all c ∈ R. It needs to be demonstrated that cm < 0, m = 1, 2, . . .. By the definition
of “infsup”, it is adequate to show the existence of a setK ∈ Km such that supKF(u) < 0. We
have

F(u) =
1
p

∫

Ω
|∇ku|pdx − w

2

∫

Ω
u2dx. (2.11)

Let Xm be an m-dimensional subspace of X and S1 the unit sphere in X. We can choose
u ∈ Xm ∩ S1 and define F(tu) = (tp/p) − (w/2)t2

∫
Ω u2dx. As Xm ∩ S1 is compact,

infu∈Xm∩S1

∫
Ω u2dx := α(m) > 0. Hence,

F(tu) ≤ tp

p
− w

2
t2α(m), ∀u ∈ Xm ∩ S1. (2.12)

Moreover, limt→ 0F(tu) = 0 and F(tu) < 0 provided 0 < t < [(p/2)wα(m)]1/(p−2). Using this
fact we obtain that for every m there exist εm > 0 and tm > 0 such that F(tmu) < −εm for
all u ∈ Xm ∩ S1. Clearly tmu ∈ Stm and gen(Xm ∩ Stm) = m. Now, set K := Xm ∩ Stm . Then
supKF(u) ≤ −εm < 0. Consequently, infK⊂Kmsupu∈KF(u) < 0. By Theorem 2.2 F is bounded
below. Hence,

−∞ < cm = inf
K⊂Km

sup
u∈K

F(u) < 0, (2.13)

and the statements of the theorem in (a) follow from Proposition 2.5.
(b) Let us prove that the set critF is compact. Let un ∈ critF be a sequence. Then

〈
F ′(un), un

〉
=
∫

Ω
|∇kun|pdx − w

2

∫

Ω
u2
ndx = 0. (2.14)

However,

F(un) =
1
p

∫

Ω
|∇kun|pdx − w

2

∫

Ω
u2
ndx ≤ 1

2
〈
F ′(un), un

〉
= 0, (2.15)

and by Theorem 2.2, F is bounded below. Thus, F(un) is bounded, and consequently, it has
a convergent subsequence (denoted again by F(un)). We have F(un) → c and F ′(un) = 0.
Hence, by PS-condition, un has a convergent subsequence. The limit points of un belong to
critF because, by PS-condition, the set critF is closed.

The case p < 2. This case is standard, and by similar methods that are given in [5] and
earlier for the case p > 2, one can establish the existence of nontrivial solutions of (1.10) for
all (w, k), w > 0.
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Case 2 (ν /= 0). We first look at the following problem:

k2
∫

Ω
|∇ku|p−2uvdx +

∫

Ω
|∇ku|p−2∇u · ∇vdx − ν

∫

Ω
|u|p−2uvdx = w

∫

Ω
uvdx,

u > 0 in Ω,

(2.16)

where u ∈ W
1,p
0 (Ω) and (2.16) holds for all v ∈ W

1,p
0 (Ω). The main result is as follows.

Proposition 2.7. Let 2 < np/(n−p). Then (a) for all ν < ν1(k) there is a positive solution to problem
(2.16), where 0 < ν1(k) = inf

u∈W1,p
0 (Ω)

u/= 0

∫
Ω |∇ku|p/

∫
Ω |u|pdx,

(b) for each ν ∈ R there is a number k∗ such that for all k > k∗ problem (2.16) has a positive
solution.

Proof. (a) As a result of the compact imbedding W
1,p
0 (Ω) ↪→ L2(Ω) and the fact that∫

Ω |∇ku|pdx is a norm in W
1,p
0 (Ω), the functional

F(u) =
1
p

∫

Ω
|∇ku|pdx − ν

p

∫

Ω
|u|pdx, (2.17)

is coercive and lower semicontinuous on the weakly closed set M := {u | ∫Ω u2 = 1}. From
these properties, by using the condition ν < ν1(k) we obtain the existence of a nonnegative
solution. The positivity follows from the maximum principle.(b) This fact follows from (a)
and the relation kp < ν1(k) → ∞ as k → ∞.

