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Theorems on the unique solvability and nonnegativity of solutions to the characteristic initial value
problem u(1,1)(t, x) = �0(u)(t, x) + �1(u

(1,0))(t, x) + �2(u
(0,1))(t, x) + q(t, x), u(t, c) = α(t) for t ∈

[a, b], u(a, x) = β(x) for x ∈ [c, d] given on the rectangle [a, b] × [c, d] are established, where
the linear operators �0, �1, �2 map suitable function spaces into the space of essentially bounded
functions. General results are applied to the hyperbolic equations with essentially bounded
coefficients and argument deviations.

1. Introduction

On the rectangle D = [a, b] × [c, d], we consider the linear partial functional-differential
equation

u(1,1)(t, x) = �0(u)(t, x) + �1
(
u(1,0)

)
(t, x) + �2

(
u(0,1)

)
(t, x) + q(t, x), (1.1)

where u(1,0) and u(0,1) (resp., u(1,1)) denote the first-order (resp., the second-order mixed)
partial derivatives. The operators �0, �1, and �2 are supposed to be linear and acting from
suitable function spaces (see Section 3) to the space of Lebesgue measurable and essentially
bounded functions. By a solution to (1.1), we mean a function u : D → R absolutely
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continuous in the sense of Carathéodory possessing some additional properties (namely,
inclusions (2.20)) which satisfies equality (1.1) almost everywhere on D.

Three main initial value problems for the hyperbolic equations are studied in the
literature—Darboux, Cauchy, and Goursat problems. In this paper, we consider the Darboux
problem in which case the values of a solution u to (1.1) are prescribed on both characteristics
t = a and x = c, that is, the initial conditions are

u(t, c) = α(t) for t ∈ [a, b], u(a, x) = β(x) for x ∈ [c, d]. (1.2)

Properties of the initial functions α and βwill be specified in Section 3. It is worth to remember
here that various initial and boundary value problems for the hyperbolic equation

utx = f(t, x, u, ut, ux) (1.3)

with continuous as well as discontinuous right-hand sides but without argument deviations
have been studied in detail (see, e.g., [1–13] and references therein). As for the hyperbolic
functional-differential equations, we can mention for example the works [14–16] (see also
references cited therein) but, as far as the authors know, there is still a broad field for further
investigation. We have made the first steps in the papers [17, 18]where the Darboux problem
for (1.1) with �1 = 0 and �2 = 0 is considered.

2. Notation and Definitions

The following notation is used throughout the paper.

(i) N, Q, and R are the sets of all natural, rational, and real numbers, respectively, R+ =
[0,+∞[.

(ii) D = [a, b] × [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.

(iii) The first-order partial derivatives of the function u : D → R at the point (t, x) ∈ D
are denoted by u(1,0)(t, x) (or ut(t, x)) and u(0,1)(t, x) (or ux(t, x)). The second-order
mixed partial derivatives of the function u : D → R at the point (t, x) ∈ D are
denoted by utx(t, x) and uxt(t, x)whereas we use u(1,1)(t, x) if utx(t, x) = uxt(t, x).

(iv) C(D;R) is the Banach space of continuous functions u : D → R equipped with the
norm

‖u‖C = max{|u(t, x)| : (t, x) ∈ D}. (2.1)

(v) C([α, β];R), where −∞ < α < β < +∞, is the linear space of continuous functions
v : [α, β] → R.

(vi) AC([α, β];R), where −∞ < α < β < +∞, is the linear space of absolutely continuous
functions v : [α, β] → R.
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(vii) L∞(D;R) is the Banach space of Lebesgue measurable and essentially bounded
functions p : D → R equipped with the norm

∥∥p∥∥L∞ = ess sup
{∣∣p(t, x)∣∣ : (t, x) ∈ D}

. (2.2)

(viii) L∞(D;R+) = {p ∈ L∞(D;R) : p(t, x) ≥ 0 for a.e. (t, x) ∈ D}.

(ix) For any z1, z2 ∈ L∞(D;R), we put

z2 ≥ z1 ⇐⇒ z2(t, x) − z1(t, x) ≥ 0 for a.e. (t, x) ∈ D,

z2 	 z1 ⇐⇒ z2(t, x) − z1(t, x) ≥ ε for a.e. (t, x) ∈ D with some ε > 0.
(2.3)

(x) L∞([α, β];R), where −∞ < α < β < +∞, is the linear space of Lebesgue measurable
and essentially bounded functions f : [α, β] → R.

(xi) measA denotes the Lebesgue measure of the set A ⊂ Rm, m = 1, 2.

(xii) If X, Y are Banach spaces and T : X → Y is a linear bounded operator then ‖T‖
denotes the norm of the operator T , that is,

‖T‖ = sup{‖T(z)‖Y : z ∈ X, ‖z‖X ≤ 1}. (2.4)

Two subsections below contain a number of definitions used in the sequel.

2.1. Spaces Z[1](D;R), Z[2](D;R), and Set C∗(D;R)

Motivated by [19, Section 2], the authors introduce the following assertions and definitions.

Lemma 2.1 (see [19, Section 1, Lemma 1]). Let the function u : D → R be such that

u(·, x) : [a, b] −→ R is continuous for a.e. x ∈ [c, d] ,

u(t, ·) : [c, d] −→ R is measurable for all t ∈ [a, b].
(2.5)

Then the function max{|u(t, ·)| : t ∈ [a, b]} : [c, d] → R is measurable.

Notation 1. Z[1](D;R) denotes the linear space of all functions u : D → R satisfying condi-
tions (2.5), and

ess sup{max{|u(t, x)| : t ∈ [a, b]} : x ∈ [c, d]} < +∞. (2.6)
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If one identifies functions u1, u2 from Z[1](D;R) such that u1(·, x) ≡ u2(·, x) for a.e. x ∈ [c, d]
then

‖u‖Z[1]
= ess sup{max{|u(t, x)| : t ∈ [a, b]} : x ∈ [c, d]} (2.7)

defines a norm in the space Z[1](D;R).
Analogously, we introduce the space Z[2](D;R) of functions which are “measurable in

the first variable and continuous in the second one” and define the norm ‖ · ‖Z[2] there.

The proof of the following proposition is similar to those presented in [19, Section 2,
Lemma 1]. For the sake of completeness we prove the proposition here in detail.

Proposition 2.2. Z[1](D;R) and Z[2](D;R) are Banach spaces.

Proof. We only prove the assertion for the space Z[1](D;R), the assertion of the lemma
concerning the space Z[2](D;R) can be proven analogously by exchanging the roles of the
variables t and x.

Let {uk}+∞k=1 be an arbitrary Cauchy sequence in Z[1](D;R). For a decreasing sequence
of positive numbers {εi}+∞i=1 with

∑+∞
i=1 εi < +∞ there exists an increasing sequence {ki}+∞i=1 such

that

ess sup{max{|un(t, x) − uk(t, x)| : t ∈ [a, b]} : x ∈ [c, d]} < εi, (2.8)

for every n, k ≥ ki, i ∈ N. Let vi = uki (i = 1, 2, . . .). Then, for any i ∈ N, there is a set Ei ⊆ [c, d],
measEi = d − c, such that

max{|vi+1(t, x) − vi(t, x)| : t ∈ [a, b]} < εi for x ∈ Ei, i ∈ N. (2.9)

Put E = ∩+∞
i=1Ei. Then, clearly, we have measE = d − c and

max{|vn(t, x) − vk(t, x)| : t ∈ [a, b]}

≤
n−1∑
m=k

max{|vm+1(t, x) − vm(t, x)| : t ∈ [a, b]}

≤
+∞∑
m=k

εm for x ∈ E, n > k.

