
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 213878, 14 pages
doi:10.1155/2011/213878

Research Article
Some Topological and Geometrical Properties of
a New Difference Sequence Space

Serkan Demiriz1 and Celal Çakan2
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We introduce the new difference sequence space ar
p(Δ) . Further, it is proved that the space ar

p(Δ)
is the BK-space including the space bvp, which is the space of sequences of pbounded variation.
We also show that the spaces ar

p(Δ), and �p are linearly isomorphic for 1 ≤ p < ∞. Furthermore,
the basis and the α-, β- and γ-duals of the space ar

p(Δ) are determined. We devote the final section
of the paper to examine some geometric properties of the space ar

p(Δ).

1. Preliminaries, Background, and Notation

Byω, we will denote the space of all real valued sequences. Any vector subspace ofω is called
as a sequence space. We will write �∞, c, and c0 for the spaces of all bounded, convergent and
null sequences, respectively. Also, by bs, cs, �1 and �p; we denote the spaces of all bounded,
convergent, absolutely, and p-absolutely convergent series, respectively, where 1 < p < ∞.

A sequence space λ with a linear topology is called a K-space, provided each of the
maps pi : λ → C defined by pi(x) = xi is continuous for all i ∈ N, where C denotes the
complex field and N = {0, 1, 2, . . .}. AK-space λ is called an FK-space, provided λ is a complete
linear metric space. An FK-space whose topology is normable is called a BK-space (see [1,
pages 272-273]).

Let λ, μ be two sequence spaces and A = (ank) an infinite matrix of real or complex
numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from λ into μ,
and we denote it by writing A : λ → μ; if for every sequence x = (xk) ∈ λ, the sequence
Ax = {(Ax)n}, the A-transform of x, is in μ, where

(Ax)n =
∑

k

ankxk (n ∈ N). (1.1)
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For simplicity in notation, here and in what follows, the summation without limits runs from
0 to∞. By (λ : μ)we denote the class of all matrices A such that A : λ → μ. Thus, A ∈ (λ : μ)
if and only if the series on the right side of (1.1) converges for each n ∈ N and every x ∈ λ,
and we have Ax = {(Ax)n}n∈N

∈ μ for all x ∈ λ. A sequence x is said to be A-summable to α
if Ax converges to α which is called as the A-limit of x.

If a normed sequence space λ contains a sequence (bn)with the property that for every
x ∈ λ, there is a unique sequence of scalars (αn) such that

lim
n−→∞

‖x − (α0b0 + α1b1 + · · · + αnbn)‖ = 0, (1.2)

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

αkbk which has the sum
x is then called the expansion of x with respect to (bn) and written as x =

∑
αkbk.

For a sequence space λ, the matrix domain λA of an infinite matrix A is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ}, (1.3)

which is a sequence space. The new sequence space λA generated by the limitation matrix A
from the space λ either includes the space λ or is included by the space λ, in general; that is,
the space λA is the expansion or the contraction of the original space λ.

We will define Br = (brnk) by

brnk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 − r

n + 1
rk, 0 ≤ k ≤ n − 1,

rn + 1
n + 1

, k = n,

0, k > n,

(0 < r < 1), (1.4)

for all n, k ∈ N and denote the collection of all finite subsets of N by F. We will also use the
convention that any term with negative subscript is equal to naught.

The approach constructing a new sequence space by means of the matrix domain of
a particular limitation method has been recently employed by Wang [2], Ng and Lee [3],
Malkowsky [4], and Altay et al. [5]. They introduced the sequence spaces (�p)Nq

in [2],
(�p)C1

= Xp in [3], (�∞)Rt = rt∞, cRt = rtc and (c0)Rt = rt0 in [4] and (�p)Er = erp in [5]; where
Nq,C1, R

t and Er denote the Nörlund, arithmetic, Riesz and Euler means, respectively, and
1 ≤ p ≤ ∞.

Recently, there has been a lot of interest in investigating geometric properties of
sequence spaces besides topological and some other usual properties. In literature, there are
many papers concerning the geometric properties of different sequence spaces. For example,
in [6], Mursaleen et al. studied some geometric properties of normed Euler sequence space.
Şimşek and Karakaya [7] investigated the geometric properties of sequence space �ρ(u, v, p)
equipped with Luxemburg norm. Further information on geometric properties of sequence
space can be found in [8, 9].

