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The Sumudu transform of certain elementary matrix functions is obtained. These transforms are
then used to solve the differential equation of a general linear conservative vibration system, a
vibrating system with a special type of viscous damping.

1. Introduction

The importance of matrices and matrix problems in engineering has been clearly demon-
strated during the last years [1, 2]. It has been shown that the solution of systems of ordinary
and partial differential equations that arise in physics and engineering can be most efficiently
formulated in the language of matrices. Boundary value problems become matrix problems
after first passing through a reformulation in terms of integral equations. One of the most
common problems encountered by the mathematical technologist is the solution of sets of
ordinary linear differential equations with constant coefficients. It was found in [3] that the
response of a linear dynamical system may be efficiently determined by formulating its
response in terms of the matrix exponential function.

In the literature, there are several integral transforms and widely used in physics,
astronomy as well as in engineering. In [4], Watugala introduced a new transform and named
as Sumudu transform which is defined over the set of the functions

A =
{
f(t) : ∃M,τ1, τ2 > 0,

∣∣f(t)∣∣ < Met/τi , if t ∈ (−1)i × [0,∞)
}

(1.1)
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by the following formula:

G(u) = S
[
f(t);u

]
=:

∫∞

0
f(ut)e−tdt, u ∈ (−τ1, τ2) (1.2)

and applied this new transform to the solution of ordinary differential equations and
control engineering problems, see [4–6]. In [7], some fundamental properties of the Sumudu
transform were established.

In [8], the Sumudu transform was extended to the distributions (generalized
functions) and some of their properties were also studied in [9, 10]. Recently, Kılıçman et al.
applied this transform to solve the system of differential equations, see [11]. The inversion
of the transformed coefficients is obtained by using Trzaska’s method [12] and the Heaviside
expansion technique.

In the present paper, the intimate connection between the Sumudu transform theory
and certain matrix functions that arise in the solution of systems of ordinary differential
equations is demonstrated. The techniques are developed and then applied to problems in
dynamics and electrical transmission lines.

Note that the Sumudu and Laplace transforms have the following relationship that
interchanges the image of sin(x + t) and cos(x + t). It turns out that

S2[sin(x + t)] = L2[cos(x + t)] =
u + v

(1 + u)2(1 + v)2
,

S2[cos(x + t)] = L2[sin(x + t)] =
1

(1 + u)2(1 + v)2
.

(1.3)

Further, an interesting fact about the Sumudu transform is that the original function
and its Sumudu transform have the same Taylor coefficients except for the factor n!. Thus, if
size f(t) =

∑∞
n=0ant

n, then F(u) =
∑∞

n=0n!ant
n; see [13]. Furthermore, Laplace and Sumudu

transforms of the Dirac delta function and the Heaviside function satisfy

S2[H(x, t)] = L2[δ(x, t)] = 1,

S2[δ(x, t)] = L2[H(x, t)] =
1
uv

,
(1.4)

for details, see [8, 14], where the authors generalize the concept of the Sumudu transform
to distributions. Since the Sumudu transform is a convenient tool for solving differential
equations in the time domain, without the need for performing an inverse Sumudu
transform, see [15]. The applicability of this new interesting transform and efficiency in
solving the linear ordinary differential equations with constant and nonconstant coefficients
having the convolutions were also studied in [16, 17].
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2. Main Results

The following theorem was proved in [5].

Theorem 2.1. Let f(x) and g(x) be two functions having Sumudu transforms. Then Sumudu trans-
form of the convolution of the f(x) and g(x),

(
f ∗ g)(x) =

∫x

0
f(ζ)g(x − ζ)dζ, (2.1)

is given by

S
[(
f ∗ g)(x);u] = uF(u)G(u). (2.2)

Next, it can be extended to the double convolution as follows.

Theorem 2.2. Let f(t, x) and g(t, x) have double Sumudu transform. Then, double Sumudu trans-
form of the double convolution of f and g,

(
f ∗ ∗g)(t, x) =

∫ t

0

∫x

0
f
(
ζ, η

)
g
(
t − ζ, x − η

)
dζ dη, (2.3)

exists and is given by

S2
[(
f ∗ ∗g)(t, x);v, u] = uvF(v, u)G(v, u). (2.4)

Proof. By using the definition of double Sumudu transform and double convolution, we have

S2
[(
f ∗ ∗g)(t, x);v, u] = 1

uv

∫∫∞

0
e−((t/v)+(x/u))

(
f ∗ ∗g)(t, x)dt dx

=
1
uv

∫∫∞

0
e((t/v)+(x/u))

(∫ t

0

∫x

0
f
(
ζ, η

)
g
(
t − ζ, x − η

)
dζ dη

)
dt dx.