(2.10)

Consequently, for any fixed x ∈ E, the sequence {vi(·, x)}+∞i=1 converges uniformly on [a, b],
say to u(·, x). Hence, {vi(t, ·)}+∞i=1 converges point-wise on E to u(t, ·) for every fixed t ∈ [a, b].
Therefore, the function u satisfies conditions (2.5). Since

uk(t, x) − u(t, x) = uk(t, x) − uki(t, x) + lim
n→+∞

[vi(t, x) − vn(t, x)]

= uk(t, x) − uki(t, x) + lim
n→+∞

n−1∑
m=i

[vm(t, x) − vm+1(t, x)]
(2.11)
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holds for i, k ∈ N, all t ∈ [a, b] and a.e. x ∈ [c, d], in view of (2.8) and (2.9), we obtain

‖uk − u‖Z[1]
≤ εi +

+∞∑
m=i

εm for k ≥ ki, i ∈ N. (2.12)

Hence, u ∈ Z[1](D;R) and un → u in Z[1](D;R), that is, the space Z[1](D;R) is complete.

For the investigation of hyperbolic differential equations with discontinuous right-
hand side, the concept of a Carathéodory solution is usually used (see, e.g., [7, 10, 20, 21]),
that is, solutions are considered in the class of absolutely continuous functions. One possible
definition of absolute continuity of functions of two variables was given by Carathéodory in
his monograph [22]. It is also known that such functions admit a certain integral representa-
tion. Following the concept mentioned, we introduce the following.

Notation 2. C∗(D;R) stands for the set of functions u : D → R admitting the integral repre-
sentation

u(t, x) = z +
∫ t

a

f(s)ds +
∫x

c

g
(
η
)
dη +

∫ t

a

∫x

c

h
(
s, η

)
dηds for (t, x) ∈ D, (2.13)

where z ∈ R, f ∈ L∞([a, b];R), g ∈ L∞([c, d];R), and h ∈ L∞(D;R).

The next lemma on differentiating of an indefinite double integral plays a crucial role
in our investigation.

Lemma 2.3 (see [23, Proposition 3.5]). Let h : D → R be a Lebesgue integrable function and

v(t, x) =
∫ t

a

∫x

c

h
(
s, η

)
dηds for (t, x) ∈ D. (2.14)

Then

(1) there exists a set E ⊆ [a, b] such that meas E = b − a and

v(1,0)(t, x) =
∫x

c

h
(
t, η

)
dη for t ∈ E, x ∈ [c, d], (2.15)

(2) there exists a set F ⊆ [c, d] such that measF = d − c and

v(0,1)(t, x) =
∫ t

a

h(s, x)ds for t ∈ [a, b] and x ∈ F, (2.16)

(3) there exists a set G ⊆ D such thatmeasG = (b − a)(d − c) and

v(1,1)(t, x) = h(t, x) for (t, x) ∈ G. (2.17)
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Remark 2.4. If u ∈ C∗(D;R), that is, the function u admits integral representation (2.13), then
by using Lemma 2.3 we get

u(1,0)(t, x) = f(t) +
∫x

c

h
(
t, η

)
dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

u(0,1)(t, x) = g(x) +
∫ t

a

h(s, x)ds for all t ∈ [a, b] and a.e. x ∈ [c, d],

u(1,1)(t, x) = h(t, x) for a.e. (t, x) ∈ D.

(2.18)

Consequently, for any u ∈ C∗(D;R), we have

u(1,0) ∈ Z[2](D;R), u(0,1) ∈ Z[1](D;R), u(1,1) ∈ L∞(D;R). (2.19)

Remark 2.5. It follows from Remark 2.4 and [22, Satz 1, page 654] that u ∈ C∗(D;R) if and
only if u : D → R is absolutely continuous in the sense of Carathéodory with the properties

u(1,0)(·, c) ∈ L∞([a, b];R), u(0,1)(a, ·) ∈ L∞([c, d];R), u(1,1) ∈ L∞(D;R). (2.20)

2.2. Positive and Volterra-Type Operators

We recall here some definitions from the theory of linear operators. We start with the opera-
tors acting on the space C(D;R).

Definition 2.6. A linear operator � : C(D;R) → L∞(D;R) is said to be positive if the relation

�(u)(t, x) ≥ 0 for a.e. (t, x) ∈ D (2.21)

holds whenever the function u ∈ C(D;R) is such that

u(t, x) ≥ 0 for (t, x) ∈ D. (2.22)

Example 2.7. For any v ∈ C(D;R), we put

�0(v)(t, x) = p0(t, x)v
(
τ0(t, x), μ0(t, x)

)
for a.e. (t, x) ∈ D, (2.23)

where p0 ∈ L∞(D;R) and τ0 : D → [a, b], μ0 : D → [c, d] are measurable functions. Then the
operator �0 : C(D;R) → L∞(D;R) is linear and bounded. Moreover, �0 is positive if and only
if p0(t, x) ≥ 0 for a.e. (t, x) ∈ D.
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Definition 2.8. A linear operator � : C(D;R) → L∞(D;R) is called (a, c)-Volterra operator if, for
any (t0, x0) ∈ D and u ∈ C(D;R) such that

u(t, x) = 0 for (t, x) ∈ [a, t0] × [c, x0], (2.24)

we have

�(u)(t, x) = 0 for a.e. (t, x) ∈ [a, t0] × [c, x0]. (2.25)

Remark 2.9. It can be shown by using Lemma 5.8 stated below that the operator �0 given by
formula (2.23) is an (a, c)-Volterra one if and only if

∣∣p0(t, x)
∣∣(τ0(t, x) − t) ≤ 0 for a.e. (t, x) ∈ D,

∣∣p0(t, x)
∣∣(μ0(t, x) − x

) ≤ 0 for a.e. (t, x) ∈ D.
(2.26)

Now we introduce analogous notions for linear operators defined on the spaces
Z[1](D;R) and Z[2](D;R).

Definition 2.10. We say that a linear operator � : Z[1](D;R) → L∞(D;R) (resp., � :
Z[2](D;R) → L∞(D;R)) is positive if relation (2.21) is satisfied for every function u ∈
Z[1](D;R) (resp., u ∈ Z[2](D;R)) such that

u(t, x) ≥ 0 for t ∈ [a, b] and a.e. x ∈ [c, d]
(
resp., u(t, x) ≥ 0 for a.e. t ∈ [a, b] and all x ∈ [c, d]

)
.

(2.27)

Example 2.11. For any v ∈ Z[2](D;R) (resp., v ∈ Z[1](D;R)), we put

�1(v)(t, x) = p1(t, x)v
(
t, μ1(t, x)

)
for a.e. (t, x) ∈ D, (2.28)

respectively,

�2(v)(t, x) = p2(t, x)v(τ2(t, x), x) for a.e. (t, x) ∈ D, (2.29)

where p1, p2 ∈ L∞(D;R) and μ1 : D → [c, d], τ2 : D → [a, b] are measurable functions. Then
the operators �1 : Z[2](D;R) → L∞(D;R) and �2 : Z[1](D;R) → L∞(D;R) are linear and
bounded. Moreover, �1 (resp., �2) is positive if and only if p1(t, x) ≥ 0 (resp., p2(t, x) ≥ 0) for
a.e. (t, x) ∈ D.

Definition 2.12. We say that a linear operator � : Z[1](D;R) → L∞(D;R) (resp., � :
Z[2](D;R) → L∞(D;R)) is an a-Volterra operator (resp., a c-Volterra operator) if, for any
t0 ∈ [a, b] (resp., x0 ∈ [c, d]) and u ∈ Z[1](D;R) (resp., u ∈ Z[2](D;R)) such that

u(t, x) = 0 for t ∈ [a, t0] and a.e. x ∈ [c, d]
(
resp., u(t, x) = 0 for a.e. t ∈ [a, b] and all x ∈ [c, x0]

)
,

(2.30)
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we have

�(u)(t, x) = 0 for a.e. (t, x) ∈ [a, t0] × [c, d]
(
resp., �(u)(t, x) = 0 for a.e. (t, x) ∈ [a, b] × [c, x0]

)
.