Note 1. The case 2 = np/(n−p) is the critical case: lack of compactness, which is a subject that
deserves a separate study.

Now, our concern is the following typical eigenvalue problem:

k2
∫

Ω
|∇ku|p−2uv dx +

∫

Ω
|∇ku|p−2∇u · ∇v dx = ν

∫

Ω
|u|p−2uv dx. (2.18)

Let us look at problem (2.18) with respect to ν for a fixed k. This problem is a
typical eigenvalue problem. If k = 0, then we get the p-Laplacian eigenvalue problem, and
these questions have been studied by many authors (see [8, 9] and the references therein).
Particularly, it has been shown in [8] that there is a sequence of “variational eigenvalues”
which can be described by the Ljusternik-Schnirelman type variational principles. Our aim
is to get the similar results for perturbed p-Laplacian eigenvalue problem (2.18). In our case
k /= 0, and we can apply two methods.

Method 1. For the Diriclet problem the norms: ‖u‖ := [
∫
Ω |∇u|pdx]1/p, which is the standard

norm in W
1,p
0 (Ω), and ‖u‖k := [

∫
Ω |∇ku|pdx]1/p are equivalent. Then it is enough to replace

〈X, ‖u‖〉 by the Banach space 〈X, ‖u‖k〉 and follow the methods of [8, 9] to get the needed
results.
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Method 2. One can construct a Ljusternik-Schnirelman deformation (see [6, 7]) and check
Palais-Smale condition for the functional

F(u) =
1
p

∫

Ω
|u|pdx (2.19)

on the manifold

Gk =
{
u |

∫

Ω
|∇ku|pdx = 1

}
. (2.20)

A such construction was given in our previous paper (see [10]). We follow our construction
and just give the final result.

Theorem 2.8. For a fixed k ∈ R, there exists a sequence of eigenvalues of problem (2.18), depending
on k, which is given by

1
νn(k)

= sup
K⊂Kn(k)

inf
u∈K

F(u). Moreover, νn(k) −→ ∞, as n −→ ∞, (2.21)

where one denotes byKn(k) the class of all compact, symmetric subsetsK ofGk, such that genK ≥ n.

3. On the Neumann, No-Flux, Robin, and Steklov Boundary
Value Problems

At the end of the paper we briefly discuss the other boundary problems, such as Neumman,
No-flux, Robin, and Steklov. We note that all of the above given results are related to problem
(1.3) with the Diriclet boundary condition; however the similar results are valid for the
following boundary conditions too:

Neumann problem:

−wu + k2|∇ku|p−2u − div
(
|∇ku|p−2∇u

)
= ν|u|q−2u, p > 1,

∂u

∂n

∣∣∣∣
∂Ω

= 0.
(3.1)

No-flux problem:

−wu + k2|∇ku|p−2u − div
(
|∇ku|p−2∇u

)
= ν|u|q−2u, p > 1,

u|∂Ω = constant,
∫

∂Ω
|∇ku|p−2 ∂u

∂n
ds = 0.

(3.2)
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Robin problem:

−wu + k2|∇ku|p−2u − div
(
|∇ku|p−2∇u

)
= ν|u|q−2u, p > 1,

(
|∇ku|p−2 ∂u

∂n
+ β(x)|u|p−2u

)∣∣∣∣
∂Ω

= 0.

(3.3)

Steklov problem:

−wu + k2|∇ku|p−2u − div
(
|∇ku|p−2∇u

)
= |u|q−2u, p > 1,

|∇ku|p−2 ∂u
∂n

= ν|u|p−2u on ∂Ω.