The main purpose of the present paper is to introduce the difference sequence space
ar
p(Δ) together with matrix domain and is to derive some inclusion relations concerning with

ar
p(Δ). Also, we investigate some topological properties of this new space and furthermore

characterize geometric properties concerning Banach-Saks type p.
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2. ar
p(Δ) Difference Sequence Space

In the present section, we introduce the difference sequence space ar
p(Δ) and emphasize its

some properties. Although the difference sequence space λ(Δ) corresponding to the space λ
was defined by Kızmaz [10] as follows:

λ(Δ) = {x = (xk) ∈ ω : (xk − xk+1) ∈ λ}, (2.1)

the difference sequence space corresponding to the space �p was not examined, where λ
denotes the anyone of the spaces c0, c or �∞. So, Başar and Altay have recently studied the
sequence space bvp, the space of p-bounded variation, in [11] defined by

bvp =
{
x = (xk) ∈ ω : (xk − xk−1) ∈ �p

}
, 1 ≤ p < ∞, (2.2)

which fills up the gap in the existing literature. Recently, Aydı́n and Başar [12] studied the
sequence spaces ar

0 and ar
c, defined by

ar
0 =

{
x = (xk) ∈ ω : lim

n−→∞
1

n + 1

n∑

k=0

(
1 + rk

)
xk = 0

}
,

ar
c =

{
x = (xk) ∈ ω : lim

n−→∞
1

n + 1

n∑

k=0

(
1 + rk

)
xk exists

}
.

(2.3)

Aydı́n and Başar [13] introduced the difference sequence spaces ar
0(Δ) and ar

c(Δ), defined by

ar
0(Δ) =

{
x = (xk) ∈ ω : lim

n−→∞
1

n + 1

n∑

k=0

(
1 + rk

)
(xk − xk−1) = 0

}
,

ar
c(Δ) =

{
x = (xk) ∈ ω : lim

n−→∞
1

n + 1

n∑

k=0

(
1 + rk

)
(xk − xk−1) exists

}
.

(2.4)

Aydı́n [14] introduced ar
p sequence space, defined by

ar
p =

{
x = (xk) ∈ ω :

∑

n

∣∣∣∣∣
1

n + 1

n∑

k=0

(
1 + rk

)
xk

∣∣∣∣∣

p

< ∞
}
; 1 ≤ p < ∞. (2.5)

Define the matrix Δ = (δnk) by

δnk =

⎧
⎨

⎩
(−1)n−k, n − 1 ≤ k ≤ n,

0, 0 ≤ k < n − 1 or k > n.
(2.6)

As was made by Başar and Altay in [11], we treat slightly more different than Kızmaz and
the other authors following him and employ the technique obtaining a new sequence space



4 Abstract and Applied Analysis

by the matrix domain of a triangle limitation method. We will introduce the sequence space
ar
p(Δ)which is a natural continuation of Aydı́n and Başar [13], as follows:

ar
p(Δ) =

{
x = (xk) ∈ ω :

∑

n

∣∣∣∣∣
1

n + 1

n∑

k=0

(
1 + rk

)
(xk − xk−1)

∣∣∣∣∣

p

< ∞
}
; 1 ≤ p < ∞. (2.7)

With the notation of (1.3), we may redefine the space ar
p(Δ) by

ar
p(Δ) =

(
ar
p

)

Δ
. (2.8)

Define the sequence y = {yn(r)} which will be frequently used as the Br-transform of
a sequence x = (xk), that is,

yn(r) =
n−1∑

k=0

(1 − r)rk

1 + n
xk +

1 + rn

1 + n
xn, n ∈ N. (2.9)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1. The set ar
p(Δ) becomes the linear space with the coordinatewise addition and scalar

multiplication which is the BK-space with the norm

‖x‖arp(Δ) =
∥∥y
∥∥
�p
, (2.10)

where 1 ≤ p < ∞.

