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An optimal lower eigenvalue system is studied, and main theorems including a series of necessary
and suffcient conditions concerning existence and a Lipschitz continuity result concerning stability
are obtained. As applications, solvability results to some von-Neumann-type input-output ine-
qualities, growth, and optimal growth factors, as well as Leontief-type balanced and optimal bal-
anced growth paths, are also gotten.

1. Introduction

1.1. The Optimal Lower Eigenvalue System

Arising from considering some inequality problems in input-output analysis such as von-
Neumann type input-output inequalities, growth and optimal growth factors, as well as
Leontief type balanced and optimal balanced growth paths, we will study an optimal lower
eigenvalue system.

To this end, we denote by Rk = (Rk, ‖ · ‖) the real k-dimensional Euclidean space with
the dual Rk∗ = Rk, Rk

+ the set of all nonnegative vectors of Rk, and intRk
+ its interior. We also

define y1 ≥ (or >) y2 in Rk by y1 − y2 ∈ Rk
+ (or ∈ intRk

+).
Let λ ∈ R+ =̂R1

+, F ⊆ Rm
+ , X ⊆ Rn

+, and T =̂ (T1, . . . , Tm), S =̂ (S1, . . . , Sm) : X → intRm
+ be

two single-valued maps, where m may not be equal to n. Then the optimal lower eigenvalue
system that we will study and use to consider the preceding inequality problems can be
described by λ, F, X, T , and S as follows:

(a)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λ > 0 : ∃x ∈ X

s.t. Tx − λSx ∈ F + Rm
+ , i.e.,

Tx − Sx ≥ c for some c ∈ F,
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(b)

⎧

⎨

⎩

0 < λ −→ max : ∃x ∈ X

s.t. Tx − λSx ∈ F + Rm
+ .

(1.1)

We call λ(> 0) a lower eigenvalue to (1.1) if it solves (a), and its solution x the eigenvector,
claim λ = λ(F)(> 0) the maximal lower eigenvalue to (1.1) if it maximizes (b) (i.e., λ solves
(a), but μ not if μ > λ), and its solution x the optimal eigenvector.

In case F = {c}with c ∈ Rm
+ , then (1.1) becomes

(a)

⎧

⎨

⎩

λ > 0 : ∃x ∈ X

s.t. Tx ≥ λSx + c,

(b)

⎧

⎨

⎩

0 < λ −→ max : ∃x ∈ X

s.t. Tx ≥ λSx + c.

(1.2)

All the concepts concerning (1.1) are reserved for (1.2), and for convenience, the maximal
lower eigenvalue λ = λ({c}) to (1.2), if existed, is denoted by λ = λ(c).

1.2. Some Economic Backgrounds

As indicated above, the aim of this article is to consider some inequality problems in input-
output analysis by studying (1.1). So it is natural to know how many (or what types of)
problems in input-output analysis can be deduced from (1.1) or (1.2) by supplying F,X, T , S,
c, and λwith some proper economic implications. Indeed, in the input-output analysis found
by Leontief [1], there are two classes of important economic systems.

One is the Leontief type input-output equality problem composed of an equation and
an inclusion as follows:

(a)

⎧

⎨

⎩

∃x ∈ X

s.t. x −Ax = c,

(b)

⎧

⎨

⎩

∃x ∈ X

s.t. x − Sx 	 c,

(1.3)

where c ∈ Rn
+ is an expected demand of the market, X ⊂ Rn

+ some enterprise’s admission
output bundle set, and A : X → Rn

+ or S : X → 2R
n
+ is the enterprise’s single-valued or set-

valued consuming map. The economic implication of (a) or (b) is whether there exists x ∈ X
or there exist x ∈ X and y ∈ Sx such that the pure output x − Ax or x − y is precisely equal
to the expected demand c. If X = Rn

+, and A is described by a nth square matrix, then (a) is
precisely the classical Leontief input-output equation, which has been studied by Leontief [1]
and Miller and Blair [2] with the matrix analysis method. If X is convex compact, and A is
continuous, then (a) is a Leontief type input-output equation, which has been considered
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by Fujimoto [3] and Liu and Chen [4, 5] with the functional analysis approach. As for
(b), in case X is convex compact, and S is convex compact-valued with and without the
upper hemicontinuous condition, it has also been studied by Liu and Zhang [6, 7] with the
nonlinear analysis methods attributed to [8–10], in particular, using the classical Rogalski-
Cornet Theorem (see [8, Theorem 15.1.4]) and some Rogalski-Cornet type Theorems (see [6,
Theorems 2.8, 2.9 and 2.12]). However, since the methods to tackle (1.3) are quite different
from those to study (1.1), we do not consider it here.

Another is the von-Neumann type and Leontief type inequality problems which can
be viewed as some special examples of (1.1) or (1.2).

(i)Assume that F ⊆ Rm
+ or c ∈ Rm

+ is an expected demand set or an expected demand of
the market, and X ⊆ Rn

+ some enterprise’s raw material bundle set. Then the von-Neumann
type inequality problems including input-output inequalities, alongwith growth and optimal
growth factors can be stated, respectively, as follows.

(1) If T, S : X → intRm
+ are supposed to be the enterprise’s output (or producing)

and consuming maps, respectively, by taking λ = 1, then from both (a) of (1.1) and (1.2), we
obtain the von-Neumann type input-output inequalities:

(a)

⎧

⎨

⎩

x ∈ X

s.t. Tx − Sx ∈ F + Rm
+ ,

(b)

⎧

⎨

⎩

x ∈ X

s.t. Tx − Sx ≥ c.

(1.4)

The economic implication of (a) or (b) is whether there exist x ∈ X and c ∈ F or there exists
x ∈ X such that the pure output Tx−Sx satisfies sufficiently the expected demand c. IfX = Rn

+,
and T, S are described by two m × n matrixes, then (b) returns to the classical von-Neumann
input-output inequality, which has also been studied by Leontief [1] and Miller and Blair
[2] with the matrix analysis method. If X is convex compact, and T, S are two nonlinear
maps such that Ti,−Si are upper semicontinuous concave for any i = 1, . . . , m, then (b) (as a
nonlinear von-Neumann input-output inequality) has been handled by Liu [11] and Liu and
Zhang [12]with the nonlinear analysis methods in [8–10]. Along the way, in caseX is convex
compact, and T , S are replaced by two upper semicontinuous convex set-valued maps with
convex compact values, then (b) (as a set-valued von-Neumann input-output inequality) has
also been studied by Liu [13, 14]. However, (a) has not been considered up to now. Since (a)
(or (b)) is solvable if and only if λ = 1 makes (1.1)(a) (or makes (1.2)(a)) have solutions, and
also, if and only if the maximal lower eigenvalue λ(F) to (1.1) exists with λ(F) ≥ 1 (or the
maximal lower eigenvalue λ(c) to (1.2) exists with λ(c) ≥ 1), we see that the lower eigenvalue
approach yielded from studying (1.1) or (1.2)may be applied to obtain some new solvability
results to (1.4).

(2) If T, S : X ⊆ Rn
+ → intRm

+ are supposed to be the enterprise’s output and input (or
invest) maps, respectively, and set Λ =̂ {λ > 0 : ∃x ∈ X s.t. Tx ≥ λSx}, then Λ is nonempty,
and in some degree, each λ ∈ Λ can be used to describe the enterprise’s growth behavior.
Since the enterprise always hopes his growth as big as possible, a fixed positive number λ0
can be selected to represent the enterprise’s desired minimum growth no matter whether
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λ0 ∈ Λ or not. By taking c = 0 and restricting λ ≥ λ0, then from (1.2) we obtain the von-
Neumann type growth and optimal growth factor problem:

(a)

⎧

⎨

⎩

λ ∈ [λ0,+∞) : ∃x ∈ X

s.t. Tx ≥ λSx,

(b)

⎧

⎨

⎩

λ0 ≤ λ −→ max : ∃x ∈ X

s.t. Tx ≥ λSx.

