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We define the notion of an approximate generalized higher derivation and investigate the
superstability of strong generalized higher derivations.

1. Introduction and Preliminaries

The problem of stability of functional equations was originally raised by Ulam [1, 2] in 1940
concerning the stability of group homomorphisms. Hyers [3] gave an affirmative answer to
the question of Ulam. Superstability, the result of Hyers, was generalized byAoki [4], Bourgin
[5], and Rassias [6]. During the last decades, several stability problems for various functional
equations have been investigated by several authors. We refer the reader to the monographs
[7–10].

Let (E, ‖ · ‖) be a complex normed space, and let k ∈ N. We denote by Ek the linear
space E⊕ · · · ⊕E consisting of k-tuples (x1, . . . , xk), where x1, . . . , xk ∈ E. The linear operations
on Ek are defined coordinatewise. The zero element of either E or Ek is denoted by 0. We
denote by Nk the set {1, 2, . . . , k} and by Ck the group of permutations on k symbols.

Definition 1.1. A multi-norm on {Ek : k ∈ N} is a sequence (‖ · ‖k) = (‖ · ‖k : k ∈ N) such that
‖ · ‖k is a norm on Ek for each k ∈ N, ‖x‖1 = ‖x‖ for each x ∈ E, and the following axioms are
satisfied for each k ∈ N with k ≥ 2:

(M1) ‖(xσ(1), . . . , xσ(k))‖k = ‖(x1, . . . , xk)‖k(σ ∈ Ck, x1, . . . , xk ∈ E);
(M2) ‖(α1x1, . . . , αkxk)‖k ≤ (maxi∈Nk |αi|)‖(x1, . . . , xk)‖k(α1, . . . , αk ∈ C, x1, . . . , xk ∈ E);
(M3) ‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1 (x1, . . . , xk ∈ E);
(M4) ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1 (x1, . . . , xk ∈ E).

In this case, we say that ((Ek, ‖ · ‖)k ∈ N) is a multi-normed space.
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We recall that the notion of multi-normed space was introduced by Dales and
Polyakov in [11]. Motivations for the study of multi-normed spaces and many examples are
given in [11].

Suppose that ((Ek, ‖ · ‖k)k ∈ N) is a multi-normed space, and k ∈ N. The following
properties are almost immediate consequences of the axioms:

(i) ‖(x, . . . , x)‖k = ‖x‖ (x ∈ E);
(ii) maxi∈Nk‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤ ∑k

i=1 ‖xi‖ ≤ k maxi∈Nk‖xi‖ (x1, . . . , xk ∈ E).
It follows from (ii) that if (E, ‖ · ‖) is a Banach space, then ((Ek, ‖ · ‖k) is a Banach space

for each k ∈ N. In this case, ((Ek, ‖ · ‖k)k ∈ N) is a multi-Banach space.
By (ii), we get the following lemma.

Lemma 1.2. Suppose that k ∈ N and (x1, . . . , xk) ∈ Ek. For each j ∈ Nk, let {xjn}n∈N
be a sequence

in E such that limn→∞x
j
n = xj . Then for each (y1, . . . , yk) ∈ Ek, one has

lim
n→∞

(
x1
n − y1, . . . , xkn − yk

)
=
(
x1 − y1, . . . , xk − yk

)
. (1.1)

Definition 1.3. Let ((Ek, ‖ · ‖k)k ∈ N) be a multi-normed space. A sequence {xn} in E is a
multinull sequence if, for each ε > 0, there exists n0 ∈ N such that

sup
k∈N

‖(xn, . . . , xn+k−1)‖k < ε (n ≥ n0). (1.2)

Let x ∈ E. We say that limn→∞xn = x if {xn − x} is a multi-null sequence.

Definition 1.4. Let (A, ‖ · ‖) be a normed algebra such that ((Ak, ‖ · ‖k)k ∈ N) is said to be a
multi-normed space. Then ((Ak, ‖ · ‖k)k ∈ N) is a multi-normed algebra if

∥
∥
(
x1y1, . . . , xkyk

)∥
∥
k ≤ ‖(x1, . . . , xk)‖k

∥
∥
(
y1, . . . , yk

)∥
∥
k, (1.3)

for k ∈ N and x1, . . . , xk, y1, . . . , yk ∈ A. Furthermore, if ((Ak, ‖ · ‖k)k ∈ N) is a multi-Banach
space, then ((Ak, ‖ · ‖k)k ∈ N) is a multi-Banach algebra.