Proof. Since the proof is routine, we omit the details of the proof.

Theorem 2.2. The space ar
p(Δ) is linearly isomorphic to the space �p; that is, ar

p(Δ) ∼= �p, where
1 ≤ p < ∞.

Proof. It is enough to show the existence of a linear bijection between the spaces ar
p(Δ) and �p

for 1 ≤ p < ∞. Consider the transformation T defined, with the notation of (2.9), from ar
p(Δ)

to �p by x �→ y = Tx. The linearity of T is clear. Furthermore, it is trivial that x = θ whenever
Tx = θ, and hence, T is injective.

We assume that y ∈ �p for 1 ≤ p < ∞ and define the sequence x = (xk) by

xn(r) =
n∑

k=0

k∑

j=k−1
(−1)k−j 1 + j

1 + rk
yj ; k ∈ N. (2.11)

Then, since

(Δx)n =
n∑

j=n−1
(−1)n−j 1 + j

1 + rn
yj ; n ∈ N, (2.12)
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we get that

∑

n

∣∣∣∣∣∣
1

1 + n

n∑

k=0

(
1 + rk

) k∑

j=k−1
(−1)k−j 1 + j

1 + rk
yj

∣∣∣∣∣∣

p

=
∑

n

∣∣yn

∣∣p < ∞. (2.13)

Thus, we have that x ∈ ar
p(Δ). In addition, one can derive that

‖x‖arp(Δ) =

(
∑

n

∣∣∣∣∣
1

1 + n

n∑

k=0

(
1 + rk

)
(xk − xk−1)

∣∣∣∣∣

p)1/p

=

⎛

⎝
∑

n

∣∣∣∣∣∣
1

1 + n

n∑

k=0

(
1 + rk

) k∑

j=k−1
(−1)k−j 1 + j

1 + rk
yj

∣∣∣∣∣∣

p⎞

⎠
1/p

=
∥∥y
∥∥
�p

(2.14)

which means that T is surjective and is norm preserving. Hence, T is a linear bijection.

We wish to exhibit some inclusion relations concerning with the space ar
p(Δ).

Theorem 2.3. The inclusion bvp ⊂ ar
p(Δ) strictly holds for 1 < p < ∞.

Proof. To prove the validity of the inclusion bvp ⊂ ar
p(Δ) for 1 < p < ∞, it suffices to show the

existence of a number K > 0 such that ‖x‖arp(Δ) ≤ K‖x‖bvp
for every x ∈ bvp.

Let x ∈ bvp and 1 < p < ∞. Then, we obtain

∑

n

∣∣∣∣∣
1

1 + n

n∑

k=0

(
1 + rk

)
(xk − xk−1)

∣∣∣∣∣

p

≤
∑

n

[
2

n∑

k=0

|xk − xk−1|
1 + n

]p

< 2p
(

p

p − 1

)p∑

n

|xn − xn−1|p,
(2.15)

as expected,

‖x‖arp(Δ) ≤
(

2p
p − 1

)
‖x‖bvp

, (2.16)

for 1 < p < ∞.
Furthermore, let us consider the sequence x = {xn(r)} defined by

xn(r) =
n∑

k=0

(−1)n
1 + rk

, n ∈ N. (2.17)

Then, the sequence x is in ar
p(Δ) − bvp, as asserted.
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Lemma 2.4 (see [11, Theorem 2.4]). The inclusion �p ⊂ bvp strictly holds for 1 < p < ∞.

Combining Lemma 2.4 and Theorem 2.3, we get the following corollary.

Corollary 2.5. The inclusion �p ⊂ ar
p(Δ) strictly holds for 1 < p < ∞.

3. The Basis for the Space ar
p(Δ)

In the present section, we will give a sequence of the points of the space ar
p(Δ)which forms a

basis for the space ar
p(Δ), where 1 ≤ p < ∞.

