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We define the notion of an approximate generalized higher derivation and investigate the
superstability of strong generalized higher derivations.

1. Introduction and Preliminaries

The problem of stability of functional equations was originally raised by Ulam [1, 2] in 1940
concerning the stability of group homomorphisms. Hyers [3] gave an affirmative answer to
the question of Ulam. Superstability, the result of Hyers, was generalized by Aoki [4], Bourgin
[5], and Rassias [6]. During the last decades, several stability problems for various functional
equations have been investigated by several authors. We refer the reader to the monographs
[7-10].

Let (E, | - ||) be a complex normed space, and let k € N. We denote by EF the linear
space E@--- & E consisting of k-tuples (x1, ..., xx), where x1, ..., xx € E. The linear operations
on E¥ are defined coordinatewise. The zero element of either E or EF is denoted by 0. We
denote by Ni the set {1,2,...,k} and by & the group of permutations on k symbols.

Definition 1.1. A multi-norm on {E* : k € N} is a sequence (|| - [|lx) = (|| - |lx : k € N) such that
| - Ik is @ norm on E* for each k € N, ||x||; = ||x|| for each x € E, and the following axioms are
satisfied for each k € N with k > 2:
(M1) [(xo), -+ Xo)D e = N1(x1, ..., x0)llx(0 € €k, X1, ..., xx € E);
(M2) [[(arx1, ..., anexic) |l < (maxien, |ail)[|(x1, - .., xi) | (r, - .. ak € C, x1,...,xx € E);
(M‘?’) ||(xl/- . /xk—llo)”k = ||(x1/ .o /xk—l)”k—l (x1, ..., Xk € E)/
(M4) |[(x1, - e X1, X)) e = 1 (xea, - oo xk=1) kg (21, - -0, xk € E).

In this case, we say that ((E¥, || - ||)k € N) is a multi-normed space.
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We recall that the notion of multi-normed space was introduced by Dales and
Polyakov in [11]. Motivations for the study of multi-normed spaces and many examples are
given in [11].

Suppose that ((EX, | - |lx)k € N) is a multi-normed space, and k € N. The following
properties are almost immediate consequences of the axioms:

@ 1.0l = lIxll (x € E);
(i) maxieny [|xill < [l(x1, -, 20 [l € Sy [l < k maxien, x| (x1, -, xk € E).
It follows from (ii) that if (E, || - ||) is a Banach space, then ((E¥, | - ||x) is a Banach space

for each k € N. In this case, ((E¥, || - ||x)k € N) is a multi-Banach space.
By (ii), we get the following lemma.

Lemma 1.2. Suppose that k € N and (x1,...,xx) € Ek. For each j € Ny, let {xf,}neN be a sequence
in E such that lim,_, ,x}, = x;j. Then for each (y1,...,Yx) € EX, one has

lim (x}l ~y1,...,xk —yk> =(x1-y1,..., XK — Yk)- (1.1)

n—oo

Definition 1.3. Let ((EX,| - |lx)k € N) be a multi-normed space. A sequence {x,} in E is a
multinull sequence if, for each € > 0, there exists ny € N such that

sup||(xXn, ..., Xnsk-1)|lx <€ (1> mnp). (1.2)
keN

Let x € E. We say that lim,, _, ,,x,, = x if {x,, — x} is a multi-null sequence.

Definition 1.4. Let (4, || - ||) be a normed algebra such that ((4*, || - [|x)k € N) is said to be a
multi-normed space. Then ((#%, || - |[x)k € N) is a multi-normed algebra if

| (erys - xeyi) e < MG x|l (s - i) s (1.3)

for k € Nand xi,...,xk,¥1,..., Yk € H4. Furthermore, if ((#%, || - [|x)k € N) is a multi-Banach
space, then ((#%, || - |lx)k € N) is a multi-Banach algebra.

Let o be an algebra and kp € {0,1,...,} U {oo}. A family {Dj};cio of linear mappings

on o is said to be a higher derivation of rank ko if the functional equation Dj(xy) =
?:0 D;(x)D;j-i(y) holds for all x,y € &, j = 0,1,2,...,ko. If Dy = idy, where id, is the
identity map on &, then D is a derivation and {D; };‘io is called a strong higher derivation.