(3.4)

Evidently, the energy spaceX (the Banach space, we use in the critical point theory) for
Dirichlet, Neuman, No-flux, Robin, and Steklov problems is W1,2

0 (Ω), W1,2(Ω), W1,2
0 (Ω) ⊕ R,

W1,2(Ω), and W1,2(Ω), respectively. In the case of w = 0, k = 0, and p = q we obtain the
standard eigenvalue problems for p-Laplacians, which have been studied in detail in [8] for
all of the above given boundary value problems. Many results for standard p-Laplacians,
including the regularity results, may be extended to the perturbed p-Laplacians by the similar
techniques that are used in [8]. However, we omit these questions in this paper.

Our simple observation between Robin and Steklov problems is as follows: (w, k, ν)
is an eigentriple for Steklov problem if and only if (w, k, 1) is an eigentriple for Robin problem at
β = −ν.

Finally, we use a similar connection between the typical Robin and Steklov eigenvalue
problems to prove the existence of negative eigenvalues for the Robin problem. For sake of
simplicity we choose k = 0 and consider the following standard eigenvalue problems for
p-Laplacians:

Robin problem: − div
(
|∇u|p−2∇u

)
= ν|u|p−2u, p > 1,

(
|∇u|p−2 ∂u

∂n
+ β|u|p−2u

)∣∣∣∣
∂Ω

= 0,

Steklov problem: div
(
|∇u|p−2∇u

)
= |u|p−2u, p > 1,

|∇u|p−2 ∂u
∂n

= ν|u|p−2u on ∂Ω.

(3.5)
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Problems (3.5) can be rewritten in the following variational forms:

∫

Ω
|∇u|p−2∇u · ∇v dx + β

∫

∂Ω
|u|p−2uvds = ν

∫

Ω
|u|p−2uv,

u ∈ W1,2(Ω), ∀v ∈ W1,2(Ω),

(3.6)

∫

Ω
|∇u|p−2∇u · ∇v dx +

∫

Ω
|u|p−2uv = ν

∫

∂Ω
|u|p−2uv ds,

u ∈ W1,2(Ω), ∀v ∈ W1,2(Ω),

(3.7)

respectively.
It is known that (see [8])

(I) if β ≥ 0 then the Robin problem has a sequence of positive eigenvalues νn(β) such
that νn(β) → +∞ as n → ∞;

(II) the Steklov problem also has a sequence of positive eigenvalues νn such that νn →
+∞ as n → ∞.

An Inverse Problem

Now let us be given ν < 0. Our question is as follows: for what values of β the given number
ν < 0 will be an eigenvalue for Robin problem (3.6). To answer this question we use a “duality
principle” between Robin and Steklov problems and give the final result in the following
theorem.

Theorem 3.1. For a given ν < 0 there exists a sequence βn → −∞, such that the number ν < 0 will
be an eigenvalue for the Robin problem at β = βn, n = 1, 2, . . . . Moreover, βn = −νn and νn are the
eigenvalues of the Steklov problem.

Proof. The proof is based on the relations between the Robin and Steklov problems. To answer
this question we consider the Steklov problem in the form

div
(
|∇u|p−2∇u

)
= β|u|p−2u, p > 1,

|∇u|p−2 ∂u
∂n

= ν|u|p−2u on ∂Ω.

(3.8)

Then the variational problem (3.7) is replaced by

∫

Ω
|∇u|p−2∇u · ∇vdx + β

∫

Ω
|u|p−2uv = ν

∫

∂Ω
|u|p−2uvds. (3.9)

By comparing (3.6) and (3.9) we obtain that (β, ν) is an eigenpair for the Steklov problem
if and only if (−ν,−β) is an eigenpair for the Robin problem. We know that (see [8]) for a
positive number β Steklov problem (3.9) has a sequence of positive eigenvalues νn such that
νn → +∞ as n → ∞. Thus (β, νn), n = 1, 2, . . . are eigenpairs for (3.9). Then it follows that
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(−νn,−β), n = 1, 2, . . . are eigenpairs for the Robin problem. To end the proof we notice that
ν = −β and βn = −νn.
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