(2.31)

Remark 2.13. One can show by using Lemma 5.9 (resp., Lemma 5.10) stated below that the
operator �1 (resp., �2) given by formula (2.28) (resp., (2.29)) is a c-Volterra one (resp., an
a-Volterra one) if and only if

∣∣p1(t, x)
∣∣(μ1(t, x) − x

) ≤ 0 for a.e. (t, x) ∈ D, (2.32)

respectively,

∣∣p2(t, x)
∣∣(τ2(t, x) − t) ≤ 0 for a.e. (t, x) ∈ D. (2.33)

3. Statement of Problem

On the rectangle D, we consider the linear nonhomogeneous Darboux problem (1.1), (1.2) in
which �0 : C(D;R) → L∞(D;R), �1 : Z[2](D;R) → L∞(D;R), and �2 : Z[1](D;R) → L∞(D;R)
are linear bounded operators, q ∈ L∞(D;R), and α ∈ AC([a, b];R), β ∈ AC([c, d];R) are such
that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c). By a solution to problem (1.1),
(1.2), we mean a function u ∈ C∗(D;R) possessing property (1.2) and satisfying equality
(1.1) almost everywhere on D. Let us mention that, in view of Remark 2.4, the definition of a
solution to the problem considered is meaningful.

We are interested in question on the unique solvability of problem (1.1), (1.2), and
nonnegativity of its solutions. Clearly, the second-order hyperbolic differential equation

utx = p0(t, x)u + p1(t, x)ut + p2(t, x)ux + q(t, x), (3.1)

where p0, p1, p2, q ∈ L∞(D;R), is a particular case of (1.1). It follows from the results due to
Deimling (see [20, 21]) that, among others, problem (3.1), (1.2) has a unique solution without
any additional assumptions imposed on the coefficients p0, p1, and p2. We would like to get
solvability conditions for general problem (1.1), (1.2)which conform to those well known for
(3.1), (1.2).

The main results (namely, Theorems 4.1 and 4.4) will be illustrated on the hyperbolic
differential equation with argument deviations

u(1,1)(t, x) = p0(t, x)u
(
τ0(t, x), μ0(t, x)

)
+ p1(t, x)u(1,0)(t, μ1(t, x)

)

+ p2(t, x)u(0,1)(τ2(t, x), x) + q(t, x),
(3.2)

in which coefficients p0, p1, p2, q ∈ L∞(D;R) and argument deviations τ0, τ2 : D → [a, b],
μ0, μ1 : D → [c, d] are measurable functions. We obtain this equation from (1.1) if
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the operators �0, �1, and �2 are defined by formulas (2.23), (2.28), and (2.29), respectively.
Let us also mention that in the case, where

τk(t, x) = t, μj(t, x) = x for a.e. (t, x) ∈ D (
k = 0, 2, j = 0, 1

)
, (3.3)

equation (3.2) takes form (3.1).

4. Main Results

At first, we put

Ak(z) = �k
(
ϕk(z)

)
for z ∈ L∞(D;R), k = 0, 1, 2, (4.1)

where

ϕ0(z)(t, x) =
∫ t

a

∫x

c

z
(
s, η

)
dηds for (t, x) ∈ D,

ϕ1(z)(t, x) =
∫x

c

z
(
t, η

)
dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

ϕ2(z)(t, x) =
∫ t

a

z(s, x)ds for t ∈ [a, b], a.e. x ∈ [c, d].

(4.2)

Clearly, ϕ0 : L∞(D;R) → C(D;R), ϕ1 : L∞(D;R) → Z[2](D;R), ϕ2 : L∞(D;R) →
Z[1](D;R) and thus the operatorsA0,A1,A2 mapping the space L∞(D;R) into itself are linear
and bounded.

Theorem 4.1. Let A = A0 +A1 +A2, where the operators A0, A1, A2 are defined by relations (4.1),
(4.2). If the spectral radius of the operator A is less than one then problem (1.1), (1.2) is uniquely
solvable for arbitrary q ∈ L∞(D;R) and α ∈ AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈
L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c).

Theorem 4.1 implies the following.

Corollary 4.2. If the inequality

(b − a)(d − c)‖�0‖ + (d − c)‖�1‖ + (b − a)‖�2‖ < 1 (4.3)

holds then problem (1.1), (1.2) is uniquely solvable for arbitrary q ∈ L∞(D;R) and α ∈
AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c).

Remark 4.3. On the rectangle [a, b] × [c, d], we consider the equation

u(1,1)(t, x) = p0u(b, d) + p1u
(1,0)(t, d) + p2u

(0,1)(b, x) (4.4)
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subjected to the initial conditions

u(t, c) = 0 for t ∈ [a, b], u(a, x) = 0 for x ∈ [c, d], (4.5)

where

p0 =
m0

(b − a)(d − c)
, p1 =

m1

d − c
, p2 =

m2

b − a
. (4.6)

Clearly (4.4) is a particular case of (1.1). Ifm0 +m1 +m2 = 1, then problem (4.4), (4.5) has the
trivial solution u(t, x) ≡ 0 and the nontrivial solution u(t, x) ≡ (t − a)(x − c). It justifies that
the strict inequality (4.3) in the previous corollary is essential and cannot be replaced by the
nonstrict one. On the other hand, it is worth to mention that the inequality indicated is very
restrictive and thus it is far from being optimal for a wide class of equations (1.1).

If the operators �0, �1, and �2 on the right-hand side of (1.1) are positive then we
can estimate the spectral radius of the operator A by using the well-known results due to
Krasnosel’skij and we thus obtain the following.

Theorem 4.4. Let the operators �0, �1, �2 be positive andA = A0 +A1 +A2, where the operatorsA0,
A1, A2 are defined by relations (4.1), (4.2). Then the following four assertions are equivalent.

(1) There exists a function z0 ∈ L∞(D;R+) such that z0 	 A(z0).

(2) The spectral radius of the operator A is less than one.

(3) Problem (1.1), (1.2) is uniquely solvable for arbitrary q ∈ L∞(D;R) and α ∈
AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and
α(a) = β(c).

If, in addition, the initial functions α, β and the forcing term q are such that

α(a) ≥ 0, α′(t) ≥ 0, β′(x) ≥ 0, q(t, x) ≥ 0 for a.e. (t, x) ∈ D, (4.7)

then the solution u to problem (1.1), (1.2) satisfies

u(t, x) ≥ 0 for (t, x) ∈ D,

u(1,0)(t, x) ≥ 0 for a.e. t ∈ [a, b] and all x ∈ [c, d],

u(0,1)(t, x) ≥ 0 for t ∈ [a, b] and a.e. x ∈ [c, d].

(4.8)

(4) There exists a function γ ∈ C∗(D;R) such that

γ (1,1) 	 �0
(
γ
)
+ �1

(
γ (1,0)

)
+ �2

(
γ (0,1)

)
, (4.9)

γ(a, c) ≥ 0, (4.10)

γ (1,0)(t, c) ≥ 0 for a.e. t ∈ [a, b], γ (0,1)(a, x) ≥ 0 for a.e. x ∈ [c, d], (4.11)

γ (1,1)(t, x) ≥ 0 for a.e. (t, x) ∈ D. (4.12)
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For Volterra-type operators �0, �1, and �2, we derive from the previous theorem the
following.