A standard example of a higher derivation of rank k is {D//j! };,(‘__’0, where D : 4 — SHisa
derivation. The reader may find more information about higher derivations in [12-18].
A family { f; };.CUO of linear mappings on +f is called a generalized strong higher derivation

if fo = idy, and there exists a higher derivation {D; };.(20 such that
j
fi(xy) = xf;(y) + X.Di(x) fi-i(y), (1.4)
i=1

forallx,y e #and j=0,1,2,...,ko.
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The stability of derivations was studied by Park [19, 20]. In this paper, using some
ideas from [21, 22], we investigate the superstability of generalized strong higher derivations
in multi-Banach algebras.

2. Stability of Generalized Higher Derivations

In this section, we define the notion of an approximate generalized higher derivation. Then
we show that an approximate generalized strong higher derivation on a multi-Banach algebra
is a strong generalized higher derivation.

Lemma 2.1. Let (E, || - ||) be a normed space, and let ((F¥,|| - ||x : k € N) be a multi-Banach space.
Let k€N, e>0,and f : E — F amapping satisfying f(0) = 0 and

<f<x1:y1> _f(;cl) _f(tyl),,,.,f<xk:yk> _f(;ck) _f(]t/k)>

<eg, (2.1)
k

sup
keN

for all integer t > 1 and all x1,...,%k,y1,...,Yx € E, then there exists a unique additive mapping
T : E — F such that

[[(f(x1) =T(x1),..., f(xi) = T(xx))|| <€ (x1,...,xx €E). (2.2)

Proof. Substituting y; = 0 fori = 1,..., k and replacing x,...,xx by txq,...,tx; in (2.1), we
get

(Fe -2, -

sup
keN

<e. (2.3)
k

Replacing x, ..., xx by t"x1, ..., t"x; and dividing by t" in (2.3), it follows that

€

< —.
S

k

sup (2.4)

el m i+l s mn fn+l

<f(t"x1) W) fx)  f(E ) >

An induction argument implies that

sup
keN

(f(t"xl) Sy frx) f(t"+mxk)>

m fn+m st m pn+m

1 1
kge tn+1+“'t117m ; (25)

for x € E and n,m € N. Hence, the sequence { f(#"x)/t"} is cauchy and hence is convergent
in the complete multi-normed space F. Let T : E — F be the mapping defined by

T(x) = lim 2E2). (2.6)

n—ow "
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Hence, for each r > 0, there exists N € N such that

" tn+k—1
sup <ﬂ—nxl)—T(x),...,f(—klxk)—T(x)> <r(n2N). 2.7)
keN t e k
In particular, the property (ii) of multi-norm implies that
trl
lim ” f (tnx) - T(x)” -0 (x€E). (2.8)
We show that T is additive. Putting n = 0 in (2.5), we get
(t"x1) (t"x)
sup < Flxr) - ftTl i) - ft—m) (2.9)
keN k
Taking the limit as m — oo, we obtain
sup||(f(x1) = T(x1), ..., f(xx) = T(xx)) ||, <e. (2.10)
keN
Letx,y € E,putx; =+ = x¢ = t"x, y1 = --- = yj = t"y in (2.1), and divide by ", Then we
have
" t" " "
t—nf( X+ y)_t—lf( x)_t_lf( ]/) SE (211)
t tn tn B "
By letting n — oo, we get
T<x:y> = T(tx) " T(ty). (2.12)

Letting y = 0 in (2.12) yields T(x/t) = T(x)/t for all x € E. Hence, we get T(x + y) =
T(x) + T(y), that is, T is additive. Now, if T' is another required additive mapping, we see
that

1T - TG < 5 IT ) ~Ta)|

< 7@ - F) + 167 - T )| (2.13)