(1.5)

We call λ a growth factor to (1.5) if it solves (a), its solution x the intensity vector, and say that
(1.5) is efficient if it has at least one growth factor. We also claim λ the optimal growth factor
to (1.5) if it maximizes (b), and its solution x the optimal intensity vector. If X = Rn

+, and S, T
are described by two m × n matrixes, then (a) reduces to the classical von-Neumann growth
model, and has been studied by Leontief [1], Miller and Blair [2], Medvegyev [15], and
Bidard and Hosoda [16]with the matrix analysis method. Unfortunately, if T, S are nonlinear
maps, in my knowledge, no any references regarding (1.5) can be seen. Clearly, the matrix
analysis method is useless to the nonlinear version. On the other hand, it seems that the
methods of [11, 12] fit for (1.4)(b) may probably be applied to tackle (a) because Tx ≥ λSx
can be rewritten as Tx − (λS)x ≥ 0. However, since the most important issue regarding (1.5)
is to find the optimal growth fact (or equivalently, to search out all the growth facts), which
is much more difficult to be tackled than to determine a single growth fact, we suspect that
it is impossible to solve both (a) and (b) completely only using the methods of [11, 12]. So
a possible idea to deal with (1.5) for the nonlinear version is to study (1.2) and obtain some
meaningful results.

(ii) If m = n, X ⊆ Rn
+ is the enterprise’s admission output vector set, I the identity

map from Rn to itself, and A = (aij)n×n, B = (bij)n×n ∈ Rn2

+ are two nth square matrixes used
to describe the enterprise’s consuming and reinvesting, respectively. Set λ = μ − 1, S = B,
T = I − A, and c = 0, then under the zero profit principle, from (1.2) we obtain the Leontief
type balanced and optimal balanced growth path problem:

(a)

⎧

⎨

⎩

μ > 1 : ∃x ∈ X

s.t. (I −A)x ≥ (

μ − 1
)

Bx,

(b)

⎧

⎨

⎩

1 < μ −→ max : ∃x ∈ X

s.t. (I −A)x ≥ (

μ − 1
)

Bx.

(1.6)

Both (a) and (b) are just the static descriptions of the dynamic Leontief model

(a)μ > 1 or (b) 1 < μ −→ max : ∃ x ∈ X

s.t. x(t) = μtx with (I −A + B)x(t) ≥ Bx(t + 1), t = 1, 2, . . . .
(1.7)

This model also shows that why the Leontief model (1.6) should be restricted to the linear
version.We call μ(> 1) a balanced growth factor to (1.6) if it solves (a), (1.6) is efficient if it has
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at least one balanced growth factor, and claim μ (> 1) the optimal balanced growth factor to
(1.6) if it maximizes (b). It is also needed to stress that at least to my knowledge, only (1.6)(a)
has been considered, that is to say, up to now we do not know under what conditions of A
and B, the optimal balanced growth fact to (1.6)must exist, and howmany possible balanced
growth factors to (1.6) could be found. So we hope to consider (1.6) by studying (1.2), and
obtain its solvability results.

1.3. Questions and Assumptions

In the sequel, taking (1.2) and (1.4)–(1.6) as the special examples of (1.1), we will devote to
study (1.1) by considering the following three solvability questions.

Question 1 (Existence). If λ > 0, does it solve (1.1)(a)? Can we presentany sufficient condi-
tions, or if possible, any necessary and sufficient conditions?

Question 2 (Existence). Does the maximal lower eigenvalue λ = λ(F) to (1.1) exist? How to
describe it?

Question 3 (Stability). If the answer to the Question 2 is positive, whether the corresponding
map F → λ = λ(F) is stable in any proper way?

In order to analyse the preceding questions and obtain some meaningful results, we
need three assumptions as follows.

Assumption 1. X ⊂ Rn
+ is nonempty, convex, and compact.

Assumption 2. For all i = 1, 2, . . . , m, Ti : X −→ intR+ is upper semicontinuous and concave,
Si : X −→ intR+ is lower semicontinuous and convex.

Assumption 3. B
m
+ = {F ⊂ Rm

+ : F is nonempty, convex, and compact} and F ∈ B
m
+ .

By virtue of the nonlinear analysis methods attributed to [8–10], in particular, using
the minimax, saddle point, and the subdifferential techniques, we have made some progress
for the solvability questions to (1.1) including a series of necessary and sufficient conditions
concerning existence and a Lipschitz continuity result concerning stability. The plan of this
paper is as follows, we introduce some concepts and known lemmas in Section 2, prove
the main (solvability) theorems concerning (1.1) in Section 3, list the solvability results
concerning (1.2) in Section 4, followed by some applications to (1.4)–(1.6) in Section 5, then
present the conclusion in Section 6.

2. Terminology

Let f, gα (α ∈ Λ) : X ⊂ Rk → R and ϕ : P × X ⊂ Rm × Rn → R be functions. In the sections
below, we need some well known concepts of f, gα (α ∈ Λ) and ϕ such as convex or concave,
upper or lower semicontinuous (in short, u.s.c. or l.s.c.) and continuous (i.e., both u.s.c. and
l.s.c.), whose definitions can be found in [8–10], so the details are omitted here. In order to
deal with the solvability questions to (1.1) stated in Section 1, we also need some further
concepts as follows.
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Definition 2.1. (1) If infp∈P supx∈Xϕ(p, x) = supx∈X infp∈Pϕ(p, x) =̂v(ϕ), then we claim that the
minimax value v(ϕ) (of ϕ) exists.

(2) If (p, x) ∈ P ×X such that supx∈Xϕ(p, x) = infp∈Pϕ(p, x), then we call (p, x) a saddle
point of ϕ, and denote by S(ϕ) the set of all saddle points.

Remark 2.2. From the definition, we can see that

(1) v(ϕ) exists if and only if infp∈Psupx∈Xϕ(p, x) ≤ supx∈Xinfp∈Pϕ(p, x),

(2) (p, x) ∈ S(ϕ) if and only if (p, x) ∈ P × X with supx∈Xϕ(p, x) ≤ infp∈Pϕ(p, x) if and
only if (p, x) ∈ P ×X such that ϕ(p, x) ≤ ϕ(p, x) for (p, x) ∈ P ×X,

(3) if S(ϕ)/= ∅, then v(ϕ) exists and v(ϕ) = ϕ(p, x) = supx∈Xϕ(p, x) = infp∈Pϕ(p, x) for
all (p, x) ∈ S(ϕ).

Definition 2.3. Let f be a function from Rk to R ∪ {+∞} with the domain dom(f) = {x ∈ Rk :
f(x) < +∞} and g a function from Rk∗(= Rk) to R ∪ {+∞}. Then one has the following.

(1) f is said to be proper if dom(f)/= ∅. The epigraph epi(f) of f is the subset of Rk ×R
defined by epi(f)={(x, a) ∈ Rk × R : f(x) ≤ a}.

(2) The conjugate functions of f and g are the functions f∗ : Rk∗ → R ∪ {+∞} and
g∗ : Rk → R ∪ {+∞} defined by f∗(p) = supx∈Rk[〈p, x〉 − f(x)] for p ∈ Rk∗ and
g∗(x) = supp∈Rk[〈p, x〉 − g(p)] for x ∈ Rk, respectively. The biconjugate f∗∗ of f is
therefore defined on Rk∗∗(= Rk) by f∗∗ = (f∗)∗.

(3) If f is a proper function from Rk to R ∪ {+∞} and x0 ∈ dom(f), then the
subdifferential of f at x0 is the (possibly empty) subset ∂f(x0) of Rk∗ defined by
∂f(x0) = {p ∈ Rk∗ : f(x0) − f(x) ≤ 〈p, x0 − x〉 for all x ∈ Rk}.

Remark 2.4. If f is a proper function from Rk to R ∪ {−∞}, then the domain of f should be
defined by dom(f) = {x ∈ Rk : f(x) > −∞}, and f is said to be proper if dom(f)/= ∅.

Definition 2.5. Let B(Rk) be the collection of all nonempty closed bounded subsets of Rk. Let
x ∈ Rk and A,B ∈ B(Rk). Then one has the following.

(1) The distance d(x,A) from x to A is defined by d(x,A) = infy∈Ad(x, y).

(2) Let ρ(A,B) = supx∈Ad(x, B). Then the Hausdorff distance dH(A,B) betweenA and
B is defined by dH(A,B) = max{ρ(A,B), ρ(B,A)}.

The following lemmas are useful to prove the main theorems in the next section.

Lemma 2.6 (see [9]). (1) A proper function f : Rk → R ∪ {+∞} is convex or l.s.c. if and only if its
epigraph epi(f) is convex or closed in Rk × R.