Corollary 4.5. Let �0, �1, and �2 be positive (a, c)-Volterra, c-Volterra, and a-Volterra operators,
respectively, such that the inequalities

�1
(
y
)
(t, x) ≤ y(t)�1(1)(t, x) for a.e. (t, x) ∈ D (4.13)

(here, �1(y) means �1(y) in which y(t, x) = y(t) for a.e. t ∈ [a, b] and all x ∈ [c, d]) and

�2(z)(t, x) ≤ z(x)�2(1)(t, x) for a.e. (t, x) ∈ D (4.14)

(by �2(z) we mean �2(z), where z(t, x) = z(x) for all t ∈ [a, b] and a.e. x ∈ [c, d]) hold for every
y ∈ L∞([a, b];R) and z ∈ L∞([c, d];R).

Then problem (1.1), (1.2) is uniquely solvable for arbitrary q ∈ L∞(D;R) and α ∈
AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c).
If, in addition, the initial functions α, β and the forcing term q are such that relations (4.7) hold, then
the solution u to problem (1.1), (1.2) satisfies inequalities (4.8).

Following our previous results concerning the case, where �1 = 0 and �2 = 0 (see [18]),
we can introduce the following.

Definition 4.6. Let �0 : C(D;R) → L∞(D;R), �1 : Z[2](D;R) → L∞(D;R), and �2 :
Z[1](D;R) → L∞(D;R). We say that the triplet (�0, �1, �2) belongs to the set S′

ac if the
implication

u ∈ C∗(D;R),

u(1,1)(t, x) ≥ �0(u)(t, x) + �1
(
u(1,0)

)
(t, x)

+ �2
(
u(0,1)

)
(t, x), for a.e. (t, x) ∈ D,

u(a, c) ≥ 0,

u(1,0)(t, c) ≥ 0 for a.e. t ∈ [a, b],

u(0,1)(a, x) ≥ 0 for a.e. x ∈ [c, d],

=⇒ u satisfies (4.8)

(4.15)

holds.

Remark 4.7. If (�0, �1, �2) ∈ S′
ac, we usually say that a certain theorem on differential inequalities

holds for (1.1). It should be noted here that there is another terminology which says that a
certain maximum principle holds for (1.1) if the inclusion (�0, �1, �2) ∈ S′

ac is fulfilled.

Theorem 4.4 immediately yields the following.

Corollary 4.8. If one of assertions (1)–(4) stated in Theorem 4.4 holds then (�0, �1, �2) ∈ S′
ac.
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Remark 4.9. The inclusion (�0, �1, �2) ∈ S′
ac ensures that every solution u to problem (1.1),

(1.2) with (4.7) satisfies relations (4.8). However, we do not know whether this inclusion
also guarantees the unique solvability of problem (1.1), (1.2) for arbitrary q, α, and β.
Consequently, we cannot reverse the assertion of the previous corollary.

The reason lays in the question whether the Fredholm alternative holds for problem
(1.1), (1.2) or not. In fact, we are not able to prove compactness of the operator A appearing
in Theorem 4.4 which plays a crucial role in the proofs of the Fredholm alternative for
problem (1.1), (1.2) as well as a continuous dependence of its solutions on the initial data
and parameters.

Now we apply general results to (3.2) with argument deviations in which coefficients
p0, p1, p2, q ∈ L∞(D;R) and argument deviations τ0, τ2 : D → [a, b], μ0, μ1 : D → [c, d] are
measurable functions.

As a consequence of Corollary 4.2 we obtain the following.

Corollary 4.10. If the inequality

(b − a)(d − c)
∥∥p0

∥∥
L∞ + (d − c)

∥∥p1
∥∥
L∞ + (b − a)

∥∥p2
∥∥
L∞ < 1 (4.16)

holds, then problem (3.2), (1.2) is uniquely solvable for arbitrary q ∈ L∞(D;R) and α ∈
AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c).

If the coefficients p0, p1, p2 in the previous corollary are non-negative then the assertion
of the corollary follows also from implication (4) ⇒ (3) of Theorem 4.4. More precisely, the
following statement holds.

Corollary 4.11. Let p0, p1, p2 ∈ L∞(D;R+) and

ess sup
{
p0(t, x)(τ0(t, x) − a)

(
μ0(t, x) − c

)
+ p1(t, x)

(
μ1(t, x) − c

)

+p2(t, x)(τ2(t, x) − a) : (t, x) ∈ D}
< 1.

(4.17)

Then problem (3.2), (1.2) is uniquely solvable for arbitrary q ∈ L∞(D;R) and α ∈ AC([a, b];R),
β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c). If, in addition,
the initial functions α, β, and the forcing term q are such that relations (4.7) hold, then the solution u
to problem (3.2), (1.2) satisfies inequalities (4.8).

Finally, Corollary 4.5 implies the following.

Corollary 4.12. Let p0, p1, p2 ∈ L∞(D;R+) and argument deviations τ0, μ0, μ1, and τ2 satisfy
inequalities (2.26), (2.32), and (2.33). Then problem (3.2), (1.2) is uniquely solvable for arbitrary
q ∈ L∞(D;R) and α ∈ AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈
L∞([c, d];R), and α(a) = β(c). If, in addition, the initial functions α, β and the forcing term q are
such that relations (4.7) hold, then the solution u to problem (3.2), (1.2) satisfies inequalities (4.8).

The assumptions of the previous corollary require, in fact, that (3.2) is delayed in all
its deviating arguments. Observe that in the case, where (3.3) holds, the inequalities (2.26),
(2.32), and (2.33) are satisfied trivially and Corollary 4.12 thus conform to the results well
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known for (3.1). The following statements show that the assertion of Corollary 4.12 remains
true if the deviations τ0, μ0, μ1, and τ2 are not necessarily delays but the differences

τk(t, x) − t, μj(t, x) − x
(
k = 0, 2, j = 0, 1

)
(4.18)

are small enough, that is, if (3.2) with deviating arguments is “close” to (3.1).

Corollary 4.13. Let p0, p1, p2 ∈ L∞(D;R+), pk /≡ 0 (k = 1, 2), and

ess sup

{∫ τ0(t,x)

t

∫μ0(t,x)

c

p0
(
s, η

)
dηds +

∫ t

a

∫μ0(t,x)

x

p0
(
s, η

)
dηds

+ 2
∥∥p2

∥∥
L∞(τ0(t, x) − t) + 2

∥∥p1
∥∥
L∞

(
μ0(t, x) − x

)
: (t, x) ∈ D

}
≤ ω

e

(
1 + ln

1
ω

)
,

ess sup

{∫ t

a

∫μ1(t,x)

x

p0
(
s, η

)
dηds + 2

∥∥p1
∥∥
L∞

(
μ1(t, x) − x

)
: (t, x) ∈ D

}
<

ω

e
,

ess sup

{∫ τ2(t,x)

t

∫x

c

p0
(
s, η

)
dηds + 2

∥∥p2
∥∥
L∞(τ2(t, x) − t) : (t, x) ∈ D

}
<

ω

e
,

(4.19)

where

ω =
2min

{∥∥p1
∥∥
L∞ ,

∥∥p2
∥∥
L∞

}
∥∥p0

∥∥
L∞ max{b − a, d − c} + 2min

{∥∥p1
∥∥
L∞ ,

∥∥p2
∥∥
L∞

} . (4.20)

Then the assertion of Corollary 4.12 holds.

5. Auxiliary Statements and Proofs of Main Results

The proofs use several auxiliary statements given in the next subsection.