Let A be an algebra and k0 ∈ {0, 1, . . . , } ∪ {∞}. A family {Dj}k0j=0 of linear mappings
on A is said to be a higher derivation of rank k0 if the functional equation Dj(xy) =
∑j

i=0Di(x)Dj−i(y) holds for all x, y ∈ A, j = 0, 1, 2, . . . , k0. If D0 = idA, where idA is the
identity map on A, then D1 is a derivation and {Dj}k0j=0 is called a strong higher derivation.

A standard example of a higher derivation of rank k0 is {Dj/j!}k0j=0, where D : A → A is a
derivation. The reader may find more information about higher derivations in [12–18].

A family {fj}k0j=0 of linearmappings onA is called a generalized strong higher derivation

if f0 = idA, and there exists a higher derivation {Dj}k0j=0 such that

fj
(
xy

)
= xfj

(
y
)
+

j∑

i=1

Di(x)fj−i
(
y
)
, (1.4)

for all x, y ∈ A and j = 0, 1, 2, . . . , k0.
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The stability of derivations was studied by Park [19, 20]. In this paper, using some
ideas from [21, 22], we investigate the superstability of generalized strong higher derivations
in multi-Banach algebras.

2. Stability of Generalized Higher Derivations

In this section, we define the notion of an approximate generalized higher derivation. Then
we show that an approximate generalized strong higher derivation on amulti-Banach algebra
is a strong generalized higher derivation.

Lemma 2.1. Let (E, ‖ · ‖) be a normed space, and let ((Fk, ‖ · ‖k : k ∈ N) be a multi-Banach space.
Let k ∈ N, ε > 0, and f : E → F a mapping satisfying f(0) = 0 and

sup
k∈N

∥
∥
∥
∥
∥

(

f

(
x1 + y1

t

)

− f(x1)
t

− f
(
y1
)

t
, . . . , f

(
xk + yk

t

)

− f(xk)
t

− f
(
yk

)

t

)∥
∥
∥
∥
∥
k

≤ ε, (2.1)

for all integer t > 1 and all x1, . . . , xk, y1, . . . , yk ∈ E, then there exists a unique additive mapping
T : E → F such that

∥
∥
(
f(x1) − T(x1), . . . , f(xk) − T(xk)

)∥
∥ ≤ ε (x1, . . . , xk ∈ E). (2.2)

Proof. Substituting yi = 0 for i = 1, . . . , k and replacing x1, . . . , xk by tx1, . . . , txk in (2.1), we
get

sup
k∈N

∥
∥
∥
∥

(

f(x1) −
f(tx1)
t

, . . . , f(xk) −
f(txk)
t

)∥
∥
∥
∥
k

≤ ε. (2.3)

Replacing x1, . . . , xk by tnx1, . . . , tnxk and dividing by tn in (2.3), it follows that

sup
k∈N

∥
∥
∥
∥
∥

(
f(tnx1)
tn

− f
(
tn+1x1

)

tn+1
, . . . ,

f(tnxk)
tn

− f
(
tn+1xk

)

tn+1

)∥
∥
∥
∥
∥
k

≤ ε

tn
. (2.4)

An induction argument implies that

sup
k∈N

∥
∥
∥
∥

(
f(tnx1)
tn

− f(tn+mx1)
tn+m

, . . . ,
f(tnxk)
tn

− f(tn+mxk)
tn+m

)∥
∥
∥
∥
k

≤ ε
(

1
tn+1

+ · · · 1
tn+m

)

, (2.5)

for x ∈ E and n,m ∈ N. Hence, the sequence {f(tnx)/tn} is cauchy and hence is convergent
in the complete multi-normed space F. Let T : E → F be the mapping defined by

T(x) := lim
n→∞

f(tnx)
tn

. (2.6)
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Hence, for each r > 0, there existsN ∈ N such that

sup
k∈N

∥
∥
∥
∥
∥

(
f(tnx1)
tn

− T(x), . . . , f
(
tn+k−1xk

)

tn+k−1
− T(x)

)∥
∥
∥
∥
∥
k

≤ r (n ≥N). (2.7)