(2) The upper envelope supα∈Λfα(x) of proper convex (or l.s.c.) functions fα(x) : Rk →
R ∪ {+∞} (α ∈ Λ) is also proper convex (or l.s.c.) when the dom(supα∈Λfα) = {x ∈ Rk :
supα∈Λfα(x) < +∞} is nonempty.

(3) The lower envelope infα∈Λgα(x) of proper concave (or u.s.c.) functions gα(x) : Rk → R ∪
{+∞} (α ∈ Λ) is also proper concave (or u.s.c.) when the dom(infα∈Λgα) = {x ∈ Rk : infα∈Λgα(x) >
−∞} is nonempty.

Remark 2.7. Since epi(supα∈Λfα) =
⋂

α∈Λ epi(fα) thanks to Proposition 1.1.1 of [9], and a
function f defined on Rk is concave (or u.s.c.) if and only if −f is convex (or l.s.c.), it is
easily to see that in Lemma 2.6, the proofs from (1) to (2) and (2) to (3) are simple.
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Lemma 2.8 (see [9]). Let X ⊂ Rn, Y be a compact subset of Rm, and let f : X × Y → R be
l.s.c. (or, u.s.c.). Then h : X → R defined by h(x) = infy∈Yf(x, y) (or, k : X → R defined by
k(x) = supy∈Yf(x, y)) is also l.s.c. (or, u.s.c.).

Lemma 2.9 (see [8]). Let P ⊆ Rm, X ⊆ Rn be two convex compact subsets, and let ϕ : P ×X → R
be a function such that for all x ∈ X, p → ϕ(p, x) is l.s.c. and convex on P , and for all p ∈ P ,
x → ϕ(p, x) is u.s.c. and concave on X. Then infp∈Psupx∈Xϕ(p, x) = supx∈Xinfp∈Pϕ(p, x) and there
exists (p, x) ∈ P ×X such that ϕ(p, x) = supx∈Xϕ(p, x) = infp∈Pϕ(p, x).

Lemma 2.10 (see [8]). A proper function f defined on Rk is convex and l.s.c. if and only if f = f∗∗.

Lemma 2.11 (see [8]). Let f be a proper function defined on Rk, and p0 ∈ Rk∗. Then x0 minimizes
x → f(x) − 〈p0, x〉 onU if and only if x0 ∈ ∂f∗(p0) and f(x0) = f∗∗(x0).

Remark 2.12. If f is a finite function from X ⊆ Rk to R, define fX by fX(x) = f(x) if x ∈ X, or
= +∞ if x ∈ Rk \ X, then we can use the preceding associated concepts and lemmas for f by
identifying f with fX .

3. Solvability Results to (1.1)

3.1. Auxiliary Functions

In the sequel, we assume that

(1) Assumptions 1–3 in Section 1 are satisfied, and λ ∈ R+, F ∈ B
m
+ ,

(2) P ⊆ Rm
+ \ {0} is a convex compact subset with R+P = Rm

+ .
(3.1)

Denote by 〈·, ·〉 the duality paring on 〈Rm∗, Rm〉, and for each λ ∈ R+ and F ∈ B
m
+ , define two

auxiliary functions fλ,F(p, x) and gF(p, x) on P ×X by

fλ,F
(

p, x
)

= sup
c∈F

〈

p, Tx − λSx − c
〉

= sup
(c1,c2,...,cm)∈F

m
∑

i=1

pi(Tix − λSix − ci), (3.2)

gF
(

p, x
)

= sup
c∈F

〈

p, Tx − c
〉

〈

p, Sx
〉 = sup

(c1,c2,...,cm)∈F

∑m
i=1 pi(Tix − ci)
∑m

i=1 piSix
. (3.3)

Just as indicated by Definition 2.1, the minimax values and saddle point sets of ϕ(p, x) =
fλ,F(p, x) and ϕ(p, x) = gF(p, x), if existed or nonempty, are denoted by v(fλ,F), v(gF), S(fλ,F),
and S(gF), respectively.

By (3.1)–(3.3), (p, x) → 〈p, Sx〉, and (p, x) → 〈p, Tx〉 are strictly positive on P ×X, and
the former is l.s.c. while the latter is u.s.c.. So we can see that

0 < ε0 = inf
p∈P,x∈X

〈

p, Sx
〉

< +∞, 0 < ε1 = sup
p∈P,x∈X

〈

p, Tx
〉

< +∞, (3.4)

and both fλ,F(p, x) and gF(p, x) are finite for all λ ∈ R+, (p, x) ∈ P ×X and F ∈ B
m
+ .
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We also define the extensions x → ̂fλ,F(p, x) to x → −fλ,F(p, x) (for each fixed p ∈ P)
and p → ˜fλ,F(p, x) to p → fλ,F(p, x) (for each fixed x ∈ X) by

̂fλ,F
(

p, x
)

=

⎧

⎨

⎩

−fλ,F
(

p, x
)

, x ∈ X,

+∞, x ∈ Rn \X,

˜fλ,F
(

p, x
)

=

⎧

⎨

⎩

fλ,F
(

p, x
)

, p ∈ P,

+∞, p ∈ Rm \ P.

(3.5)

According to Definition 2.3, the conjugate and biconjugate functions of x → ̂fλ,F(p, x) and
p → ˜fλ,F(p, x) are then denoted by

q −→ ̂f∗
λ,F

(

p, q
)

, q ∈ Rn, x −→ ̂f∗∗
λ,F

(

p, x
)

, x ∈ Rn
(

for each fixed p ∈ P
)

,

r −→ ˜f∗
λ,F(r, x), r ∈ Rm, p −→ ˜f∗∗

λ,F

(

p, x
)

, p ∈ Rm (for each fixed x ∈ X).
(3.6)

By Definition 2.5, the Hausdorff distance in B
m
+ (see Assumption 3) is provided by

dH(F1, F2) = max

{

sup
c1∈F1

d(c1, F2), sup
c2∈F2

d(c2, F1)

}

for F1, F2 ∈ B
m
+ . (3.7)

3.2. Main Theorems to (1.1)

With (3.1)–(3.7), we state the main solvability theorems to (1.1) as follows.

Theorem 3.1. (1) v(fλ,F) exists and S(fλ,F) is a nonempty convex compact subset of P ×X. Further-
more, λ → v(fλ,F) is continuous and strictly decreasing on R+ with v(f+∞,F) =̂ limλ→+∞v(fλ,F) =
−∞.

(2) v(gF) exists if and only if S(gF)/= ∅. Moreover, if v(f0,F) > 0, then v(gF) exists and S(gF)
is a nonempty compact subset of P ×X.

Theorem 3.2. (1) λ is a lower eigenvalue to (1.1) and x its eigenvector if and only if
infp∈Pfλ,F(p, x) ≥ 0 if and only if infp∈PgF(p, x) ≥ λ.

(2) λ is a lower eigenvalue to (1.1) if and only if one of the following statements is true:

(a) v(fλ,F) ≥ 0,

(b) fλ,F(p̂, x̂) ≥ 0 for (p̂, x̂) ∈ S(fλ,F),

(c) v(gF) exists with v(gF) ≥ λ,

(d) S(gF)/= ∅ and gF(p̂, x̂) ≥ λ for (p̂, x̂) ∈ S(gF).

(3) The following statements are equivalent:

(a) System (1.1) has at least one lower eigenvalue,

(b) v(f0,F) > 0,

(c) v(gF) exists with v(gF) > 0,

(d) S(gF)/= ∅ and gF(p̂, x̂) > 0 for (p̂, x̂) ∈ S(gF).
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Theorem 3.3. (1) λ exists if and only if one of the following statements is true:

(a) v(f0,F) > 0,

(b) f0,F(p̂, x̂) > 0 for (p̂, x̂) ∈ S(f0,F),

(c) v(fλ,F) = 0,

(d) v(gF) exists with v(gF) = λ,

(e) S(gF)/= ∅ and gF(p, x) = λ for (p, x) ∈ S(gF).

Where λ = λ(F)(> 0) is the maximal lower eigenvalue to (1.1).
(2) If v(f0,F) > 0, or equivalently, if v(gF) exists with v(gF) > 0, then one has the following.