Theorem 3.1. Define the matrix Br = {b(k)n (r)}n∈N
of elements of the space ar

p(Δ) for every fixed
k ∈ N by

b
(k)
n (r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + k

1 + rk
− 1 + k

1 + rk+1
, 0 ≤ k ≤ n − 1,

1 + n

1 + rn
, k = n,

0, k > n,

(3.1)

for every fixed k ∈ N. Then, the sequence {b(k)(r)}k∈N
is a basis for the space ar

p(Δ), and any x ∈
ar
p(Δ) has a unique representation of the form

x =
∑

k

λk(r)b(k)(r), (3.2)

where λk(r) = (Brx)k for all k ∈ N and 1 ≤ p < ∞.

Proof. It is clear that {b(k)(r)} ⊂ ar
p(Δ), since

Brb
(k)(r) = e(k) ∈ �p, k = 0, 1, 2, . . . , (3.3)

for 1 ≤ p < ∞; here, e(k) is the sequence whose only nonzero term is 1 in the kth place for each
k ∈ N. Let x ∈ ar

p(Δ) be given. For every nonnegative integerm, we set

x[m] =
m∑

k=0

λk(r)b(k)(r). (3.4)
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Then, by applying Br to (3.4), we obtain with (3.3) that

Brx
[m] =

m∑

k=0

λk(r)Brb
(k)(r) =

m∑

k=0

(Brx)ke
(k),

{
Br

(
x − x[m]

)}

i
=

⎧
⎨

⎩
0, 0 ≤ i ≤ m,

(Brx)i, i > m,

(3.5)

where i,m ∈ N. For a given ε > 0, there is an integer m0 such that

[ ∞∑

i=m
|(Brx)i|p

]1/p
<

ε

2
, (3.6)

for all m ≥ m0. Hence,

∥∥∥x − x[m]
∥∥∥
arp(Δ)

=

[ ∞∑

i=m
|(Brx)i|p

]1/p
≤
[ ∞∑

i=m0

|(Brx)i|p
]1/p

<
ε

2
< ε, (3.7)

for all m ≥ m0, which proves that x ∈ ar
p(Δ) is represented as in (3.2).

Let us show the uniqueness of representation for x ∈ ar
p(Δ) given by (3.2). Assume,

on the contrary, that there exists a representation x =
∑

k μk(r)b(k)(r). Since the linear
transformation T , from ar

p(Δ) to �p, used in Theorem 2.2 is continuous, at this stage, we have

(Brx)n =
∑

k

μk(r)
{
Brb

(k)(r)
}

n
=
∑

k

μk(r)e
(k)
n = μn(r); n ∈ N, (3.8)

which contradicts the fact that (Brx)n = λn(r) for all n ∈ N. Hence, the representation (3.2) of
x ∈ ar

p(Δ) is unique. This step concludes the proof.

4. The α-, β-, and γ-Duals of the Space ar
p(Δ)

In this section, we state and prove theorems determining the α-, β-, and γ-duals of the space
ar
p(Δ). Since the case p = 1 can be proved by the same analogy and can be found in the

literature, we omit the proof of that case and consider only the case 1 < p < ∞ in the proof of
Theorems 4.4–4.6.

For the sequence spaces λ and μ, define the set S(λ, μ) by

S
(
λ, μ
)
=
{
z = (zk) ∈ ω : xz = (xkzk) ∈ μ, ∀x ∈ λ

}
. (4.1)
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With the notation of (4.1), α-, β- and γ-duals of a sequence space λ, which are, respectively,
denoted by λα, λβ and λγ , are defined by

λα = S(λ, �1), λβ = S(λ, cs), λγ = S(λ, bs). (4.2)

It is well-known for the sequence spaces λ and μ that λα ⊆ λβ ⊆ λγ and λη ⊃ μη whenever
λ ⊂ μ, where η ∈ {α, β, γ}.

We begin with to quoting the lemmas due to Stieglitz and Tietz [15], which are needed
in the proof of the following theorems.

Lemma 4.1. A ∈ (�p : �1) if and only if

sup
K∈F

∑

k

∣∣∣∣∣
∑

n∈K
ank

∣∣∣∣∣

q

< ∞ (
1 < p ≤ ∞). (4.3)

Lemma 4.2. A ∈ (�p : c) if and only if

lim
n−→∞

ank exists for each k ∈ N, (4.4)

sup
n∈N

∑

k

|ank|q < ∞ 1 < p < ∞. (4.5)

Lemma 4.3. A ∈ (�p : �∞) if and only if (4.5) holds.