(2.5)

Let α = t−ζ and β = x−η, and using the valid extension of upper bound of integrals to t → ∞
and x → ∞, we have

S2
[(
f ∗ ∗g)(t, x);v, u] = 1

uv

∫∫∞

0
e−((ζ/v)−(η/u))dζ dη

∫∞

−ζ

∫∞

−η
e−((α/v)−(β/u))g

(
α, β

)
dαdβ.

(2.6)



4 Abstract and Applied Analysis

Since both functions f(t, x) and g(t, x) are zero, for t < 0, and x < 0, it follows with respect to
lower limit of integrations that

S2
[(
f ∗ ∗g)(t, x);v, u] = 1

uv

∫∫∞

0
e−((ζ/v)−(η/u))dζ dη

∫∫∞

0
e−((α/v)−(β/u))g

(
α, β

)
dαdβ. (2.7)

Then, it is easy to see that

S2
[(
f ∗ ∗g)(t, x);v, u] = uvF(v, u)G(v, u). (2.8)

See the further details in [14].

Mathematical models of many physical biological and economic processes are
involved with system of linear constant coefficient of ordinary differential

df

dx
= Af, f(0) = I. (2.9)

Equation (2.9) was studied in [18] by using by Laplace transform where f and A are square
matrices of the nth order, and the elements of A are known constants, and also in control
theory A is known as the state of companion matrix. The initial condition satisfied by the
matrix f(x) is f(0) = I, where I is the nth order unit matrix. It is well known that (2.9) as the
solution with the given initial condition is

f(x) =
∞∑
k=0

(
(Ax)k

k!

)
= eAx, (2.10)

where eAx is the matrix exponential function. To obtain the solution of (2.9) by Sumudu
transform, we use the following definition:

Sf(x) =
∫∞

0
e−x/uf(x)dx = F(u), Re u > 0 (2.11)

and Sumudu transform of derivatives

S

[
df

dx

]
=

1
u
F(u) − 1

u
f(0) =

1
u
F(u) − 1

u
I. (2.12)

Then Sumudu transform of (2.9) is, therefore, given by

[I − uA]F(u) = I. (2.13)

Hence

F(u) =
I

[I − uA]
. (2.14)

In the next, we give some applications.
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2.1. Resolvent of A

The matrix F(u) = [I − uA] is the characteristic matrix of A. The matrix Q(u) = (I − uA)−1 is
called the resolvent of A. If λ is the eigenvalue of A with maximum modulus, then we have
the geometric progression expansion,

Q(u) = (I − uA)−1 =
∞∑
k=0

(
(Au)k

)
= F(u), (2.15)

provided that, |u| > |λ|. Sumudu transform variable u may be taken large enough so that
|u| > |λ| is satisfied in the infinite geometric series in (2.15). The inverse Sumudu transform
of (2.15) may now be taken in order to obtain

S−1[F(u)] = S−1
[
(I − uA)−1

]
= S−1

[ ∞∑
k=0

(
(Au)k

)]
= f(x), (2.16)

and, therefore, (2.16) can be written in the form of

S−1[F(u)] = f(x) =
∞∑
k=0

(
(Ax)k

k!

)
= eAx. (2.17)

Thus we have, useful result,

S−1
[
(I − uA)−1

]
= eAx (2.18)

as a well-known scalar inverse Sumudu transform,

S−1
[
(1 − au)−1

]
= eax. (2.19)

The partial fractional exponential of the resolvent, if G(A) is a rational function of A, then

G(A) = G(λ1)L1 +G(λ2)L2 + · · · +G(λn)Ln, (2.20)

where n eigenvalues of A, λk, k = 1, 2, 3, . . . , n and

Lk =
B(λk)
Φ′(λk)

, (2.21)

in (2.21), B(λ) and Φ(λ) are defined by

B(λ) = adj(I − λA), Φ(λ) = det(I − λA), Φ′(λk) =
(
dΦ
dλ

)

λ=λk
. (2.22)
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The matrices Lk, k = 1, 2, 3, . . . , n are called Sylvester matrices ofA. It is also well known that
the Sylvester matrices have the following properties:

L1 + L2 + · · · + Ln = I,

LsLt = 0 if s /= t, orthogonal.
(2.23)

In order to obtain the partial fraction of resolventQ(u) = (I − uA)−1, we letG(A) = (I − uA)−1

in (2.20); we obtain

Q(u) = (I − uA)−1 =
L1

(1 − λ1u)
+

L2

(1 − λ2u)
+ · · · + Ln

(1 − λnu)
. (2.24)

Now by taking the inverse Sumudu transform of (2.24), we have

S−1[Q(u)] = L1e
λ1x + L2e

λ2x + · · · + Lne
λnx = eAx. (2.25)

In the next example, we apply inverse Sumudu transform as follows: let

F(u) =
1

I −A2u2
, (2.26)

where A nth is order square matrix as defined above, u is the Sumudu transform variable,
and I is the nth order unit matrix; by using partial fractional form and inverse Sumudu
transform, we have

S−1[F(u)] = S−1
[

1
2(I −Au)

]
+ S−1

[
1

2(I +Au)

]
=

1
2

(
eAx + e−Ax

)
= cosh(Ax). (2.27)

Another example, consider the case in which F(u) is given by

F(u) =
1 + ku[

(I + ku)2 −A2u2
] , (2.28)

where u is the Sumudu transform variable, I is the nth order unit matrix, k is scalar, and
A nth is order square matrix, by using partial fractional form, we have

F(u) =
1
2

[
1

(I − (A − k)u)
+

1
(I + (A + k)u)

]
. (2.29)
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The inverse Sumudu transform of (2.29) is

S−1[F(u)] = S−1
[
1
2

[
1

(I − (A − k)u)
+

1
(I + (A + k)u)

]]

= e−kx cosh(Ax),

(2.30)

where cosh(Ax) is the matrix hyperbolic cos function of A.

2.2. State-Space Equation

Every linear time-invariant lumped system can be described by a set of equations in the
following form:

f ′(t) = Af(t) + Bv(t),

g(t) = Cf(t) +Dv(t).
(2.31)

Then for a system with p inputs, q outputs, and n state variables, A,B,C, and D are,
respectively, n × n, n × p, q × n and q × p constant matrices. Applying Sumudu transform
to (2.31) yields

[
1
u
F(u) − 1

u
f(0)

]
= AF(u) + BV (u),

G(u) = CF(u) +DV (u),

(2.32)

where

Sf(t) =
∫∞

0
e−t/uf(x)dx = F(u), Re u > 0,

Sv(t) =
∫∞

0
e−t/uv(t)dx = V (u),

Sg(t) =
∫∞

0
e−t/ug(t)dx = G(u).

(2.33)

Hence

F(u) =
f(0)

(I −Au)
+

BuV (u)
(I −Au)

. (2.34)

Thus

G(u) =
Cf(0)

(I −Au)
+
CBuV (u)
(I −Au)

+DV (u). (2.35)
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On using inverse Sumudu transform for (2.34) and (2.35) and the above theorem, we obtain
f(t) and g(t) as follows:

f(t) = f(0)eAt + B

∫ t

0
e(t−ζ)v(ζ)dζ,

g(t) = Cf(0)eAt + BC

∫ t

0
e(t−ζ)v(ζ)dζ +Dv(t).

(2.36)

Now let us apply Sumudu transform to matrix differential equation as follows consider
Vibrations of linear conservative system

Mf ′′ + μf = g(x), (2.37)

where M is a symmetric matrix of order n called the inertia matrix; f is an nth order matrix
whose elements are the n generalized coordinates of the system; μ is an nth order symmetric
matrix called the stiffness matrix; g(x) is an nth order column matrix of the n generalized
forces acting on the system. If we multiply (2.37) byM−1, the inverse of the inertia matrixM,
then we have

f ′′ +M−1μf = M−1g(x). (2.38)

Let the following notation be introduced:

M−1μ = V = A2, M−1g(x) = h(x), (2.39)

with above notation (2.39)written in the form of

f ′′ +A2f = h(x). (2.40)

Let Sumudu transform of

S
[
f(x)

]
= F(u), S

[
f ′′(x)

]
=

F(u)
u2

− f(0)
u2

− f ′(0)
u

, S[h(x)] = H(u). (2.41)

The matrix f(0) is an nth order column matrix whose elements are the initial values of the
generalized coordinate; f ′(0) is an nth order column matrix whose elements are the initial
values of the generalized velocities of the system. The Sumudu transform of (2.40) is given
by