(a) x is an optimal eigenvector if and only if there exists p ∈ P with (p, x) ∈ S(gF) if and only
if infp∈PgF(p, x) = λ.

(b) There exist x̂ ∈ X, ĉ ∈ F and i0 ∈ {1, 2, . . . , m} such that Tx̂ ≥ λSx̂ + ĉ and Ti0 x̂ =
λSi0 x̂ + ĉ i0

.

(c) λ = λ(F) is the maximal lower eigenvalue to (1.1) and (p, x) ∈ S(gF) if and only if λ > 0
and (p, x) ∈ P × X satisfy x ∈ ∂ ̂f∗

λ,F
(p, 0) and p ∈ ∂ ˜f∗

λ,F
(0, x). Where ∂ ̂f∗

λ,F
(p, 0) and

∂ ˜f∗
λ,F

(0, x) are the subdifferentials of ̂f∗
λ,F

(p, q) at q = 0 and ˜f∗
λ,F

(r, x) at r = 0, respectively.

(d) The set of all lower eigenvalues to (1.1) coincides with the interval (0, v(gF)].

(3) Let C
m
+ = {F ∈ B

m
+ : v(f0,F) > 0}, where B

m
+ is defined as in Assumption 3. Then

(a) C
m
+ /= ∅, and for each F ∈ C

m
+ , λ = λ(F) exists with λ(F) = v(gF),

(b) for all F1, F2 ∈ C
m
+ , |λ(F1) − λ(F2)| ≤ (supp∈P‖p‖/ε0)dH(F1, F2), where ε0 is defined by

(3.4).

Thus, F → λ(F) is Lipschitz on C
m
+ with the Hausdorff distance dH(·, ·).

Remark 3.4. If we take P = Σm−1 = {p ∈ Rm
+ :

∑m
i=1 pi = 1}, then Σm−1 satisfies (3.1)(2), hence

Theorems 3.1–3.3 are also true.

3.3. Proofs of the Main Theorems

In order to prove Theorems 3.1–3.3, we need the following eight lemmas.

Lemma 3.5. If λ ∈ R+ is fixed, then one has the following.

(1) p → fλ,F(p, x) (x ∈ X) and p → supx∈Xfλ,F(p, x) are l.s.c. and convex on P .

(2) x → fλ,F(p, x) (p ∈ P) and x → infp∈Pfλ,F(p, x) are u.s.c. and concave on X.

(3) v(fλ,F) exists and S(fλ,F) is a nonempty convex compact subset of P ×X.

Proof. By (3.1)–(3.3), it is easily to see that

(a) ∀x ∈ X, ∀c ∈ F, p −→ 〈

p, Tx − λSx − c
〉

is convex l.s.c. on P,

(b) ∀p ∈ P, (x, c) −→ 〈

p, Tx − λSx − c
〉

is u.s.c. on X × F.
(3.8)
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Applying Lemma 2.6(2) (resp., Lemma 2.8) to the function of (3.8)(a) (resp., of (3.8)(b)), and
using the fact that F is compact, and any l.s.c. (or u.s.c.) function defined on a compact set
attains its minimum (or its maximum), we obtain that

∀x ∈ X, p −→ fλ,F
(

p, x
)

is convex l.s.c. on P and inf
p∈P

fλ,F
(

p, x
)

is finite,

∀p ∈ P, x −→ fλ,F
(

p, x
)

is u.s.c. on X and sup
x∈X

fλ,F
(

p, x
)

is finite. (3.9)

If xi ∈ X (i = 1, 2), then by (3.2), there exist ci = (ci1, c
i
2, . . . , c

i
m) ∈ F (i = 1, 2) such that

fλ,F(p, xi) = 〈p, Txi − λSxi − ci〉. Since Ti, −λSi (i = 1, 2, . . . , m) are concave, X,F are convex
and p ∈ P is nonnegative, we have for each α ∈ [0, 1],

fλ,F
(

p, αx1 + (1 − α)x2
)

≥
〈

p, T
[

αx1 + (1 − α)x2
]

− λS
[

αx1 + (1 − α)x2
]

− αc1 − (1 − α)c2
〉

≥ α
〈

p, Tx1 − λSx1 − c1
〉

+ (1 − α)
〈

p, Tx2 − λSx2 − c2
〉

= αfλ,F
(

p, x1
)

+ (1 − α)fλ,F
(

p, x2
)

, that is, x −→ fλ,F
(

p, x
)

is concave on X.

(3.10)

Combining (3.9) with (3.10), and using Lemmas 2.6(2)(3) and 2.9, it follows that both
statements (1) and (2) hold, v(fλ,F) exists and S(fλ,F) is nonempty. It remains to verify that
S(fλ,F) is convex and closed because P ×X is convex and compact.

If α ∈ [0, 1] and (pi, xi) ∈ S(fλ,F) (i = 1, 2), then supx∈Xfλ,F(p
i, x) = infp∈Pfλ,F(p, xi) for

i = 1, 2. By (1) and (2) (i.e., p → supx∈Xfλ,F(p, x) is convex on P and x → infp∈Pfλ,F(p, x) is
concave on X), we have

sup
x∈X

fλ,F
(

αp1 + (1 − α)p2, x
)

≤ α sup
x∈X

fλ,F
(

p1, x
)

+ (1 − α)sup
x∈X

fλ,F
(

p2, x
)

= α inf
p∈P

fλ,F
(

p, x1
)

+ (1 − α)inf
p∈P

fλ,F
(

p, x2
)

≤ inf
p∈P

fλ,F
(

p, αx1 + (1 − α)x2
)

.

(3.11)

This implies by Remark 2.2(2) that α(p1, x1) + (1 − α)(p2, x2) ∈ S(fλ,F), and thus S(fλ,F) is
convex.

If (pk, xk) ∈ S(fλ,F)with (pk, xk) → (p0, x0) ∈ P×X (k → ∞), then supx∈Xfλ,F(p
k, x) =

infp∈Pfλ,F(p, xk) for all k = 1, 2, . . .. By taking k → ∞, from (1) and (2) (that is, p →
supx∈Xfλ,F(p, x) is l.s.c. on P and x → infp∈Pfλ,F(p, x) is u.s.c. on X), we obtain that

sup
x∈X

fλ,F
(

p0, x
)

≤ lim inf
k→∞

sup
x∈X

fλ,F
(

pk, x
)

≤ lim sup
k→∞

inf
p∈P

fλ,F
(

p, xk
)

≤ inf
p∈P

fλ,F
(

p, x0
)

. (3.12)
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Hence by Remark 2.2(2), (p0, x0) ∈ S(fλ,F) and S(fλ,F) is closed. Hence the first lemma
follows.

Lemma 3.6. λ → v(fλ,F) is continuous and strictly decreasing on R+ with v(f+∞,F) =̂
limλ→+∞v(fλ,F) = −∞.

Proof. Since (λ, p) → 〈p, Tx − λSx − c〉 is continuous on R+ × P for each c ∈ F and x ∈ X,
(λ, x, c) → 〈p, Tx−λSx−c〉 is u.s.c. on R+×X×F for each p ∈ P , and F is compact, by Lemmas
2.6(2) and 2.8, we see that

R+ × P → R :
(

λ, p
) −→ fλ,F

(

p, x
)

= sup
c∈F

〈

p, Tx − λSx − c
〉

is l.s.c.,

R+ ×X → R : (λ, x) −→ fλ,F
(

p, x
)

= sup
c∈F

〈

p, Tx − λSx − c
〉

is u.s.c..
(3.13)

From Lemma 2.6(2)-(3), it follows that

R+ × P −→ R :
(

λ, p
) −→ sup

x∈X
fλ,F

(

p, x
)

is l.s.c.,

R+ ×X −→ R : (λ, x) −→ inf
p∈P

fλ,F
(

p, x
)

is u.s.c..
(3.14)

First applying Lemma 2.8 to both functions of (3.14), and then using Lemma 3.5(3), we
further obtain that

R+ −→ R : λ −→ inf
p∈P

sup
x∈X

fλ,F
(

p, x
)

is l.s.c.,

R+ −→ R : λ −→ sup
x∈X

inf
p∈P

fλ,F
(

p, x
)

is u.s.c.,
(3.15)

and thus λ → v(fλ,F) is continuous on R+.
Suppose that λ2 > λ1 ≥ 0, then by (3.2), fλ1,F(p, x) = fλ2,F(p, x) + (λ2 − λ1)〈p, Sx〉 for

all (p, x) ∈ P × X. This implies by (3.4) that v(fλ1,F) ≥ v(fλ2,F) + (λ2 − λ1)ε0, where ε0 =
infp∈P,x∈X〈p, Sx〉 ∈ (0,+∞). Hence λ → v(fλ,F) is strictly decreasing.