5.1. Auxiliary Statements

Remember that, for given operators �0, �1, and �2, the operatorsA0,A1, andA2 are defined by
relations (4.1), (4.2). Moreover, having q ∈ L∞(D;R) and α ∈ AC([a, b];R), β ∈ AC([c, d];R)
such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and α(a) = β(c), we put

y = �0
(−α(a) + α + β

)
+ �1

(
α′) + �2

(
β′
)
+ q (5.1)

(by �0(−α(a) + α + β) the authors understand �0(σ) in which σ(t, x) = −α(a) + α(t) + β(x) for
(t, x) ∈ D. Similarly, �1(α′) (resp., �2(β′)) means �1(α0) (resp., �2(β0)), where α0(t, x) = α′(t)
for a.e. t ∈ [a, b] and all x ∈ [c, d] (resp., β0(t, x) = β′(x) for all t ∈ [a, b] and a.e. x ∈ [c, d])).
Clearly, y ∈ L∞(D;R).
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Lemma 5.1. If u is a solution to problem (1.1), (1.2) then u(1,1) is a solution to the equation

z = (A0 +A1 +A2)(z) + y (5.2)

in the space L∞(D;R), where the operators A0, A1, and A2 are defined by relations (4.1), (4.2) and
the function y is given by formula (5.1).

Conversely, if z is a solution to (5.2) in the space L∞(D;R) with the operatorsA0,A1, andA2

defined by relations (4.1), (4.2) and the function y given by formula (5.1), then

u(t, x) = −α(a) + α(t) + β(x) +
∫ t

a

∫x

c

z
(
s, η

)
dηds for (t, x) ∈ D (5.3)

is a solution to problem (1.1), (1.2).

Proof. If u is a solution to problem (1.1), (1.2) then, by virtue of Remark 2.4, we get u(1,1) ∈
L∞(D;R),

u(t, x) = −α(a) + α(t) + β(x) +
∫ t

a

∫x

c

u(1,1)(s, η)dηds for (t, x) ∈ D,

u(1,0)(t, x) = α′(t) +
∫x

c

u(1,1)(t, η)dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

u(0,1)(t, x) = β′(x) +
∫ t

a

u(1,1)(s, x)ds for all t ∈ [a, b] and a.e. x ∈ [c, d].

(5.4)

Consequently, (1.1) yields that

u(1,1) = (A0 +A1 +A2)
(
u(1,1)

)
+ y, (5.5)

where the operators A0, A1, and A2 are defined by relations (4.1), (4.2) and the function y is
given by formula (5.1).

Conversely, let z be a solution to (5.2) in the space L∞(D;R)with the operatorsA0,A1,
and A2 defined by relations (4.1), (4.2) and the function y given by formula (5.1). Moreover,
let the function u be defined by relation (5.3), that is,

u(t, x) = α(a) +
∫ t

a

α′(s)ds +
∫x

c

β′
(
η
)
dη +

∫ t

a

∫x

c

z
(
s, η

)
dηds for (t, x) ∈ D. (5.6)
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Then the function u belongs to the set C∗(D;R) and verifies initial conditions (1.2). Further-
more, by using Lemma 2.3, we get

u(1,0)(t, x) = α′(t) +
∫x

c

z
(
t, η

)
dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

u(0,1)(t, x) = β′(x) +
∫ t

a

z(s, x)ds for all t ∈ [a, b] and a.e. x ∈ [c, d],

u(1,1)(t, x) = z(t, x) for a.e. (t, x) ∈ D.

(5.7)

Consequently, (5.2) implies that u is also a solution to (1.1).

Now we recall some definitions from the theory of linear operators leaving invariant
a cone in a Banach space (see, e.g., [24, 25] and references therein).

Definition 5.2. A nonempty closed set K in a Banach space X is called a cone if the following
conditions are satisfied:

(i) x + y ∈ K for all x, y ∈ K,

(ii) λx ∈ K for all x ∈ K and an arbitrary λ ≥ 0,

(iii) if x ∈ K and −x ∈ K then x = 0.

Remark 5.3. In the original terminology introduced by Kreı̆n and Rutman [25], a set K
satisfying conditions (i) and (ii) of Definition 5.2 is called a linear semigroup.

Definition 5.4. We say that a cone K ⊆ X is solid if its interior IntK is nonempty.

Remark 5.5. The presence of a cone K in a Banach space X allows one to introduce a natural
partial ordering there. More precisely, two elements x1, x2 ∈ X are said to be in the relation
x2 ≥K x1 if and only if they satisfy the inclusion x2 − x1 ∈ K. If, moreover, K is a solid cone
then we write x2 	K x1 if and only if x2 − x1 ∈ Int K.

Definition 5.6. A cone K ⊆ X is said to be normal if there is a constant N ≥ 0 such that, for
every x, y ∈ X with the property 0≤K x≤K y, the relation ‖x‖X ≤ N‖y‖X holds.

The proof of the main part of Theorem 4.4 is based on the following result.

Lemma 5.7 (see [24, Theorem 5.6]). LetK be a normal and solid cone in a Banach space X and the
operator A : X → X leave invariant the cone K, that is, A(K) ⊆ K. If there exists a constant δ > 0
and an element x0 ∈ IntK such that δx0 −A(x0) ∈ IntK, then the spectral radius of the operator A
is less than δ.

Finally, we establish three lemmas dealing with Volterra type operators which we need
to prove Corollary 4.5.

Lemma 5.8. Let �0 : C(D;R) → L∞(D;R) be a positive (a, c)-Volterra operator. Then, for any
function γ ∈ C(D;R) satisfying

γ(t1, x1) ≤ γ(t2, x2) for a ≤ t1 ≤ t2 ≤ b, c ≤ x1 ≤ x2 ≤ d, (5.8)
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one has

�0
(
γ
)
(t, x) ≤ �0(1)(t, x)γ(t, x) for a.e. (t, x) ∈ D. (5.9)

Proof. We first show that, for any (t, x) ∈ ]a, b] × ]c, d], we have

�0
(
γ
)(
s, η

) ≤ �0(1)
(
s, η

)
γ(t, x) for a.e.

(
s, η

) ∈ [a, t] × [c, x]. (5.10)

Indeed, let (t, x) ∈ ]a, b] × ]c, d] be arbitrary but fixed. Put

γ0
(
s, η

)
= γ

(
min{s, t},min

{
η, x

})
for

(
s, η

) ∈ D. (5.11)

Then, clearly γ0 ∈ C(D;R),

γ0
(
s, η

) ≤ γ(t, x) for
(
s, η

) ∈ D,

γ0
(
s, η

)
= γ

(
s, η

)
for

(
s, η

) ∈ [a, t] × [c, x].
(5.12)

Since the operator �0 is positive, we obtain

�0
(
γ0
)(
s, η

) ≤ �0
(
γ(t, x)

)(
s, η

)
= γ(t, x)�0(1)

(
s, η

)
for a.e.

(
s, η

) ∈ D. (5.13)

On the other hand, the operator �0 is supposed to be an (a, c)-Volterra one which guarantees
the equality

�0
(
γ0
)(
s, η

)
= �0

(
γ
)(
s, η

)
for a.e.

(
s, η

) ∈ [a, t] × [c, x], (5.14)

and thus the desired relation (5.10) holds.
Now we put

u(t, x) =
∫ t

a

∫x

c

�0
(
γ
)(
s, η

)
dηds,

v(t, x) =
∫ t

a

∫x

c

�0(1)
(
s, η

)
dηds for (t, x) ∈ D.