F(u)
u2

+A2F(u) = H(u) +
f(0)
u2

+
f ′(0)
u

. (2.42)
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Equation (2.42) can be written in the form of

F(u) =
1

(I +A2u2)

[
u2H(u) + f(0) + uf ′(0)

]
. (2.43)

By using inverse Sumudu transform and convolution for (2.43), we have

f(x) = f(0) cos(Ax) +
1
A
f ′(0) sin(Ax) +

1
A

∫ t

0
sin[A(x − t)]h(t)dt. (2.44)

2.3. Free Oscillations of the System

If h(x) = 0, we have the free oscillations of the conservative system. Since M−1μ = V = A2,
then (2.43) can be written as

F(u) =
(
I + Vu2

)−1[
f(0) + uf ′(0)

]
. (2.45)

Representation of F(u)may be obtained by substituting

F(V ) =
(
I + Vu2

)−1
. (2.46)

For F(V ) Sylvester’s theorem (2.20), we have

Q(u) =
(
I + λu2

)−1
=
[

L1

(1 + λ1u2)
+

L2

(1 + λ2u2)
+ · · · + Ln

(1 + λnu2)

][
f(0) + uf ′(0)

]
, (2.47)

where Lk is the kth Sylvester’s matrix of V and λk is the eigenvalue of V . If we let

λk = v2
k, k = 1, 2, 3, . . . , n. (2.48)

Then (2.47) took the form

Q(u) =

[
L1(

1 + v2
1u

2
) +

L2(
1 + v2

2u
2
) + · · · + Ln(

1 + v2
nu2

)
][

f(0) + uf ′(0)
]
. (2.49)

If we take the inverse Sumudu transform of each term of (2.49), we obtain

f(x) = [L1 cos(v1x) + L2 cos(v2x) + · · · + Ln cos(vnx)]f(0)

+
[
L1 sin(v1x)

v1
+
L2 sin(v2x)

v2
+ · · · + Ln sin(vnx)

vn

]
f ′(0)

= cos(Ax)f(0) +A−1 sin(Ax)f ′(0), A2 = V.

(2.50)
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2.4. Linear Vibrations with Symmetric Damping

The solution of problems involving vibrations of linear systems with viscous damping entails
some difficulty because of the presence of complex eigenvalues in the computations. In this
part, the vibrations of damped linear systems that exhibit symmetry are considered. The
matrix differential equation of motion equation (2.37) takes the form

Mf ′′ + 2Cf ′ +Kf = g(x). (2.51)

The matrix 2C is the damping matrix of the system. Let us consider the free oscillations for
which g(x) = 0. If we follows the same procedure as used above, we may obtain Sumudu
transform of (2.51) at g(x) = 0 as follows:

(
M

u2
+
2C
u

+K

)
F(u) = M

(
f(0)
u2

+
f ′(0)
u

)
+
2Cf(0)

u
, (2.52)

where, as above, Sumudu transforms of f(x) = F(u) and f(0) and f ′(0) are the initial
displacement and initial velocity vector of the system; let us consider the following cases
to the matrix C. (I) If C = αM, in this case the matrix C is proportional to the inertia matrix
M, where α is scalar constant having the proper dimensions. And multipling the resulting by
M−1, (2.51) becomes

(
I + 2αIu + Vu2

)
F(u) =

(
f(0) + f ′(0)u

)
+ 2αf(0)u, V = M−1K. (2.53)

Now let us define the following identity:

(
I + 2αI + Vu2

)
F(u) = f(0) + f ′(0)u + 2αIuf(0), V = A2 + α2I. (2.54)

By using (2.53) and (2.54), we have

F(u) =
(1 + αu)f(0)(

(I + αu)2 +A2u2
) +

u
(
f ′(0) + αf(0)

)
(
(I + αu)2 +A2u2

) . (2.55)

On using inverse Sumudu transform for (2.55), we obtain

f(x) = e−αx cos(Ax)f(0) +
1
A
e−αx sin(Ax)

(
f ′(0) + αf(0)

)
. (2.56)

(II) If C = βK, the matrix C is proportional to the stiffness matrix K of the system so
that, C = βK where β is a scalar constant of proper dimensions. By substituting C in (2.52)
and multiplying the results by M−1, we obtain

(
I + 2uβV + u2

(
A2 + β2V 2

))
F(u) = f(0) + f ′(0)u + 2βVuf(0),

V = M−1K, A2 + β2V 2 = V.