By Lemma 3.5(3), Remark 2.2(3) and (3.2), it is easily to see that for each λ ∈ R+ and
(p, x) ∈ S(fλ,F),

v
(

fλ,F
)

= sup
c∈F

〈

p, Tx − λSx − c
〉 ≤ sup

p∈P,x∈X

〈

p, Tx
〉 − λ inf

p∈P,x∈X
〈

p, Sx
〉

= ε1 − λε0. (3.16)

Hence by (3.4), v(f+∞,F) = −∞ and the second lemma is proved.

Lemma 3.7. (1) λ is a lower eigenvalue to (1.1) and x its eigenvector if and only if infp∈Pfλ,F(p, x) ≥
0.

(2) λ is a lower eigenvalue to (1.1) if and only if v(fλ,F) ≥ 0 if and only if fλ,F(p̂, x̂) ≥ 0 for
(p̂, x̂) ∈ S(fλ,F).

Proof. (1) If λ > 0 and (x, c) ∈ X × F satisfy Tx ≥ λSx + c, then for each p ∈ P(⊆ Rm
+ ),

fλ,F(p, x) ≥ 〈p, Tx − λSx − c〉 ≥ 0. Hence, infp∈Pfλ,F(p, x) ≥ 0.
If λ > 0 and x ∈ X satisfy infp∈Pfλ,F(p, x) ≥ 0, but no c ∈ F can be found such that

Tx ≥ λSx + c, then (Tx − λSx − F) ∩ Rm
+ = ∅. Since Tx − λSx − F is convex compact and Rm

+
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is closed convex, the Hahn-Banach separation theorem implies that there exists p∗ ∈ Rm \ {0}
such that −∞ < supc∈F〈p∗, Tx − λSx − c〉 < infy∈Rm

+ 〈p∗, y〉. Clearly, we have p∗ ∈ Rm
+ \ {0}

(or else, we obtain infy∈Rm
+ 〈p∗, y〉 = −∞, which is impossible), infy∈Rm

+ 〈p∗, y〉 = 0 and thus
supc∈F〈p∗, Tx − λSx − c〉 < 0. Since R+P = Rm

+ , there exist t > 0 and p̂ ∈ P with p̂ = tp∗. It
follows that infp∈Pfλ,F(p, x) ≤ fλ,F(p̂, x) = t supc∈F〈p∗, Tx−λSx−c〉 < 0. This is a contradiction.
So we can select c ∈ F such that Tx ≥ λSx + c.

(2) If λ > 0 is a lower eigenvalue to (1.1), then there exists an eigenvector xλ ∈ X, which
gives, by statement (1) and Lemma 3.5(3), v(fλ,F) ≥ infp∈Pfλ,F(p, xλ) ≥ 0. If v(fλ,F) ≥ 0, then
Remark 2.2(3) and Lemma 3.5(3) imply that fλ,F(p̂, x̂) = v(fλ,F) ≥ 0 for all (p̂, x̂) ∈ S(fλ,F).
If (p̂, x̂) ∈ S(fλ,F) with fλ,F(p̂, x̂) ≥ 0, then infp∈Pfλ,F(p, x̂) = fλ,F(p̂, x̂) ≥ 0, which gives, by
statement (1), that λ is a lower eigenvalue to (1.1) and x̂ its eigenvector. This completes the
proof.

Lemma 3.8. (1) The following statements are equivalent.

(a) System (1.1) has at least one lower eigenvalue.

(b) v(f0,F) > 0.

(c) f0,F(p̂, x̂) > 0 for (p̂, x̂) ∈ S(f0,F).

(d) There is a unique ̂λ > 0 with v(f
̂λ,F) = 0.

(e) The maximal lower eigenvalue λ = λ(F) to (1.1) exists.

In particular, ̂λ = λ if either v(f0,F) > 0 or one of the ̂λ and λ exists.
(2) If v(f0,F) > 0, then the set of all lower eigenvalues to (1.1) equals to (0, λ].

Proof. (1) If λ0(> 0) is a lower eigenvalue to (1.1), then by Lemmas 3.6 and 3.7(2), v(f0,F) >
v(fλ0,F) ≥ 0. In view of Lemma 3.5(3) and Remark 2.2, we also see that v(f0,F) > 0 if and only
if f0,F(p̂, x̂) > 0 for any (p̂, x̂) ∈ S(f0,F). If v(f0,F) > 0, then also by Lemmas 3.6 and 3.7(2), there
exists a unique ̂λ > 0 such that v(f

̂λ,F) = 0, and ̂λ is precisely the maximal lower eigenvalue

λ. If the maximal lower eigenvalue λ to (1.1) exists, then λ is also a lower eigenvalue to (1.1).
Hence statement (1) follows.

(2) Statement (2) is obvious. Thus the lemma follows.

Lemma 3.9. If F ∈ B
m
+ , then one has the following.

(1) p → gF(p, x) (x ∈ X) and p → supx∈XgF(p, x) are continuous on P .

(2) x → gF(p, x) (p ∈ P) and x → infp∈PgF(p, x) are u.s.c. on X.

(3) v(gF) exists if and only if S(gF)/= ∅.

Proof. (1) Since for each x ∈ X and c ∈ F, p → 〈p, Tx − c〉/〈p, Sx〉 is continuous on P , by
(3.3), and Lemma 2.6(2), we see that p → gF(p, x) = supc∈F(〈p, Tx − c〉/〈p, Sx〉) (x ∈ X) and
p → supx∈XgF(p, x) are l.s.c. on P . On the other hand, by Assumptions 1–3, we can verify
that (p, x, c) → 〈p, Tx − c〉/〈p, Sx〉 is u.s.c. on P ×X × F. It follows from Lemma 2.8 that both
functions (p, x) → gF(p, x) = supc∈F(〈p, Tx − c〉/〈p, Sx〉) on P × X and p → supx∈XgF(p, x)
on P are u.s.c., so is p → gF(p, x). Hence (1) is true.

(2) As proved above, we know that for each p ∈ P , x → gF(p, x) is u.s.c. on X, so is
x → infp∈PgF(p, x) because of Lemma 2.6(3).

(3) By Remark 2.2(3), we only need to prove the necessary part. Assume v(gF) exists,
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that is, infp∈Psupx∈XgF(p, x) = supx∈Xinfp∈PgF(p, x), then both (1) and (2) imply that there
exist p ∈ P and x ∈ X with supx∈XgF(p, x) = infp∈PgF(p, x), which means that (p, x) ∈ S(gF)
and S(gF) is nonempty. Hence the lemma is true.

Lemma 3.10. (1) λ is a lower eigenvalue to (1.1) and x its eigenvector if and only if infp∈PgF(p, x) ≥
λ.

(2) λ is a lower eigenvalue to (1.1) if and only if supx∈Xinfp∈PgF(p, x) ≥ λ.

Proof. (1) Suppose λ > 0 and x ∈ X. Since for each p ∈ P , gF(p, x) = supc∈F(〈p, Tx −
c〉/〈p, Sx〉) ≥ λ equals to fλ,F(p, x) = supc∈F〈p, Tx − λSx − c〉 ≥ 0, which implies that
infp∈PgF(p, x) ≥ λ if and only if infp∈Pfλ,F(p, x) ≥ 0. Combining this with Lemma 3.7(1), we
know that (1) is true.

(2) By (1), it is enough to prove the sufficient part. If supx∈Xinfp∈PgF(p, x) ≥
λ(> 0), then Lemma 3.9(2) shows that there exists xλ ∈ X with infp∈PgF(p, xλ) =
supx∈Xinfp∈PgF(p, x) ≥ λ. Hence λ is a lower eigenvalue to (1.1) and xλ its eigenvector. This
completes the proof.