(5.15)

It follows from Lemma 2.3 that there exists a set E1 ⊆ ]a, b], measE1 = b − a, such that

u(1,0)(t, x) =
∫x

c

�0
(
γ
)(
t, η

)
dη for t ∈ E1, x ∈ [c, d],

v(1,0)(t, x) =
∫x

c

�0(1)
(
t, η

)
dη for t ∈ E1, x ∈ [c, d],

(5.16)
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and, moreover, there is a set E ⊆ E1× ]c, d], measE = (b − a)(d − c), with the properties

u(1,1)(t, x) = �0
(
γ
)
(t, x), v(1,1)(t, x) = �0(1)(t, x) for (t, x) ∈ E. (5.17)

Let (t, x) ∈ E be arbitrary but fixed. Then, relation (5.10) yields

1
hk

∫ t

t−h

∫x

x−k
�0
(
γ
)(
s, η

)
dηds ≤ γ(t, x)

hk

∫ t

t−h

∫x

x−k
�0(1)

(
s, η

)
dηds (5.18)

for h ∈ ]0, t − a] and k ∈ ]0, x − c], whence we get

1
k

[
u(t, x) − u(t − h, x)

h
− u(t, x − k) − u(t − h, x − k)

h

]

≤ γ(t, x)
k

[
v(t, x) − v(t − h, x)

h
− v(t, x − k) − v(t − h, x − k)

h

]
,

for h ∈ ]0, t − a], k ∈ ]0, x − c].

(5.19)

For any k ∈ ]0, x − c] fixed, we pass to the limit h → 0+ in the latter inequality and thus, in
view of equalities (5.16), we get

1
k

[
u(1,0)(t, x) − u(1,0)(t, x − k)

]
≤ γ(t, x)

k

[
v(1,0)(t, x) − v(1,0)(t, x − k)

]
, (5.20)

for k ∈ ]0, x−c]. Now, letting k → 0+ in the previous relation and using equalities (5.17) give

�0
(
γ
)
(t, x) = u(1,1)(t, x) ≤ γ(t, x)v(1,1)(t, x) = γ(t, x)�0(1)(t, x). (5.21)

That is, the desired inequality (5.9) holds because (t, x) ∈ E was arbitrary.

Lemma 5.9. Let �2 : Z[1](D;R) → L∞(D;R) be a positive a-Volterra operator such that inequality
(4.14) holds for every z ∈ L∞([c, d];R). Then, for any function γ ∈ Z[1](D;R) with the property

γ(t1, x) ≤ γ(t2, x) for a ≤ t1 ≤ t2 ≤ b and a.e. x ∈ [c, d], (5.22)

one has

�2
(
γ
)
(t, x) ≤ �2(1)(t, x)γ(t, x) for a.e. (t, x) ∈ D. (5.23)

Proof. Let E1 ⊆ [c, d], measE1 = d − c, be a set such that, for any x ∈ E1, we have γ(·, x) ∈
C([a, b];R) and

γ(t1, x) ≤ γ(t2, x) for a ≤ t1 ≤ t2 ≤ b. (5.24)
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We first show that the relation

�2
(
γ
)
(s, x) ≤ �2(1)(s, x)γ(t, x) for a.e. (s, x) ∈ [a, t] × [c, d] (5.25)

holds for every t ∈ ]a, b]. Indeed, let t ∈ ]a, b] be arbitrary but fixed. Put

γ0(s, x) = γ(min{s, t}, x) for s ∈ [a, b], x ∈ E1,

γ1(x) = γ(t, x) for x ∈ E1.
(5.26)

Then, clearly, γ0 ∈ Z[1](D;R), γ1 ∈ L∞([c, d];R),

γ0(s, x) ≤ γ1(x) for s ∈ [a, b], x ∈ E1,

γ0(s, x) = γ(s, x) for s ∈ [a, t], x ∈ E1.
(5.27)

Since the operator �2 is positive and satisfies condition (4.14), we obtain

�2
(
γ0
)
(s, x) ≤ �2

(
γ1
)
(s, x) ≤ γ1(x)�2(1)(s, x) for a.e. (s, x) ∈ D (5.28)

(by �2(γ1) the authors mean �2(γ1), where γ1(s, x) = γ1(x) for all s ∈ [a, b] and x ∈ E1). On the
other hand, the operator �2 is supposed to be an a-Volterra one which guarantees the equality

�2
(
γ0
)
(s, x) = �2

(
γ
)
(s, x) for a.e. (s, x) ∈ [a, t] × [c, d], (5.29)

and thus desired relation (5.25) holds for every t ∈ ]a, b]. It means that, for any t ∈ ]a, b],
there exists a set At ⊆ [c, d]with measAt = d − c such that

�2
(
γ
)
(s, x) ≤ �2(1)(s, x)γ(t, x) for x ∈ At, s ∈ Bt(x), (5.30)

where, for each x ∈ At, we have Bt(x) ⊆ [a, b]with measBt(x) = t − a.
Put E2 = ∩t∈CAt, where C = ]a, b] ∩ Q. Clearly, measE2 = d − c because the set C is

countable. Moreover, relation (5.30) yields that

∫ t

t0

�2
(
γ
)
(s, x)ds ≤ γ(t, x)

∫ t

t0

�2(1)(s, x)ds for x ∈ E2, t ∈ C, t0 ∈ [a, t]. (5.31)

Let t ∈ ]a, b], t0 ∈ [a, t[, and x ∈ E1 ∩ E2 be arbitrary but fixed. Then there exists a sequence
{tn}+∞n=1 ⊂ [t0, b] ∩ Q such that tn → t as n → +∞. It follows from relation (5.31) that

∫ tn

t0

�2
(
γ
)
(s, x)ds ≤ γ(tn, x)

∫ tn

t0

�2(1)(s, x)ds for n ∈ N, (5.32)
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whence we get

∫ t

t0

�2
(
γ
)
(s, x)ds ≤ γ(t, x)

∫ t

t0

�2(1)(s, x)ds. (5.33)

Consequently, we have proved that

∫ t

t0

�2
(
γ
)
(s, x)ds ≤ γ(t, x)

∫ t

t0

�2(1)(s, x)ds, for x ∈ E1 ∩ E2, a ≤ t0 < t ≤ b. (5.34)

Now we put

u(t, x) =
∫ t

a

�2
(
γ
)
(s, x)ds, v(t, x) =

∫ t

a

�2(1)(s, x)ds for t ∈ [a, b], x ∈ E1 ∩ E2. (5.35)

Lemma 2.3 guarantees that there exists a set E ⊆ ]a, b] × (E1 ∩ E2) such that measE = (b −
a)(d − c) and

u(1,0)(t, x) = �2
(
γ
)
(t, x), v(1,0)(t, x) = �2(1)(t, x) for (t, x) ∈ E. (5.36)

Let (t, x) ∈ E be arbitrary but fixed. We choose a sequence {hn}+∞n=1 of numbers from the
interval ]0, t − a] such that

lim
n→+∞

hn = 0. (5.37)

Then relation (5.34) yields that

1
hn

∫ t

t−hn

�2
(
γ
)
(s, x)ds ≤ γ(t, x)

hn

∫ t

t−hn

�2(1)(s, x)ds forn ∈ N. (5.38)

Letting n → +∞ in the previous relation and using equalities (5.36) give

�2
(
γ
)
(t, x) = u(1,0)(t, x) ≤ γ(t, x)v(1,0)(t, x) = γ(t, x)�2(1)(t, x). (5.39)

Consequently, desired inequality (5.23) holds because (t, x) ∈ E was arbitrary.

Lemma 5.10. Let �1 : Z[2](D;R) → L∞(D;R) be a positive c-Volterra operator such that inequality
(4.13) holds for every y ∈ L∞([a, b];R). Then, for any function γ ∈ Z[2](D;R) with the property

γ(t, x1) ≤ γ(t, x2) for a.e. t ∈ [a, b] and all c ≤ x1 ≤ x2 ≤ d, (5.40)

one has

�1
(
γ
)
(t, x) ≤ �1(1)(t, x)γ(t, x) for a.e. (t, x) ∈ D. (5.41)
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Proof. Lemma can be proven analogously as Lemma 5.9 by exchanging the roles of the
variables t and x.

5.2. Proofs of Main Results

Now we are in a position to prove the main results stated in Section 4.