(2.57)
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By simplifying (2.57),

F(u) =

(
I + βVu

)
f(0)((

I + βVu
)2 +A2u2

) +
u
(
βVf(0) + f ′(0)

)
((

I + βVu
)2 +A2u2

) . (2.58)

On using the inverse Sumudu transform for (2.58), we obtain

f(x) = e−αVx cos(Ax)f(0) + e−αVx sin(Ax)
(
βVf(0) + f ′(0)

)
. (2.59)

2.5. Oscillations of the Foucault Pendulum

The use of Sumudu transforms of functions of matrices is demonstrated. As a concrete
example, themotion of Foucault’s pendulum is considered. The equations of motion for small
oscillations of the Foucault pendulum are given by the following system:

ẍ − 2ηẏ + ρ2x = 0,

ÿ + 2ηẋ + ρ2y = 0,
(2.60)

where the following notations are used: x is the deflection of the pendulum toward the south,
y is the deflection of the pendulum toward the east, η = ω sin θ, ω is the angular velocity of
the earth, and θ is the angle of latitude. Equation (2.60) can be written in the matrix form as
follows:

If̈ + 2ηJḟ + Iρ2f = 0, (2.61)

where i is second order unit matrix and the coordinate vector has the form

f =

[
x

y

]
, J =

[
0 −1
1 0

]
, (2.62)

where J is matrix 2 × 2, where J2 = −I. Now by taking Sumudu transform for (2.61), and
after arrangement, we have

(
I + 2ηJu + Iρ2u2

)
F(u) =

(
I + 2ηJu

)
f(0) + Iuf ′(0), (2.63)

where f(0) and f ′(0) represent the initial coordinate and initial velocity vector, respectively;
in order to use inverse Sumudu transform, we need the following identity:

(
I + 2ηJu + Iρ2u2

)
=
(
I + ηJu

)2 +A2u2

= I + 2ηJu +
(
ηJu

)2 +A2u2,

(2.64)
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where

(
ηJu

)2 +A2u2 =
(
A2 − η2I

)
u2 = Iρ2u2. (2.65)

Therefore, we obtain

A2u2 =
(
η2 + ρ2

)
Iu2 = IB2u2. (2.66)

On using the above identity (2.63), it becomes

F(u) =

(
I + ηJu

)
f(0)((

I + ηJu
)2 + IB2u2

) +

(
ηJf(0) + If ′(0)

)
u((

I + ηJu
)2 + IB2u2

) . (2.67)

By taking inverse Sumudu transform for (2.67), we obtain

f(t) = e−ηJt cos(IBt)f(0) +
e−ηJt

B
sin(IBt)

(
ηJf(0) + If ′(0)

)
. (2.68)

Thus consider the following system:

a11y
′
1 + b11y1 + a12y

′
2 + b12y2 = f1(t),

a21y
′
1 + b21y1 + a22y

′
2 + b22y2 = f2(t).

(2.69)

We presume the existence of the limits of the excitations as t → +0, f1(0+) and f2(0+)
deferring further specifications concerning these functions. Let the system be anomalous;
that is,

A =

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣. (2.70)

Initial values y0
1 and y0

2 of y1 and y2 are given as limits as t → +0:

y1(0+) = y0
1 , y2(0+) = y0

2 . (2.71)

Because of (2.70), we can eliminate y′
1 and y′

2 from (2.69). Since (2.69) represents a system of
differential equations, at least one of the coefficients aik must have a nonzero value; without
loss of generality, let a11 /= 0. To accomplish the attempted elimination, multiply the first
equation by a21 and the second equation by a11, and then subtract the first from the second.
With

B =

∣∣∣∣∣
a11 b11

a21 b21

∣∣∣∣∣, C =

∣∣∣∣∣
a11 b12

a21 b22

∣∣∣∣∣, (2.72)



Abstract and Applied Analysis 13

thus we can write the result compactly

By1(t) + Cy2(t) = −a21f1(t) + a11f2(t). (2.73)

The compatibility condition is obtained from (2.73), by the limiting process t → +0

By0
1 + Cy0

2 = −a21f1(0+) + a11f2(0+). (2.74)

If not only the determinant A but also the determinants B and C are each zero, then we
must conclude that the coefficients of the second equation (2.69) are fixed multiples of the
coefficients of the first equation of (2.69). In this case, either the second equation is equivalent
to the first if f2 too is the same fixed multiple of f1, or else the equations would contradict one
another. Hence, B and C cannot both be zero. Now we apply the Sumudu transformation to
the system (2.69); we obtain

(a11 + b11u)Y1(u) + (a12 + b12u)Y2(u) = uF1(u) + a11y
0
1 + a11y

0
2 ,

(a21 + b21u)Y1(u) + (a22 + b22u)Y2(u) = uF2(u) + a21y
0
1 + a22y

0
2 .