Theorem 4.4. Define the set ar
q by

ar
q =

{
a = (ak) ∈ ω : sup

K∈F

∑

k

∣∣∣∣∣
∑

n∈K
crnk

∣∣∣∣∣

q

< ∞
}
, (4.6)

where Cr = (crnk) is defined via the sequence a = (an) by

crnk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 + k

1 + rk
− 1 + k

1 + rk+1

)
an, 0 ≤ k ≤ n − 1,

1 + n

1 + rn
an, k = n,

0, k > n.

(4.7)

for all n, k ∈ N. Then, {ar
p(Δ)}α = ar

q, where 1 < p < ∞.

Proof. Bearing in mind the relation (2.9), we immediately derive that

anxn =
n∑

k=0

k∑

j=k−1
(−1)k−j 1 + j

1 + rk
anyj = (Cry)n, n ∈ N. (4.8)
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It follows from (4.8) that ax = (anxn) ∈ �1 whenever x ∈ ar
p(Δ) if and only if Cry ∈ �1

whenever y ∈ �p. This means that a = (an) ∈ {ar
p(Δ)}α if and only if Cr ∈ (�p : �1). Then, we

derive by Lemma 4.1 with Cr instead of A that

sup
K∈F

∑

k

∣∣∣∣∣
∑

n∈K
crnk

∣∣∣∣∣

q

< ∞. (4.9)

This yields the desired consequence that {ar
p(Δ)}α = ar

q.

Theorem 4.5. Define the sets ar
1, a

r
2, and ar

3 by

ar
1 =

{
a = (ak) ∈ ω : sup

n∈N

∑

k

∣∣ernk
∣∣q < ∞

}
,

ar
2 =

⎧
⎨

⎩a = (ak) ∈ ω :
∞∑

j=k

aj exists for each fixed k ∈ N

⎫
⎬

⎭,

ar
3 =
{
a = (ak) ∈ ω :

{
1 + n

1 + rn
an

}
∈ cs

}
,

(4.10)

where E = (er
nk
) is defined by

ernk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k + 1)

⎡

⎣ ak

1 + rk
+
(

1
1 + rk

− 1
1 + rk+1

) n∑

j=k+1

aj

⎤

⎦, 0 ≤ k ≤ n − 1,

1 + n

1 + rn
an, k = n,

0, k > n,

(4.11)

for all n, k ∈ N. Then, {ar
p(Δ)}β = ar

1 ∩ ar
2 ∩ ar

3, where 1 < p < ∞.

Proof. Consider the equation

n∑

k=0

akxk =
n∑

k=0

⎧
⎨

⎩

k∑

j=0

⎡

⎣
j∑

i=j−1
(−1)i−j 1 + i

1 + rj
yj

⎤

⎦

⎫
⎬

⎭ak

=
n−1∑

k=0

(k + 1)

⎡

⎣ ak

1 + rk
+
(

1
1 + rk

− 1
1 + rk+1

) n∑

j=k+1

aj

⎤

⎦yk

+
1 + n

1 + rn
anyn =

(
Ey
)
n n ∈ N.

(4.12)
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Thus, we deduce from Lemma 4.2 with (4.12) that ax = (akxk) ∈ cs whenever x = (xk) ∈
ar
p(Δ) if and only if Ey ∈ c whenever y = (yk) ∈ �p. That is to say that a = (ak) ∈ {ar

p(Δ)}β
if and only if E ∈ (�p : c). Therefore, we derive from (4.4) and (4.5) that {ar

p(Δ)}β = ar
1 ∩ ar

2 ∩
ar
3.

Theorem 4.6. {ar
p(Δ)}γ = ar

1, where 1 < p < ∞.

Proof. It is natural that the present theoremmay be proved by the same technique used in the
proof of Theorems 4.4 and 4.5, above. But, we prefer here the following classical way.