Lemma 3.11. (1) v(f0,F) > 0 if and only if v(gF) exists with v(gF) = λ if and only if S(gF)/= ∅ and
gF(p, x) = λ for (p, x) ∈ S(gF). Where λ = λ(F) > 0 is the maximal lower eigenvalue to (1.1).

(2) λ is a lower eigenvalue to (1.1) if and only if v(gF) exists with v(gF) ≥ λ if and only if
S(gF)/= ∅ and gF(p̂, x̂) ≥ λ for (p̂, x̂) ∈ S(gF).

(3) System (1.1) has at least one lower eigenvalue if and only if v(gF) exist with v(gF) > 0 if
and only if S(gF)/= ∅ and gF(p̂, x̂) > 0 for (p̂, x̂) ∈ S(gF).

Proof. (1) We divide the proof of (1) into three steps.

Step 1. If v(f0,F) > 0, then by Lemma 3.8(1), themaximal eigenvalue λ(> 0) to (1.1) exists with
v(fλ,F) = 0.Wewill prove that v(gF) exists with v(gF) = λ. Let λ∗ = supx∈Xinfp∈PgF(p, x), λ

∗ =

infp∈Psupx∈XgF(p, x), then λ∗ ≤ λ∗, and the left is to show λ∗ ≤ λ ≤ λ∗.

By Lemma 3.5(2), there exists x ∈ X such that infp∈Pfλ,F(p, x) = v(fλ,F) = 0. This

shows that supc∈F〈p, Tx − λSx − c〉 = fλ,F(p, x) ≥ 0 for any p ∈ P , that is, λ ≤ supc∈F(〈p, Tx −
c〉/〈p, Sx〉) = gF(p, x) (p ∈ P). Hence, λ ≤ infp∈PgF(p, x) ≤ λ∗. On the other hand, since
for each p ∈ P , λ∗ ≤ supx∈XgF(p, x), by Lemma 3.9(2), there exists xp ∈ X such that λ∗ ≤
supx∈XgF(p, x) = gF(p, xp) = supc∈F(〈p, Txp − c〉/〈p, Sxp〉). It follows that supx∈Xfλ∗,F(p, x) ≥
fλ∗,F(p, xp) = supc∈F〈p, Txp − λ∗Sxp − c〉 ≥ 0 for any p ∈ P . Hence by Lemma 3.5(3), v(fλ∗,F) =
infp∈Psupx∈Xfλ∗,F(p, x) ≥ 0. From Lemma 3.7(2), this implies that λ∗ is a lower eigenvalue to
(1.1), and thus λ∗ ≤ λ. Therefore, v(gF) exists with v(gF) = λ.

Step 2. If v(gF) exists with v(gF) = λ (> 0), then Lemma 3.9(3) and Remark 2.2(3) deduce
that S(gF)/= ∅ and gF(p, x) = v(gF) = λ > 0 for (p, x) ∈ S(gF).

Step 3. If S(gF)/= ∅ and (p, x) ∈ S(gF) with gF(p, x) = λ (> 0), then infp∈PgF(p, x) = λ (> 0).
This implies by Lemmas 3.10(1) and 3.8(1) that λ is a lower eigenvalue to (1.1), and thus
v(f0,F) > 0.

(2) If λ > 0 is a lower eigenvalue to (1.1), then Lemmas 3.8(1), 3.10(2) and statement
(1) imply that v(f0,F) > 0, v(gF) exists and v(gF) = supx∈Xinfp∈PgF(p, x) ≥ λ. If v(gF) exists
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with v(gF) ≥ λ, then from Lemma 3.9(3) and Remark 2.2(3), it follows that S(gF)/= ∅ and
gF(p̂, x̂) = v(gF) ≥ λ for (p̂, x̂) ∈ S(gF). If S(gF)/= ∅ and gF(p̂, x̂) ≥ λ for (p̂, x̂) ∈ S(gF), then by
Remark 2.2(3) and Lemma 3.10(1), we see that infp∈PgF(p, x̂) = gF(p̂, x̂) ≥ λ, and thus λ is a
lower eigenvalue to (1.1) and x̂ its eigenvector.

(3) Statement (3) follows immediately from (1) and (2). This completes the proof.

Lemma 3.12. (1) If v(f0,F) > 0, or equivalently, if v(gF) exists with v(gF) > 0, then S(gF) is a
nonempty compact subset of P ×X.

(2) The first three statements of Theorem 3.3(2) are true.
(3) Theorem 3.3(3) is true.

Proof. (1) By Lemma 3.11(1), S(gF) is nonempty. Furthermore, with the same procedure as in
proving the last part of Lemma 3.5 and using Lemma 3.9(1)-(2), we can show that if (pk, xk) ∈
S(gF) such that (pk, xk) → (p0, x0) ∈ P ×X as k → ∞, then

sup
x∈X

gF
(

p0, x
)

= lim inf
k→∞

sup
x∈X

gF
(

pk, x
)

≤ lim sup
k→∞

inf
p∈P

gF
(

p, xk
)

≤ inf
p∈P

gF
(

p, x0
)

. (3.17)

Hence, S(gF) is closed, and also compact.
(2) Now we prove the first three statements of Theorem 3.3(2).
By the condition of Theorem 3.3(2), Lemmas 3.8(1) and 3.11(1), we know that the

maximal lower eigenvalue λ to (1.1) and v(gF) exist with v(gF) = λ.
First we prove statement (a). If x ∈ X is an optimal eigenvector, then by

Lemma 3.10(1), we have infp∈PgF(p, x) ≥ λ. On the other hand, by Lemma 3.9(1), there exists
p ∈ P such that v(gF) = supx∈XgF(p, x). So we obtain that supx∈XgF(p, x) = λ ≤ infp∈PgF(p, x),
and thus (p, x) ∈ S(gF). If p ∈ P such that (p, x) ∈ S(gF), then Remark 2.2(3) implies that
infp∈PgF(p, x) = v(gF) = λ. If infp∈PgF(p, x) = λ, then Lemma 3.10(1) shows that x is an
optimal eigenvector. Hence, Theorem 3.3(2)(a) follows.

Next we prove statement (b). By Lemmas 3.5(2) and 3.8(1), there exists x̂ ∈ X with

0 = v
(

fλ,F

)

= sup
x∈X

inf
p∈P

fλ,F
(

p, x
)

= inf
p∈P

fλ,F
(

p, x̂
)

= inf
p∈P

sup
c∈F

〈

p, Tx̂ − λSx̂ − c
〉

. (3.18)

By applying Lemma 2.9 to ϕ(p, c) = 〈p, Tx̂ − λSx̂ − c〉 on P × F, this leads to

sup
c∈F

inf
p∈P

〈

p, Tx̂ − λSx̂ − c
〉

= inf
p∈P

sup
c∈F

〈

p, Tx̂ − λSx̂ − c
〉

= 0. (3.19)

Since c → infp∈P〈p, Tx̂−λSx̂−c〉 is u.s.c. on F and p → 〈p, Tx̂−λSx̂−c〉 is continuous on P , from
(3.19), first there exists ĉ = (ĉ1, ĉ2, . . . , ĉm) ∈ F and then there exists p̂ = (p̂1, p̂2, . . . , p̂m) ∈ P
such that

0 = sup
c∈F

inf
p∈P

〈

p, Tx̂ − λSx̂ − c
〉

= inf
p∈P

〈

p, Tx̂ − λSx̂ − ĉ
〉

=
〈

p̂, Tx̂ − λSx̂ − ĉ
〉

. (3.20)
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As R+P = Rm
+ , for each i = 1, 2, . . . , m, there exists ti > 0 with pi = (

i
︷ ︸︸ ︷

0, . . . , 0, ti, 0, . . . , 0
︸ ︷︷ ︸

m

) ∈ P ,

which implies by (3.20) that for each i = 1, 2, . . . , m,

ti
(

Tix̂ − λSix̂ − ĉi
)

=
〈

pi, Tx̂ − λSx̂ − ĉ
〉

≥ 0, that is, Tx̂ ≥ λSx̂ + ĉ. (3.21)

On the other hand, we can see that Ip̂ = {i : p̂i > 0} is nonempty because p̂ ∈ P ⊆
Rm

+ \ {0}. This gives, by (3.20) and (3.21), that for each i0 ∈ Ip̂,

0 ≤ p̂i0

(

Ti0 x̂ − λSi0 x̂ − ĉi0

)