< 2 €
Tl(t-1)

for all x € E. By letting n — oo in this inequality, we conclude that T = T". This proves the
uniqueness assertion. O
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Definition 2.2. Let ((#%, ]| - |lx)k € N) be a multi-Banach algebra. Suppose that e > 0, t > 1 is
an integer and ¢ : o# x # — [0, 00) is a control function such that

g (t"x, t"y) < a" My (x,y), (2.14)

for some 0 < a < t, all nonnegative numbers m,n and all x,y € 4. An (¢, ¢p)-approximate
generalized strong higher derivation of rank ko is a family {f; };‘io of mappings from </ into
4 with f;(0) =0, fo = id4, and there exists a family {g; };{io of mappings from & into «# such
that gy = id4 and

252 o) 283
—gj(Zl)wL-u,fj(xk:kl +kak> (2.15)
—@ o (ty") - Zifj(e0r) - g]-(zk)wk> <e,
k

forall0<j<kgpt>landall xi,...,xk,Y1,..., Yk, 21, .-, Zk, W1, ..., Wk € H#,and

<¢(x,y), (2.16)

filxy) —xfi(y) - ;gi(x)fj—i (v)

forall0<j<kpand x,y € 4.

Theorem 2.3. Let o be a Banach algebra with unit e, and let { f; };‘20 be a (e, )-approximate gener-

alized strong higher derivation on a multi-Banach algebra (4%, |- |lx)k € N), then {fi };‘20 is a strong
higher derivation.

Proof. Letting z; = w; = 0 fori = 1,...,k in (2.15), Lemma 2.1 implies that for each 0 <
j < ko, there is an additive mapping d; defined by d;(x) = lim,_.(f;(t"x)/t") such that
ldj(x) = fj(x)|| < eforall x € 4. 1f j = 1, [21, Theorem 2.2] implies that f; and g are a
generalized derivation and a derivation, respectively. Also by the proof of [21, Theorem 2.2],
we have

g1(t"x)

flxy) =xfi(y) + 1@y, lim S = da(x) - xdi(e) = g1 (x). (2.17)

By induction for 1 <i < j -1, assume that

fi=xfi(y) + 2 a@fi(y), &= Dax)sg1(y), (2.18)
I=1 1=0
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for all x, y € & such that

gI(t x)

naoo

= di(x) — xdi(e) — > g1(x)di-i(e) = gi(x). (2.19)
=1

It follows from (2.14) and (2.16) that

om i am . (4n n n n
f,(tt xy) () z’:gl(ttnx) f”fﬁ y) H G ;;t Y) . (%)2 (2.20)

Passing the limit as n — oo, we obtain

gi(t"x) S
Jim 5 = ) s () - g (0 ), @21)
for all x,y € 4. Put y = e in the above equation, then
tn
lim & (t ) _ =dj(x) - xdj(e) - Zg,(x)d, i(e). (2.22)

If Dj(x) = dj(x) - xd;(e) - 31| gi(x)d;_i(e), then by additivity of d; and g; for 0 <i < j-1,
we get

Dj(a+b)=dj(a+b) - (a+b)dj(e) - igi(a +b)d;_i(e)

i=1

] J (2.23)
= dj(a) +d;(b) - ad;(e) - bdj(e) - > gi(a)dj-i(e) — D &i(b)d;i(e)
i=1 i=1

= D](a) + D](b)

Therefore, D; is additive. Now, let F(x y) = filxy) - xfi(y) - Zf 1 8i(x) fi-i(y), if we take

xi=yi=0and z; =x, w; =y fori=1,...,k in (2.15), then lim,, _, . (F (t"x, y) /") = 0. Hence,
(" (-
d;(xy) = lim f](tnxy) ~ lim fi( ;: Y)
 lim t”xf]- (y) + Z;:l gl(ﬂ;:)fjl(y) + F(tnx’ y) (2.24)

j-1
=xfi(y) + D.gi(x) fi-i(y) + Dj(x)y,
i=1
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forall x,y € 4. Since g1,..., -1, f1,---, fj-1 and D; are additive, we can write

j-1

t'xfi(y) + ;t"gi(x)fi—i(y) +1"Dj(x)y

=d;(t"x - y)