Let a = (ak) ∈ ar
1 and x = (xk) ∈ ar

p(Δ). Then, we obtain by applying Hölder’s
inequality that

∣∣∣∣∣

n∑

k=0

akxk

∣∣∣∣∣ =

∣∣∣∣∣∣

n∑

k=0

⎧
⎨

⎩

k∑

j=0

⎡

⎣
j∑

i=j−1
(−1)i−j 1 + i

1 + rj
yj

⎤

⎦

⎫
⎬

⎭ak

∣∣∣∣∣∣
=

∣∣∣∣∣

n∑

k=0

ernkyk

∣∣∣∣∣

≤
(

n∑

k=0

∣∣ernk
∣∣q
)1/q( n∑

k=0

∣∣yk

∣∣p
)1/p

,

(4.13)

which gives us by taking supremum over n ∈ N that

sup
n∈N

∣∣∣∣∣

n∑

k=0

akxk

∣∣∣∣∣ ≤ sup
n∈N

⎡

⎣
(

n∑

k=0

∣∣ernk
∣∣q
)1/q( n∑

k=0

∣∣yk

∣∣p
)1/p

⎤

⎦

≤ ∥∥y∥∥�p ·
(
sup
n∈N

n∑

k=0

∣∣ernk
∣∣q
)1/q

< ∞.

(4.14)

This means that a = (ak) ∈ {ar
p(Δ)}γ . Hence,

ar
1 ⊂
{
ar
p(Δ)

}γ
. (4.15)

Conversely, let a = (ak) ∈ {ar
p(Δ)}γ and x = (xk) ∈ ar

p(Δ). Then, one can easily see that
(
∑n

k=0 e
r
nkyk)n∈N

∈ �∞ whenever (akxk) ∈ bs. This shows that the triangle matrix E = (ernk),
defined by (4.11), is in the class (�p : �∞). Hence, the condition (4.5) holds with ernk instead of
ank which yields that a = (ak) ∈ ar

1. That is to say that

{
ar
p(Δ)

}γ ⊂ ar
1. (4.16)

Therefore, by combining the inclusions (4.15) and (4.16), we deduce that the γ-dual of the
space ar

p(Δ) is the set ar
1, and this step completes the proof.

5. Some Geometric Properties of the Space ar
p(Δ)

In this section, we study some geometric properties of the space ar
p(Δ).
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A Banach space X is said to have the Banach-Saks property if every bounded sequence
(xn) inX admits a subsequence (zn) such that the sequence {tk(z)} is convergent in the norm
in X [16], where

tk(z) =
1

k + 1
(z0 + z1 + · · · + zk) (k ∈ N). (5.1)

A Banach space X is said to have the weak Banach-Saks property whenever given any weakly
null sequence (xn) ⊂ X and there exists a subsequence (zn) of (xn) such that the sequence
{tk(z)} strongly convergent to zero.

In [17], Garcı́a-Falset introduce the following coefficient:

R(X) = sup
{
lim inf
n−→∞

‖xn − x‖ : (xn) ⊂ B(X), xn
ω−→ 0, x ∈ B(X)

}
, (5.2)

where B(X) denotes the unit ball of X.

Remark 5.1. A Banach space X with R(X) < 2 has the weak fixed point property, [18].

Let 1 < p < ∞. A Banach space is said to have the Banach-Saks type p or property (BS)p,
if every weakly null sequence (xk) has a subsequence (xkl) such that for some C > 0,

∥∥∥∥∥

n∑

l=0

xkl

∥∥∥∥∥ < C(n + 1)1/p, (5.3)

for all n ∈ N (see [19]).
Now, we may give the following results related to the some geometric properties,

mentioned above, of the space ar
p(Δ).

Theorem 5.2. The space ar
p(Δ) has the Banach-Saks type p.