Proof of Theorem 4.1. Since the spectral radius of the linear bounded operator A : L∞(D;R) →
L∞(D;R) is less than one, (5.2) has a unique solution for an arbitrary y ∈ L∞(D;R) and thus,
in view of Lemma 5.1, problem (1.1), (1.2) has a unique solution for every q ∈ L∞(D;R)
and α ∈ AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈ L∞([c, d];R), and
α(a) = β(c).

Proof of Corollary 4.2. It is easy to show that the norms of the linear bounded operatorsA0, A1,
A2 : L∞(D;R) → L∞(D;R) defined by relations (4.1), (4.2) satisfy the estimates

‖A0‖ ≤ (b − a)(d − c)‖�0‖, ‖A1‖ ≤ (d − c)‖�1‖, ‖A2‖ ≤ (b − a)‖�2‖. (5.42)

Consequently, the assumption (4.3) guarantees that the spectral radius of the operator A0 +
A1 +A2 is less than one. Hence, the assertion of the corollary follows from Theorem 4.1.

Proof of Theorem 4.4. To prove the theorem, it is sufficient to show the following four implica-
tions.

(1) ⇒ (2): assume that the assertion (1) of the theorem holds. We put K = L∞(D;R+).
It is not difficult to verify thatK forms a normal and solid cone in the Banach space L∞(D;R).
Moreover, a function z ∈ L∞(D;R) satisfies the relation z 	 0 if and only if the inclusion
z ∈ IntK holds.

On the other hand, by virtue of (4.1) and (4.2), the operator A leaves the cone K
invariant, that is, A(K) ⊆ K because the operators �0, �1, and �2 are supposed to be positive.
Therefore, the assumptions z0 ∈ K and z0 	 A(z0) yield that z0 	 0 as well.

Applying Lemma 5.7 with X = L∞(D;R) and δ = 1, we obtain the desired assertion
(2) of our theorem.

(2) ⇒ (3): assume that the spectral radius of the operator A is less than one. Then, for
an arbitrary y ∈ L∞(D;R), (5.2) has a unique solution z and, moreover, this solution admits
the series representation

z = y +A
(
y
)
+A2(y) + · · · . (5.43)

Consequently, in view of Lemma 5.1, problem (1.1), (1.2) has a unique solution u for every
q ∈ L∞(D;R) and α ∈ AC([a, b];R), β ∈ AC([c, d];R) such that α′ ∈ L∞([a, b];R), β′ ∈
L∞([c, d];R), and α(a) = β(c).

Assume, in addition, that the initial functions α, β and the forcing term q are such that
relations (4.7) hold. The above-used Lemma 5.1 guarantees that the solution u to problem
(1.1), (1.2) admits the integral representation

u(t, x) = α(a) +
∫ t

a

α′(s)ds +
∫x

c

β′
(
η
)
dη +

∫ t

a

∫x

c

z
(
s, η

)
dηds for (t, x) ∈ D, (5.44)
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in which z is given by formula (5.43) with y defined by relation (5.1). Clearly, assumption
(4.7) yields y ≥ 0 and thus the series representation (5.43) ensures that z ≥ 0 because the
operator A leaves invariant the cone L∞(D;R+). Hence, by virtue of Remark 2.4, desired
property (4.8) of the solution u follows from integral representation (5.44).

(3) ⇒ (4): assume that the assertion (3) of the theorem holds. Then, clearly the problem

γ (1,1)(t, x) = �0
(
γ
)
(t, x) + �1

(
γ (1,0)

)
(t, x) + �2

(
γ (0,1)

)
(t, x) + 1, (5.45)

γ(t, c) = 0 for t ∈ [a, b], γ(a, x) = 0 for x ∈ [c, d] (5.46)

has a unique solution γ and the function γ ∈ C∗(D;R) satisfies the inequalities

γ(t, x) ≥ 0 for (t, x) ∈ D,

γ (1,0)(t, x) ≥ 0 for a.e. t ∈ [a, b] and all x ∈ [c, d],

γ (0,1)(t, x) ≥ 0 for t ∈ [a, b] and a.e. x ∈ [c, d].

(5.47)

Hence, conditions (4.9)–(4.11) are fulfilled. Moreover, inequality (4.12) follows from (5.45)
because the operators �0, �1, and �2 are positive and γ satisfies relations (5.47).

(4) ⇒ (1): assume that there exists a function γ ∈ C∗(D;R) satisfying inequalities
(4.9)–(4.12). Then, by virtue of Remark 2.4, we get γ (1,1) ∈ L∞(D;R+),

γ(t, x) ≥
∫ t

a

∫x

c

γ (1,1)
(
s, η

)
dηds for (t, x) ∈ D,

γ (1,0)(t, x) ≥
∫x

c

γ (1,1)
(
t, η

)
dη for a.e. t ∈ [a, b] and all x ∈ [c, d],

γ (0,1)(t, x) ≥
∫ t

a

γ (1,1)(s, x)ds, for all t ∈ [a, b], a.e. x ∈ [c, d].

(5.48)

Consequently, assertion (1) of the theorem holds with z0 = γ (1,1) because the operators �0, �1,
and �2 are positive.

Proof of Corollary 4.5. We put

γ(t, x) = e
∫ t
a

∫x
c (1+�0(1)(s,η))dηds+2g2(t−a)+2g1(x−c) for (t, x) ∈ D, (5.49)

where g1 = ‖�1(1)‖L∞ and g2 = ‖�2(1)‖L∞ . It can be verified that γ ∈ C∗(D;R) and satisfies the
inequality

γ(t, x) ≥ 1 for (t, x) ∈ D. (5.50)
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In view of Lemma 2.3, from (5.49)we get

γ (1,0)(t, x) =
(∫x

c

(
1 + �0(1)

(
t, η

))
dη + 2g2

)
γ(t, x), for a.e. t ∈ [a, b] and all x ∈ [c, d],

γ (0,1)(t, x) =

(∫ t

a

(1 + �0(1)(s, x))ds + 2g1

)
γ(t, x), for t ∈ [a, b] and a.e. x ∈ [c, d].

(5.51)

Therefore, inequalities (4.10) and (4.11) are fulfilled and

γ (1,0)(t, x) ≥ 0, γ (0,1)(t, x) ≥ 0 for a.e. (t, x) ∈ D, (5.52)

because the operator �0 is positive. Moreover, by using Lemma 2.3 and inequalities (5.50) and
(5.52), it follows from equalities (5.51) that

γ (1,1)(t, x) = (1 + �0(1)(t, x))γ(t, x) +
(∫x

c

(
1 + �0(1)

(
t, η

))
dη + 2g2

)
γ (0,1)(t, x)

= (1 + �0(1)(t, x))γ(t, x)

+
1
2

(∫ t

a

(1 + �0(1)(s, x))ds + 2g1

)
γ (1,0)(t, x)

+
1
2

(∫x

c

(
1 + �0(1)

(
t, η

))
dη + 2g2

)
γ (0,1)(t, x)

≥ 1 + �0(1)(t, x)γ(t, x) + g1γ
(1,0)(t, x) + g2γ

(0,1)(t, x)

≥ �0(1)(t, x)γ(t, x) + �1(1)(t, x)γ (1,0)(t, x) + �2(1)(t, x)γ (0,1)(t, x) + 1,

(5.53)

for a.e. (t, x) ∈ D and thus inequality (4.12) is satisfied.
On the other hand, equalities (5.49), (5.51) guarantee the validity of the inequalities

γ(t1, x1) ≤ γ(t2, x2) for a ≤ t1 ≤ t2 ≤ b, c ≤ x1 ≤ x2 ≤ d,

γ (1,0)(t, x1) ≤ γ (1,0)(t, x2) for a.e. t ∈ [a, b] and all c ≤ x1 ≤ x2 ≤ d,

γ (0,1)(t1, x) ≤ γ (0,1)(t2, x) for a ≤ t1 ≤ t2 ≤ b and a.e. x ∈ [c, d].