≤
〈

p̂, Tx̂ − λSx̂ − ĉ
〉

= 0, that is, Ti0 x̂ = λSi0 x̂ + ĉi0 . (3.22)

Both (3.21) and (3.22) show that Theorem 3.3(2)(b) is true.
Then we prove statement (c). From (3.2), (3.3), and Lemmas 3.8(1) and 3.11(1), as well

as Remark 2.2(2), we know that λ is the maximal lower eigenvalue to (1.1) and (p, x) ∈ S(gF)
if and only if λ > 0 and (p, x) ∈ P×X satisfy gF(p, x) ≤ gF(p, x) = λ ≤ gF(p, x) for (p, x) ∈ P×X,
which amounts to say

fλ,F
(

p, x
) ≤ fλ,F

(

p, x
)

= 0 ≤ fλ,F
(

p, x
)

,
(

p, x
) ∈ P ×X, (3.23)

because for each (p, x) ∈ P ×X,

gF
(

p, x
)

= sup
c∈F

〈

p, Tx − c
〉

〈

p, Sx
〉 ≤ λ iff fλ,F

(

p, x
)

= sup
c∈F

〈

p, Tx − λSx − c
〉

≤ 0,

gF
(

p, x
)

= sup
c∈F

〈

p, Tx − c
〉

〈

p, Sx
〉 = λ iff fλ,F

(

p, x
)

= sup
c∈F

〈

p, Tx − λSx − c
〉

= 0,

gF
(

p, x
)

= sup
c∈F

〈

p, Tx − c
〉

〈

p, Sx
〉 ≥ λ iff fλ,F

(

p, x
)

= sup
c∈F

〈

p, Tx − λSx − c
〉

≥ 0.

(3.24)

In view of (3.5), we know that (3.23) is also equivalent to

min
x∈Rn

[

̂fλ,F
(

p, x
)

]

= min
x∈X

[

−fλ,F
(

p, x
)

]

= 0 = −fλ,F
(

p, x
)

= ̂fλ,F
(

p, x
)

,

min
p∈Rm

˜fλ,F
(

p, x
)

= min
p∈P

fλ,F
(

p, x
)

= 0 = fλ,F
(

p, x
)

= ˜fλ,F
(

p, x
)

.
(3.25)
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Also by (3.5), we have epi ̂fλ,F(p, ·) = {(x, a) ∈ X × R : −fλ,F(p, x) ≤ a} and epi ˜fλ,F(·, x) =
{(p, a) ∈ P ×R : fλ,F(p, x) ≤ a}. Combining this with Lemma 3.5(1)-(2) and using the fact that

X and P are convex compact, we can see that epi ̂fλ,F(p, ·) (or epi ˜fλ,F(·, x)) is closed convex in

Rn ×R (or in Rm ×R). Hence Lemmas 2.6(1) and 2.10 imply that both x → ̂fλ,F(p, x) (x ∈ Rn)

and p → ˜fλ,F(p, x) (p ∈ Rm) are proper convex and l.s.c. with

̂fλ,F
(

p, x
)

= ̂f∗∗
λ,F

(

p, x
)

(x ∈ Rn), ˜fλ,F
(

p, x
)

= ˜f∗∗
λ,F

(

p, x
) (

p ∈ Rm). (3.26)

Applying Lemma 2.11 to the functions x → ̂fλ,F(p, x) − 〈q0, x〉 on Rn with q0 = 0 and p →
˜fλ,F(p, x) − 〈r0, p〉 on Rm with r0 = 0, and using (3.25) and (3.26), we conclude that (3.23)

holds if and only if x ∈ ∂ ̂f∗
λ,F

(p, 0) and p ∈ ∂ ˜f∗
λ,F

(0, x). Hence Theorem 3.3(2)(c) is also true.
(3) Finally we prove Theorem 3.3(3).
(a) By (3.1), we know that for each x0 ∈ X, Tx0 ∈ intRm

+ . So there exists c0 ∈
Rm

+ such that c0 < Tx0 (that is, c0i < Tix0 for i = 1, 2, . . . , m). Take Fx0 = {c0}, then
supx∈Xf0,Fx0

(p, x) = supx∈X〈p, Tx − c0〉 ≥ 〈p, Tx0 − c0〉 > 0 for any p ∈ P . Hence, v(f0,Fx0
) =

infp∈Psupx∈Xf0,Fx0
(p, x) > 0 because p → supx∈Xf0,Fx0

(p, x) is l.s.c. on P . This shows that

C
m
+ = {F ∈ B

m
+ : v(f0,F) > 0} is nonempty. Moreover, Lemma 3.11(1) implies that λ(F) exists

with λ(F) = v(gF) for any F ∈ C
m
+ . Hence statement (a) follows.

(b) Let Fi ∈ C
m
+ (i = 1, 2), then we have λ(Fi) = v(gFi)(i = 1, 2). Suppose that (p, x) ∈

P × X. Since Fi (i = 1, 2) are compact, we can select ci ∈ Fi (i = 1, 2) such that gF1(p, x) =
supc∈F1

(〈p, Tx−c〉/〈p, Sx〉) = 〈p, Tx−c1〉/〈p, Sx〉 and ‖c1−c2‖ = d(c1, F2). This deduces that

gF1

(

p, x
)

=

〈

p, Tx − c2 +
(

c2 − c1
)〉

〈

p, Sx
〉 ≤ gF2

(

p, x
)

+
supp∈P‖p‖

ε0
dH(F1, F2), (3.27)

because 〈p, Tx − c2〉/〈p, Sx〉 ≤ gF2(p, x), ‖c1 − c2‖ = d(c1, F2) ≤ dH(F1, F2) and ε0 =
infp∈P,x∈X〈p, Sx〉 is positive. By taking minimax values for both sides of (3.27), we have
v(gF1) ≤ v(gF2) + (supp∈P‖p‖/ε0)dH(F1, F2). Therefore, |λ(F1) − λ(F2)| = |v(gF1) − v(gF2)| ≤
(supp∈P‖p‖/ε0)dH(F1, F2) because dH(F1, F2) = dH(F2, F1), and the last lemma follows.

Proofs of Theorems 3.1–3.3

Proof. (i) For Theorem 3.1. (1) follows from Lemmas 3.5(3) and 3.6, and (2) from Lemmas
3.9(3), 3.11(1), and 3.12(1).

(ii) For Theorem 3.2. (1) can be deduced from Lemmas 3.7(1) and 3.10(1), (2) from
Lemmas 3.7(2) and 3.11(2), while (3) from Lemmas 3.8(1) and 3.11(3).

(iii) For Theorem 3.3. By Lemmas 3.5(3), 3.8(1) and 3.11(1), (1) is true. From Lemmas
3.8(2) and 3.12(2), (2) is valid. Applying Lemma 3.12(3), we obtain the last statement.
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4. Solvability Results to (1.2)

Let F = {c} (c ∈ Rm
+ ), λ ∈ R+, fλ,F = fλ,c, gF = gc, and λ(F) = λ(c) (if exists), then

∀(p, x) ∈ P ×X, fλ,c
(

p, x
)

=
〈

p, Tx − λSx − c
〉

, gc
(

p, x
)

=

〈

p, Tx − c
〉

〈

p, Sx
〉 , (4.1)

and the functions ̂fλ,c(p, x), ˜fλ,c(p, x), ̂f∗
λ,c
(p, q), ̂f∗∗

λ,c
(p, x), ˜f∗

λ,c
(r, x) and ˜f∗∗

λ,c
(p, x) can be

obtained from (3.5) and (3.6) by replacing c for F, respectively. From Theorems 3.1–3.3, we
immediately obtain the solvability results to (1.2) as follows.

Theorem 4.1. (1) v(fλ,c) exists and S(fλ,c) is a nonempty convex compact subset of P ×X. Further-
more, λ → v(fλ,c) is continuous and strictly decreasing onR+ with v(f+∞,c)=̂limλ→+∞v(fλ,c) = −∞.

(2) v(gc) exists if and only if S(gc)/= ∅. Moreover, if v(f0,c) > 0, then v(gc) exists and S(gc)
is a nonempty compact subset of P ×X.

Theorem 4.2. (1) λ is a lower eigenvalue to (1.2) and x its eigenvector if and only if
infp∈Pfλ,c(p, x) ≥ 0 if and only if infp∈Pgc(p, x) ≥ λ.