Proof. Let (εn) be a sequence of positive numbers for which
∑

εn ≤ 1/2, and also let (xn) be a
weakly null sequence in B(ar

p(Δ)). Set b0 = x0 = 0 and b1 = xn1 = x1. Then, there existsm1 ∈ N

such that

∥∥∥∥∥

∞∑

i=m1+1

b1(i)e(i)
∥∥∥∥∥
arp(Δ)

< ε1. (5.4)

Since (xn) is a weakly null sequence implies xn → 0 coordinatewise, there is an n2 ∈ N such
that

∥∥∥∥∥

m1∑

i=0

xn(i)e(i)
∥∥∥∥∥
arp(Δ)

< ε1, (5.5)
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where n ≥ n2. Set b2 = xn2 . Then, there exists an m2 > m1 such that

∥∥∥∥∥

∞∑

i=m2+1

b2(i)e(i)
∥∥∥∥∥
arp(Δ)

< ε2. (5.6)

By using the fact that xn → 0 coordinatewise, there exists an n3 > n2 such that

∥∥∥∥∥

m2∑

i=0

xn(i)e(i)
∥∥∥∥∥
arp(Δ)

< ε2, (5.7)

where n ≥ n3.
If we continue this process, we can find two increasing subsequences (mi) and (ni)

such that

∥∥∥∥∥

mj∑

i=0

xn(i)e(i)
∥∥∥∥∥
arp(Δ)

< εj , (5.8)

for each n ≥ nj+1 and

∥∥∥∥∥∥

∞∑

i=mj+1

bj(i)e(i)

∥∥∥∥∥∥
arp(Δ)

< εj , (5.9)

where bj = xnj . Hence,

∥∥∥∥∥∥

n∑

j=0

bj

∥∥∥∥∥∥
arp(Δ)

=

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
mj−1∑

i=0

bj(i)e(i) +
mj∑

i=mj−1+1

bj(i)e(i) +
∞∑

i=mj+1

bj(i)e(i)
⎞

⎠

∥∥∥∥∥∥
arp(Δ)

≤
∥∥∥∥∥∥

n∑

j=0

(mj−1∑

i=0

bj(i)e(i)
)∥∥∥∥∥∥

arp(Δ)

+

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
mj∑

i=mj−1+1

bj(i)e(i)
⎞

⎠

∥∥∥∥∥∥
arp(Δ)

+

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
∞∑

i=mj+1

bj(i)e(i)
⎞

⎠

∥∥∥∥∥∥
arp(Δ)

≤
∥∥∥∥∥∥

n∑

j=0

⎛

⎝
mj∑

i=mj−1+1

bj(i)e(i)
⎞

⎠

∥∥∥∥∥∥
arp(Δ)

+ 2
n∑

j=0

εj .

(5.10)
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On the other hand, it can be seen that ‖xn‖arp(Δ) < 1. Therefore, ‖xn‖parp(Δ) < 1. We have

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
mj∑

i=mj−1+1

bj(i)e(i)
⎞

⎠

∥∥∥∥∥∥

p

arp(Δ)

=
n∑

j=0

mj∑

i=mj−1+1

∣∣∣∣∣

i−1∑

k=0

(1 − r)rk

1 + i
xj(k) +

1 + ri

1 + i
xi(k)

∣∣∣∣∣

p

≤
n∑

j=0

∞∑

i=0

∣∣∣∣∣

i−1∑

k=0

(1 − r)rk

1 + i
xj(k) +

1 + ri

1 + i
xi(k)

∣∣∣∣∣

p

≤ (n + 1).

(5.11)

Hence, we obtain

∥∥∥∥∥∥

n∑

j=0

⎛

⎝
mj∑

i=mj−1+1

bj(i)e(i)
⎞

⎠

∥∥∥∥∥∥
arp(Δ)

≤ (n + 1)1/p. (5.12)

By using the fact 1 ≤ (n + 1)1/p for all n ∈ N, we have

∥∥∥∥∥∥

n∑

j=0

bj

∥∥∥∥∥∥
arp(Δ)

≤ (n + 1)1/p + 1 ≤ 2(n + 1)1/p. (5.13)

Hence, ar
p(Δ) has the Banach-Saks type p. This completes the proof of the theorem.

Remark 5.3. Note that R(ar
p(Δ)) = R(�p) = 21/p, since ar

p(Δ) is linearly isomorphic to �p.

Hence, by the Remarks 5.1 and 5.3, we have the following.

Theorem 5.4. The space ar
p(Δ) has the weak fixed point property, where 1 < p < ∞.
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