(2.25)
=dj(x - t"y)

j-1
= xfi(t"y) + D 1"&i(x) fi-i(y) + "Dj(x)y,
i=1

for all x,y € #. We conclude that xf;(y) = x(f;(t"y)/t"), so we can obtain xf;(y) = xd;(y),
forallx,y € #asn — oo.If x = e, we have f; = d;. Therefore,

j-1
filxy) = xfi(y) + >.8:(x) fi-i(y) + Dj(x)y, (2.26)
i=1

for all x, y € #. Now, we replace y by "y in (2.16), then

) fi-i(w) || < M < (%)" (2.27)

tn

fit'xy)  xfi(t"y)
j _ ]tn _; ai(

for all x,y € #. We conclude that xf;(y) = x(f;(t"y)/t"), so we can obtain xf;(y) = xd;(y),
forall x,y € #asn — oo.If x = e, we have f; = d;. Therefore,

j-1
fi(xy) =xfi(y) + > &) fi-i(y) + Dj(x)y, (2.28)
i=1

for all x, y € #. Now, we replace y by "y in (2.16), then

A A j Lt n
f](tnxy) 5 En ¥) > fi-i(y)| < M < (%) , (2.29)
i=1
forall x,y € 4. Letting n — oo, we get
j
d;(xy) = xd;(y) + 2.8 () f-i(y). (230)
i=1

Thus if y = e, we conclude that

j
dj(x) = xdj(e) + Y\&i(x) fi-i(e), (2.31)
i=1
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for all x € 4. Hence,
j-1
gj(x) = dj(x) - xd;(e) - > gi(x) fj-i(e) = Dj(x). (2.32)
i=1
But for all x, y € o4, we have

j-1
Dj(xy) = fi(xy) - xyfj(e) - ;gi (xy) fi-i(e)

j-1 7l
= xfi(y) + D& () fi-i(y) + Di(x)y - xyfi(e) - >, <Zgl(X)8i—l(3/)>ff—i(€)
i=1 =1

-1
= g1(x) <fj—1 (v) —yfi(e) - ;gl(y)fj—l(€)> ++ g (fi(y) —yfile)

j-1

= xDj(y) + Dj(x)y + > 8i(x)&-i(v),
i=1

(2.33)

and by (2.32), it follows that gj(xy) = D;(xy) = Z{:O 8i(x)gj-i(y); therefore {g;} is a
strong higher derivation. By (2.28), we can conclude that {f;} is a generalized strong higher
derivation. O

Remark 2.4. Recall that a control function is an operation that controls the recording or proc-
essing or transmission of interpretation of data. A typical example of the control function ¢
is ¢g(x, y) = ae(|[x||P + |y||7) + 6l x|["|ly||9, such thate,6 > 0and 0 < p, g < 1.

Corollary 2.5. Every (e, ¢)-approximate generalized derivation (regarded as an approximate general-
ized strong higher derivation of rank 1) on a multi-Banach algebra (A%, || - ||lx)k € N) is a derivation.

The following theorem generalizes Theorem 2.3. The arguments are similar to those in
the proof of [21, Theorem 2.3].

Theorem 2.6. Let 4 be a Banach algebra with unit e, and let { f; };‘20 be a family { f; };.(20 of mappings
from oA into A with f;(0) = 0 and fo = idy for which there exists a family { g]-};(io of mappings in
which gy = id 4 on 4 such that

<f]<ﬁx1 Yy lel> _ﬂfj(xl) _ij(tyl) oz fi(wn)

sup

keN t

- giz)w, ... f](ﬂ it W"+kak) (2.34)

_ﬂfj(txk) B ij(i/k) -z fj(wy) —8j(zk)wk>

<e
k

7




Abstract and Applied Analysis 9

forall 0<j<kot>1landall,y e T={ze€C:|z|=1}and

<¢(xy), (2.35)

£(ey) - xf () - Ejljgi(x)fj—i )

forall 0 < j < koand x,y € A, then {f; };‘OO is a strong higher derivation.
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