(2) λ is a lower eigenvalue to (1.2) if and only if one of the following statements is true.

(a) v(fλ,c) ≥ 0,

(b) fλ,c(p̂, x̂) ≥ 0 for (p̂, x̂) ∈ S(fλ,c),

(c) v(gc) exists with v(gc) ≥ λ,

(d) S(gc)/= ∅ and gc(p̂, x̂) ≥ λ for (p̂, x̂) ∈ S(gc).

(3) The following statements are equivalent.

(a) System (1.2) has at least one lower eigenvalue,

(b) v(f0,c) > 0,

(c) v(gc) exists with v(gc) > 0,

(d) S(gc)/= ∅ and gc(p̂, x̂) > 0 for (p̂, x̂) ∈ S(gc).

Theorem 4.3. (1) λ exists if and only if one of the following statements is true.

(a) v(f0,c) > 0.

(b) f0,c(p̂, x̂) > 0 for (p̂, x̂) ∈ S(f0,c).

(c) v(fλ,c) = 0.

(d) v(gc) exists with v(gc) = λ.

(e) S(gc)/= ∅ and gc(p, x) = λ for (p, x) ∈ S(gc).

Where λ = λ(c)(> 0) is the maximal lower eigenvalue to (1.2).
(2) If v(f0,c) > 0, or equivalently, if v(gc) exists with v(gc) > 0, then

(a) x is an optimal eigenvector if and only if there exists p ∈ P with (p, x) ∈ S(gc) if and only
if infp∈Pgc(p, x) = λ.
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(b) There exist x̂ ∈ X and i0 ∈ {1, 2, . . . , m} such that Tx̂ ≥ λSx̂ + c and Ti0 x̂ = λSi0 x̂ + c i0
.

(c) λ = λ(c) is the maximal lower eigenvalue to (1.2) and (p, x) ∈ S(gc) if and only if λ > 0
and (p, x) ∈ P × X satisfy x ∈ ∂ ̂f∗

λ,c
(p, 0) and p ∈ ∂ ˜f∗

λ,c
(0, x). Where ∂ ̂f∗

λ,c
(p, 0) and

∂ ˜f∗
λ,c
(0, x) are the subdifferentials of ̂f∗

λ,c
(p, q) at q = 0 and ˜f∗

λ,c
(r, x) at r = 0, respectively.

(d) The set of all lower eigenvalues to (1.2) coincides with the interval (0, v(gc)].

(3) Let C+=̂{c ∈ Rm
+ : v(f0,c) > 0}. Then one has the following.

(a) C+ /= ∅, and for each c ∈ C+, λ = λ(c) exists with λ(c) = v(gc).

(b) |λ(c1)−λ(c2)| ≤ (supp∈P‖p‖/ε0)‖c1 − c2‖ (c1, c2 ∈ C+), where ε0 is also defined by (3.4).

Hence, c → λ(c) is Lipschitz on C+.

5. Solvability Results to (1.4)–(1.6)

We now use Theorems 3.1–3.3 and 4.1–4.3 to study the solvability of (1.4)–(1.6). For
convenience sake, we only present some essential results.

5.1. Solvability to (1.4)

Since F ∈ B
m
+ (or c ∈ Rm

+ ) makes (a) (or (b)) of (1.4) solvable if and only if λ = 1 is a lower
eigenvalue to (1.1) (or (1.2)) if and only if the maximal lower eigenvalue λ = λ(F) to (1.1) (or
λ = λ(c) to (1.2)) exists with λ(F) ≥ 1 (or λ(c) ≥ 1), by applying Theorems 3.3 and 4.3, we
have the solvability results to (1.4) as follows.

Theorem 5.1. (1) Inequality (1.4)(a) is solvable to F ∈ B
m
+ if and only if one of the following

statements is true.

(a) There exists λ ≥ 1 with v(fλ,F) = 0.

(b) v(gF) exists with v(gF) ≥ 1.

(c) S(gF)/= ∅ and gF(p, x) ≥ 1 for (p, x) ∈ S(gF).

(2) Inequality (1.4)(b) is solvable to c ∈ Rm
+ if and only if one of the following statements is

true.

(a) There exists λ ≥ 1 with v(fλ,c) = 0.

(b) v(gc) exists with v(gc) ≥ 1.

(c) S(gc)/= ∅ and gc(p, x) ≥ 1 for (p, x) ∈ S(gc).

5.2. Solvability to (1.5)

By Theorem 4.1, for each λ ≥ 0, v(fλ,0) exists, S(fλ,0) is nonempty, and if (p, x) ∈ S(f0,0),
then v(f0,0) = 〈p, Tx〉 > 0. Hence v(g0) exists, S(g0) is nonempty, and the maximal lower
eigenvalue λ = λ(0) to (1.2) exists with v(g0) = λ = g0(p, x) for (p, x) ∈ S(g0). By Theorems
4.2 and 4.3 for c = 0, we obtain the solvability results to (1.5) as follows.
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Theorem 5.2. (1) λ is a growth factor to (1.5) and x its intensity vector if and only if λ ≥ λ0 with
infp∈Pfλ,0(p, x) ≥ 0 if and only if infp∈Pg0(p, x) ≥ λ ≥ λ0.

(2) λ is a growth factor to (1.5) if and only if λ ≥ λ0 with v(fλ,0) ≥ 0 if and only if v(g0) ≥
λ ≥ λ0.

(3) Growth fact problem (1.5) is efficient if and only if there exists λ ≥ λ0 with v(fλ,0) ≥ 0 if
and only if v(g0) ≥ λ0.

(4) λ is the optimal growth factor to (1.5) if and only if λ ≥ λ0 with v(fλ,0) = 0 if and only if

v(g0) = λ ≥ λ0.
(5) If v(g0) = λ ≥ λ0, then there exist x ∈ X and i0 ∈ {1, 2, . . . , m} such that Tx ≥ λSx and

Ti0x = λSi0x.
(6) λ is the optimal growth factor to (1.5) and (p, x) ∈ S(g0) if and only if λ ≥ λ0 and

(p, x) ∈ P ×X satisfy x ∈ ∂ ̂f∗
λ,0
(p, 0) and p ∈ ∂ ˜f∗

λ,0
(0, x).

5.3. Solvability to (1.6)

To present the solvability results to (1.6), we assume that

(a) X ⊂ intRn
+ is convex compact,

(b) A,B ∈ Rn2

+ with (I −A)X ⊂ intRn
+, BX ⊂ intRn

+,
(5.1)

and define fλ(p, x) = fλ,0(p, x) and g(p, x) = g0(p, x) on Σn−1 ×X by

fλ
(

p, x
)

=
〈

p, (I −A)x − λBx
〉

,
(

p, x
)

=

〈

p, (I −A)x
〉

〈

p, Bx
〉 for

(

p, x
) ∈ Σn−1 ×X, (5.2)

where Σn−1 is the (n − 1) simplex. Applying Theorems 4.1–4.3 to S = B, T = I −A, c = 0 and
λ = μ − 1, we obtain existence results to (1.6) as follows.

Theorem 5.3. If (5.1) holds and fλ, g be defined by (5.1). Then one has the following.

(1) There exists λ > 0 such that v(fλ) = 0 and λ = v(g).

(2) μ = λ + 1 is the optimal balanced growth factor to (1.6).

(3) Growth path problem (1.6) is efficient, and μ is a balanced growth factor to (1.6) if and only
if μ ∈ (1, 1 + λ].

Remark 5.4. Assumption (5.1) is only an essential condition to get the conclusions of
Theorem 5.3. By applying Theorems 4.1–4.3 and using some analysis methods or matrix
techniques, one may obtain some more solvability results to the Leontief-type balanced and
optimal balanced growth path problem.

6. Conclusion

In this article, we have studied an optimal lower eigenvalue system (namely, (1.1)), and
proved three solvability theorems (i.e., Theorems 3.1–3.3) including a series of necessary
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and sufficient conditions concerning existence and a Lipschitz continuity result concerning
stability. With the theorems, we have also obtained some existence criteria (namely, Theorems
5.1–5.3) to the von-Neumann type input-output inequalities, growth and optimal growth
factors, as well as to the Leontief type balanced and optimal balanced growth path problems.
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