(2.75)

With (2.70) and (2.72), we introduce short notations for three determinants of the matrix of
coefficients of (2.69), here as follows:

D =

∣∣∣∣∣
b11 a12

b21 a22

∣∣∣∣∣, E =

∣∣∣∣∣
b11 b12

b21 b22

∣∣∣∣∣, G =

∣∣∣∣∣
a12 b12

a22 b22

∣∣∣∣∣. (2.76)

On using the notation of (2.76), we obtain

Δ(u) = (C +D) + E · u. (2.77)

Then (2.77) follows,

Δ(u)Y1(u) =

∣∣∣∣∣
uF1(u) a12 + b12u

uF2(u) a22 + b22u

∣∣∣∣∣ +
∣∣∣∣∣
a11y

0
1 + a12y

0
2 a12 + b12u

a21y
0
1 + a22y

0
2 a22 + b22u

∣∣∣∣∣. (2.78)

Since A = 0, then

Δ(u)Y1(u) = uF1(u)(a22 + b22u) − uF2(u)(a12 + b12u) + Cy0
1 +Gy0

2 ,

Δ(u)Y2(u) = −uF1(u)(a21 + b21u) + uF2(u)(a11 + b11u) − By0
1 +Dy0

2 .
(2.79)

For brevity, we set

C +D = H. (2.80)
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We presume here H /= 0, that is, Δ(u) is a linear function; we divide (2.79) by the coefficient
Δ(u); then we have

Y1(u) =
uF1(u)(a22 + b22u)

H + Eu
− uF2(u)(a12 + b12u)

H + Eu
+

Cy0
1

H + Eu
+

Gy0
2

H + Eu
, (2.81)

Δ(u)Y2(u) = −uF1(u)(a21 + b21u)
H + Eu

+
uF2(u)(a11 + b11u)

H + Eu
− By0

1

H + Eu
+

Dy0
2

H + Eu
. (2.82)

The first term of (2.81) can be modified as follows:

uF1(u)(a22 + b22u)
H + Eu

= uF1(u)
[
b22
E

+
Γ

1 + (E/H)u

]
, where Γ =

a22

H
− b22

E
. (2.83)

The inverse Sumudu transform of above function is given by

S−1
[
uF1(u)

[
b22
E

+
Γ

I + (E/H)u

]]
= I ∗ b22

E
f1(t) + f1(t) ∗ Γe−(E/H)t. (2.84)

The rest terms of (2.81) are similarly modified. Then we obtain the solution of (2.81) as

y1(t) = I ∗ b22
E

f1(t) + f1(t) ∗ Γe−(E/H)t − I ∗ b12
E

f2(t) − f2(t) ∗Ψe−(E/H)t

+
C

H
y0
1e

−(E/H)t +
G

H
y0
2e

−(E/H)t,

(2.85)

where Ψ = (a12/H) − (b12/E); similarly one can find the solution of (2.82)

y2(t) = −I ∗ b21
E

f1(t) − f1(t) ∗Φe−(E/H)t + I ∗ b11
E

f2(t) + f2(t) ∗Ωe−(E/H)t

− B

H
y0
1e

−(E/H)t +
D

H
y0
2e

−(E/H)t,

(2.86)

where Φ = (b21/H) − (a21/E) and Ω = (b11/H) − (a11/E).
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[11] A. Kılıçman, H. Eltayeb, and R. P. Agarwal, “On Sumudu transform and system of differential

equations,” Abstract and Applied Analysis, vol. 2010, Article ID 598702, 11 pages, 2010.
[12] Z. Trzaska, “An efficient algorithm for partial fraction expansion of the linear matrix pencil inverse,”

Journal of the Franklin Institute, vol. 324, no. 3, pp. 465–477, 1987.
[13] J. Zhang, “A Sumudu based algorithm for solving differential equations,” Computer Science Journal of

Moldova, vol. 15, no. 3, pp. 303–313, 2007.
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