In particular, the property (ii) of multi-norm implies that

lim
n→∞

∥
∥
∥
∥
f(tnx)
tn

− T(x)
∥
∥
∥
∥ = 0 (x ∈ E). (2.8)

We show that T is additive. Putting n = 0 in (2.5), we get

sup
k∈N

∥
∥
∥
∥

(

f(x1) −
f(tmx1)
tm

, . . . , f(xk) −
f(tmxk)
tm

)∥
∥
∥
∥
k

≤ ε. (2.9)

Taking the limit asm → ∞, we obtain

sup
k∈N

∥
∥
(
f(x1) − T(x1), . . . , f(xk) − T(xk)

)∥
∥
k ≤ ε. (2.10)

Let x, y ∈ E, put x1 = · · · = xk = tnx, y1 = · · · = yk = tny in (2.1), and divide by tn, Then we
have

∥
∥
∥
∥
∥
t−nf

(
tnx + tny

t

)

− t−1 f(t
nx)
tn

− t−1 f
(
tny

)

tn

∥
∥
∥
∥
∥
k

≤ ε

tn
. (2.11)

By letting n → ∞, we get

T

(
x + y
t

)

=
T(x)
t

+
T
(
y
)

t
. (2.12)

Letting y = 0 in (2.12) yields T(x/t) = T(x)/t for all x ∈ E. Hence, we get T(x + y) =
T(x) + T(y), that is, T is additive. Now, if T ′ is another required additive mapping, we see
that

∥
∥T ′(x) − T(x)∥∥ ≤ 1

tn
∥
∥T ′(tnx ) − T(tnx)∥∥

≤ 1
tn
∥
∥T ′(tnx) − f(tnx)∥∥ +

1
tn
∥
∥f(tnx) − T(tnx)∥∥

≤ 2
tn−1(t − 1)

ε,

(2.13)

for all x ∈ E. By letting n → ∞ in this inequality, we conclude that T = T ′. This proves the
uniqueness assertion.
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Definition 2.2. Let ((Ak, ‖ · ‖k)k ∈ N) be a multi-Banach algebra. Suppose that ε > 0, t > 1 is
an integer and ψ : A ×A → [0,∞) is a control function such that

ψ
(
tnx, tmy

) ≤ αn+mψ(x, y), (2.14)

for some 0 < α < t, all nonnegative numbers m,n and all x, y ∈ A. An (ε, ψ)-approximate
generalized strong higher derivation of rank k0 is a family {fj}k0j=0 of mappings from A into

A with fj(0) = 0, f0 = idA, and there exists a family {gj}k0j=0 of mappings from A into A such
that g0 = idA and

sup
k∈N

∥
∥
∥
∥
∥

(

fj

(
x1 + y1

t
+ z1w1

)

− fj(x1)
t

− fj
(
y1
)

t
− z1fj(w1)

−gj(z1)w1, . . . , fj

(
xk + k1

t
+ zkwk

)

−fj(xk)
t

− fj
(
yk

)

t
− zkfj(wk) − gj(zk)wk

)∥
∥
∥
∥
∥
k

≤ ε,

(2.15)

for all 0 ≤ j ≤ k0, t > 1 and all x1, . . . , xk, y1, . . . , yk, z1, . . . , zk,w1, . . . , wk ∈ A, and

∥
∥
∥
∥
∥
fj
(
xy

) − xfj
(
y
) −

j∑

i=1

gi(x)fj−i
(
y
)
∥
∥
∥
∥
∥
≤ ψ(x, y), (2.16)

for all 0 ≤ j ≤ k0 and x, y ∈ A.

Theorem 2.3. Let A be a Banach algebra with unit e, and let {fj}k0j=0 be a (ε, ψ)-approximate gener-

alized strong higher derivation on a multi-Banach algebra ((Ak, ‖ · ‖k)k ∈ N), then {fj}k0j=0 is a strong
higher derivation.