(5.54)

Therefore, by using Lemmas 5.8–5.10, from inequality (5.53) we get

γ (1,1)(t, x) ≥ �0
(
γ
)
(t, x) + �1

(
γ (1,0)

)
(t, x) + �2

(
γ (0,1)

)
(t, x) + 1 for a.e. (t, x) ∈ D. (5.55)

that is, relation (4.9) holds.
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Consequently, we have found a function γ satisfying conditions (4.9)–(4.12) and thus
the assertion of the corollary follows from Theorem 4.4.

Proof of Corollary 4.10. It is clear that (3.2) is a particular case of (1.1) in which the operators
�0, �1, and �2 are defined by formulas (2.23), (2.28), and (2.29), respectively (see Examples 2.7
and 2.11). Since we have

‖�k‖ =
∥∥pk

∥∥
L∞ for k = 0, 1, 2, (5.56)

the validity of the corollary follows immediately from Corollary 4.2.

Proof of Corollary 4.11. It is clear that (3.2) is a particular case of (1.1) in which the operators
�0, �1, and �2 are defined by formulas (2.23), (2.28), and (2.29), respectively, and that the
operators indicated are positive (see Examples 2.7 and 2.11). Moreover, in view of inequality
(4.17), there exists ε > 0 such that

1 ≥ p0(t, x)(τ0(t, x) − a)
(
μ0(t, x) − c

)
+ p1(t, x)

(
μ1(t, x) − c

)

+ p2(t, x)(τ2(t, x) − a) + ε for a.e. (t, x) ∈ D.
(5.57)

Therefore, the function γ defined by the relation

γ(t, x) = (t − a)(x − c) for (t, x) ∈ D (5.58)

satisfies inequalities (4.9)–(4.12) and thus the assertion of the corollary follows from
Theorem 4.4.

Proof of Corollary 4.12. It is clear that (3.2) is a particular case of (1.1) in which the operators �0,
�1, and �2 are defined by formulas (2.23), (2.28), and (2.29), respectively, and that conditions
(4.13) and (4.14) are fulfilled (see Examples 2.7 and 2.11). Moreover, the operators �0, �1 and
�2 are positive and, in view of Remarks 2.9 and 2.13, the operators indicated are, respectively,
(a, c)-Volterra, c-Volterra, and a-Volterra ones.

Consequently, the validity of the corollary follows from Corollary 4.5.

Proof of Corollary 4.13. It is clear that (3.2) is a particular case of (1.1) in which the operators
�0, �1, and �2 are defined by formulas (2.23), (2.28), and (2.29), respectively, and that the
operators indicated are positive (see Examples 2.7 and 2.11).
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Let p̃k = ‖pk‖L∞ (k = 0, 1, 2) and y = e/ω. According to (4.19) and (4.20), there exist
numbers ε > 0 and δ ∈ ]0, 1[ such that inequalities

∫ τ0(t,x)

t

∫μ0(t,x)

c

(
ε + p0

(
s, η

))
dηds +

∫ t

a

∫μ0(t,x)

x

(
ε + p0

(
s, η

))
dηds

+ 2p̃2(τ0(t, x) − t) + 2p̃1
(
μ0(t, x) − x

)

≤ 1
y
ln

(
y +

yδ

ey[
∫b
a

∫d
c (ε+p0(s,η))dηds+2p̃2(b−a)+2p̃1(d−c)] − δ

)
,

∫ t

a

∫μ1(t,x)

x

(
ε + p0

(
s, η

))
dηds + 2p̃1

(
μ1(t, x) − x

)

≤ 1
y
ln

2p̃2y(
ε + p̃0

)
(d − c) + 2p̃2

,

∫ τ2(t,x)

t

∫x

c

(
ε + p0

(
s, η

))
dηds + 2p̃2(τ2(t, x) − t)

≤ 1
y
ln

2p̃1y(
ε + p̃0

)
(b − a) + 2p̃1

,

(5.59)

hold for a.e. (t, x) ∈ D. Now we put

γ(t, x) = eyz(t,x) − δ for (t, x) ∈ D, (5.60)

where

z(t, x) =
∫ t

a

∫x

c

(
ε + p0

(
s, η

))
dηds + 2p̃2(t − a) + 2p̃1(x − c) for (t, x) ∈ D. (5.61)

It can be verified that γ ∈ C∗(D;R) and satisfies

γ(t, x) ≥ 1 − δ > 0 for (t, x) ∈ D. (5.62)

In view of Lemma 2.3, from (5.62)we get

γ (1,0)(t, x) = y

(∫x

c

(
ε + p0

(
t, η

))
dη + 2p̃2

)(
γ(t, x) + δ

)
, for a.e. t ∈ [a, b] and all x ∈ [c, d],

γ (0,1)(t, x) = y

(∫ t

a

(
ε + p0(s, x)

)
ds + 2p̃1

)(
γ(t, x) + δ

)
, for t ∈ [a, b] and a.e. x ∈ [c, d].

(5.63)
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Therefore, relations (4.10), (4.11), and (5.52) are fulfilled. Moreover, by using Lemma 2.3 and
inequalities (5.52) and (5.62), it follows from equalities (5.63) that

γ (1,1)(t, x) = y
(
ε + p0(t, x)

)(
γ(t, x) + δ

)
+ y

(∫x

c

(
ε + p0

(
t, η

))
dη + 2p̃2

)
γ (0,1)(t, x)

= yε
(
γ(t, x) + δ

)
+ yp0(t, x)

(
γ(t, x) + δ

)

+
y

2

(∫ t

a

(
ε + p0(s, x)

)
ds + 2p̃1

)
γ (1,0)(t, x)

+
y

2

(∫x

c

(
ε + p0

(
t, η

))
dη + 2p̃2

)
γ (0,1)(t, x)

≥ yε + p0(t, x)y
(
γ(t, x) + δ

)
+ yp̃1γ

(1,0)(t, x) + yp̃2γ
(0,1)(t, x)

≥ p0(t, x)y
(
γ(t, x) + δ

)
+ p1(t, x)yγ (1,0)(t, x) + p2(t, x)yγ (0,1)(t, x) + yε,

(5.64)

for a.e. (t, x) ∈ D and thus inequality (4.12) is satisfied. Now observe that inequalities (5.59)
can be rewritten to the forms

z
(
τ0(t, x), μ0(t, x)

) − z(t, x) ≤ 1
y
ln
(
y +

yδ

eyz(τ0(t,x),μ0(t,x)) − δ

)
,

z
(
t, μ1(t, x)

) − z(t, x) ≤ 1
y
ln

2p̃2y∫μ1(t,x)
c

(
ε + p0

(
t, η

))
dη + 2p̃2

,

z(τ2(t, x), x) − z(t, x) ≤ 1
y
ln

2p̃1y∫τ2(t,x)
a

(
ε + p0(s, x)

)
ds + 2p̃1

,

(5.65)

for a.e. (t, x) ∈ D and thus, by using relations (5.60), (5.63), we get

y
(
γ(t, x) + δ

) ≥ γ
(
τ0(t, x), μ0(t, x)

)
for a.e. (t, x) ∈ D,

yγ (1,0)(t, x) ≥ γ (1,0)
(
t, μ1(t, x)

)
, yγ (0,1)(t, x) ≥ γ (0,1)(τ2(t, x), x)

(5.66)

for a.e. (t, x) ∈ D. Consequently, it follows from (5.64) that inequality (4.9) holds.
We have constructed a function γ satisfying conditions (4.9)–(4.12) and thus the

assertion of the corollary follows from Theorem 4.4.
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