Proof. Letting zi = wi = 0 for i = 1, . . . , k in (2.15), Lemma 2.1 implies that for each 0 ≤
j ≤ k0, there is an additive mapping dj defined by dj(x) = limn→∞(fj(tnx)/tn) such that
‖dj(x) − fj(x)‖ ≤ ε for all x ∈ A. If j = 1, [21, Theorem 2.2] implies that f1 and g1 are a
generalized derivation and a derivation, respectively. Also by the proof of [21, Theorem 2.2],
we have

f1
(
xy

)
= xf1

(
y
)
+ g1(x)y, lim

n→∞
g1(tnx)
tn

= d1(x) − xd1(e) = g1(x). (2.17)

By induction for 1 ≤ i ≤ j − 1, assume that

fi = xfi
(
y
)
+

i∑

l=1

gl(x)fi−l
(
y
)
, gi =

i∑

l=0

gl(x)gi−l
(
y
)
, (2.18)
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for all x, y ∈ A such that

lim
n→∞

gi(tnx)
tn

= di(x) − xdi(e) −
i∑

l=1

gl(x)di−l(e) = gi(x). (2.19)

It follows from (2.14) and (2.16) that

∥
∥
∥
∥
∥

fj
(
t2nxy

)

t2n
− xfj

(
tny

) −
j∑

i=1

gi(tnx)
tn

fj−i
(
tny

)

tn

∥
∥
∥
∥
∥
≤ ψ

(
tnx, tny

)

t2n
≤
(α

t

)2n
. (2.20)

Passing the limit as n → ∞, we obtain

lim
n→∞

y
gj(tnx)
tn

= dj
(
xy

) − xdj
(
y
) −

j−1∑

i=1

gi(x)dj−i
(
y
)
, (2.21)

for all x, y ∈ A. Put y = e in the above equation, then

lim
n→∞

gj(tnx)
tn

= dj(x) − xdj(e) −
j−1∑

i=1

gi(x)dj−i(e). (2.22)

If Dj(x) = dj(x) − xdj(e) −
∑j−1

i=1 gi(x)dj−i(e), then by additivity of di and gi for 0 ≤ i ≤ j − 1,
we get

Dj(a + b) = dj(a + b) − (a + b)dj(e) −
j∑

i=1

gi(a + b)dj−i(e)

= dj(a) + dj(b) − adj(e) − bdj(e) −
j∑

i=1

gi(a)dj−i(e) −
j∑

i=1

gi(b)dj−i(e)

= Dj(a) +Dj(b).

(2.23)

Therefore, Dj is additive. Now, let F(x, y) = fj(xy) − xfj(y) −
∑j

i=1 gi(x)fj−i(y), if we take
xi = yi = 0 and zi = x, wi = y for i = 1, . . . , k in (2.15), then limn→∞(F(tnx, y)/tn) = 0. Hence,

dj
(
xy

)
= lim

n→∞
fj
(
tnxy

)

tn
= lim

n→∞
fj
(
tnx · y)

tn

= lim
n→∞

tnxfj
(
y
)
+
∑j

i=1 gi(t
nx)fj−i

(
y
)
+ F

(
tnx, y

)

tn

= xfj
(
y
)
+

j−1∑

i=1

gi(x)fj−i
(
y
)
+Dj(x)y,

(2.24)
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for all x, y ∈ A. Since g1, . . . , gj−1, f1, . . . , fj−1 and Dj are additive, we can write

tnxfj
(
y
)
+

j−1∑

i=1

tngi(x)fj−i
(
y
)
+ tnDj(x)y

= dj
(
tnx · y)

= dj
(
x · tny)

= xfj
(
tny

)
+

j−1∑

i=1

tngi(x)fj−i
(
y
)
+ tnDj(x)y,

(2.25)

for all x, y ∈ A. We conclude that xfj(y) = x(fj(tny)/tn), so we can obtain xfj(y) = xdj(y),
for all x, y ∈ A as n → ∞. If x = e, we have fj = dj . Therefore,

fj
(
xy

)
= xfj

(
y
)
+

j−1∑

i=1

gi(x)fj−i
(
y
)
+Dj(x)y, (2.26)

for all x, y ∈ A. Now, we replace y by tny in (2.16), then

∥
∥
∥
∥
∥

fj
(
tnxy

)

tn
− xfj

(
tny

)

tn
−

j∑

i=1

gi(x)fj−i
(
y
)
∥
∥
∥
∥
∥
≤ ψ

(
x, tny

)

tn
≤
(α

t

)n
, (2.27)

for all x, y ∈ A. We conclude that xfj(y) = x(fj(tny)/tn), so we can obtain xfj(y) = xdj(y),
for all x, y ∈ A as n → ∞. If x = e, we have fj = dj . Therefore,

fj
(
xy

)
= xfj

(
y
)
+

j−1∑

i=1

gi(x)fj−i
(
y
)
+Dj(x)y, (2.28)

for all x, y ∈ A. Now, we replace y by tny in (2.16), then

∥
∥
∥
∥
∥

fj
(
tnxy

)

tn
− xfj

(
tny

)

tn
−

j∑

i=1

gi(x)fj−i
(
y
)
∥
∥
∥
∥
∥
≤ ψ

(
x, tny

)

tn
≤
(α

t

)n
, (2.29)

for all x, y ∈ A. Letting n → ∞, we get

dj
(
xy

)
= xdj

(
y
)
+

j∑

i=1

gi(x)fj−i
(
y
)
. (2.30)

Thus if y = e, we conclude that

dj(x) = xdj(e) +
j∑

i=1

gi(x)fj−i(e), (2.31)
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for all x ∈ A. Hence,

gj(x) = dj(x) − xdj(e) −
j−1∑

i=1

gi(x)fj−i(e) = Dj(x). (2.32)

But for all x, y ∈ A, we have

Dj

(
xy

)
= fj

(
xy

) − xyfj(e) −
j−1∑

i=1

gi
(
xy

)
fj−i(e)

= xfj
(
y
)
+

j−1∑

i=1

gi(x)fj−i
(
y
)
+Dj(x)y − xyfj(e) −

j−1∑

i=1

(
i∑

l=1

gl(x)gi−l
(
y
)
)

fj−i(e)

= g1(x)

(

fj−1
(
y
) − yfj−1(e) −

j−1∑

l=1

gl
(
y
)
fj−l(e)

)

+ · · · + gj−1
(
f1
(
y
) − yf1(e)

)

= xDj

(
y
)
+Dj(x)y +

j−1∑

i=1

gi(x)gj−i
(
y
)
,

(2.33)

and by (2.32), it follows that gj(xy) = Dj(xy) =
∑j

i=0 gi(x)gj−i(y); therefore {gj} is a
strong higher derivation. By (2.28), we can conclude that {fj} is a generalized strong higher
derivation.

Remark 2.4. Recall that a control function is an operation that controls the recording or proc-
essing or transmission of interpretation of data. A typical example of the control function ψ
is ψ(x, y) = αε(‖x‖p + ‖y‖q) + δ‖x‖p‖y‖q, such that ε, δ ≥ 0 and 0 ≤ p, q < 1.

Corollary 2.5. Every (ε, ψ)-approximate generalized derivation (regarded as an approximate general-
ized strong higher derivation of rank 1) on a multi-Banach algebra ((Ak, ‖ · ‖k)k ∈ N) is a derivation.

The following theorem generalizes Theorem 2.3. The arguments are similar to those in
the proof of [21, Theorem 2.3].

Theorem 2.6. LetA be a Banach algebra with unit e, and let {fj}k0j=0 be a family {fj}k0j=0 of mappings

from A into A with fj(0) = 0 and f0 = idA for which there exists a family {gj}k0j=0 of mappings in
which g0 = idA onA such that

sup
k∈N

∥
∥
∥
∥
∥

(

fj

(
βx1 + γy1

t
+ z1w1

)

− βfj(x1)
t

− γ fj
(
y1
)

t
− z1fj(w1)

− gj(z1)w1, . . . , fj

(
βxk + γyk

t
+ zkwk

)

−βfj(xk)
t

− γ fj
(
yk

)

t
− zkfj(wk) − gj(zk)wk

)∥
∥
∥
∥
∥
k

≤ ε,

(2.34)
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for all 0 ≤ j ≤ k0, t > 1 and all β, γ ∈ T = {z ∈ C : |z| = 1} and
∥
∥
∥
∥
∥
fj
(
xy

) − xfj
(
y
) −

j∑

i=1

gi(x)fj−i
(
y
)
∥
∥
∥
∥
∥
≤ ψ(x, y), (2.35)

for all 0 ≤ j ≤ k0 and x, y ∈ A, then {fj}k0j=0 is a strong higher derivation.
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