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We present the results of the theoretical researches of some characteristics of the generalized hyper-
spherical function with two degrees as independent dimensions. Primarily are given the answers
on the quantification of the dimensional potentials (fluxes) of this function in the domain of the
integer natural numbers. Beside them, we have got the solutions for some continual fluxes of the
contour hypercylindrical (HY) functions on the basis. The symbolical evaluation and numerical
verification of the series values and integrals are realized through the program packages Mathcad
Professional and Mathematica.

1. Introduction

Hypercylinder function is the hypothetical function connected to multidimensional space.
The most significant value of this function is in the fact that it originated [1] on the properties
of the cylindrical entities: point, diameter, square, surface, and volume of cylinder. Another
property is generalizing of these functions from discretion to continuum. It belongs to the
group of special functions, so its testing is performed on the basis of known functions of
these types: gamma (Γ), psi (ψ0), error function (erf), and the like.

Definition 1.1. The generalized hypercylindrical function is defined by equality [2]

HY(k, n, r) =
2
√
πk−1rk+n−3Γ(k + 1)

Γ(k + n − 2)Γ((k + 1)/2)
(k, n ∈ R, r ∈N), (1.1)

where Γ(z) is the gamma function.
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Thanks to the interpolation properties of the gamma function, we can analytically pass
from the field of the natural integer values on the set of real and noninteger values with
which there is concurrence of events both for its graphic interpretation and more concise
mathematical analysis. It is developed on the basis of the two freedom degrees k and n,
as special (vectors) dimensions, besides r radius, as implicitly included freedom degree for
every hypercylinder (Figures 1 and 2). The dominant theorem that is set is the one that refers
to the recurrent property of this function (when the height is h = 2r). It implicitly includes
that the left vectors (n = 2, 1, 0,−1,−2, . . .) of theM[HY]kxn matrix columns in Figure 1 we get
on the basis of the reverent vector (n = 3) deduction, and the right vectors (n = 4, 5, 6, 7, 8, . . .)
on the basis of integrals on r radius [2]

∂

∂r
HY(k, n, r) = HY(k, n − 1, r), HY(k, n + 1, r) =

∫ r
0
HY(k, n, r)dr. (1.2)

To the development of the theory of the multidimensional objects, especially have
ontributed: Conway and Sloane [3], Gwak et al. [4], Hinton [5], Hocking and Young [6],
Manning [7], Maunder [8], Neville [9], Von R. Rucker [10], Sommerville [11], Sun and
Bowman [12], and the others, and to its testing, Ramanujan and Hardy [16, 17]. Today the
researches of the hypercylindrical function are represented both in Euclid’s and Riemann’s
geometry (molecular dynamics, neural networks, hypercylindrical black holes and the like).

2. Dimensional Potentials: The Fluxes of the HY Function

2.1. Vertical Dimensional Flux of the Hypercylindrical Function

The discrete dimensional potential or flux of the hypercylindrical function presents the total
of all single functions in the (sub)matrix of this function that develops for the integer natural
freedom degrees. Formally, flux can be quantification by twofold series that covers this area
of HY function. The first step is to define the value of the infinite succession of functions
ordered in columns (vectors) of the submatrixM[HY]kxn (k, n ∈N). This is at the same time
as well the definition of the vertical dimensional fluxes of HY function. The first value that is
being calculated, refers to the fourth column (n = 3) of the submatrixM[HY]kxn in Figure 1.
In this case, it follows that the flux is equal

∞∑
k=0

HY(k, 3, r) =
2
π

+ 2r + 4r2 + 2πr3 +
8
3
πr4 + π2r4 + · · · + ε

(
2
√
πk−1rk

Γ((k + 1)/2)

)
. (2.1)

The analytical value of this series is

∞∑
k=0

HY(k, 3, r) =
∞∑
k=0

2
√
πk−1rk

Γ((k + 1)/2)
= 2
(
1
π

+ reπr
2
erfc
(−r√π)

)
. (2.2)
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Figure 1: The functional submatrix M[HY(k, n, r)] for the freedom degrees k ∈ −4,−3, . . . , 4 and n ∈
−1, 0, . . . , 7 and with six characteristics hypercylindrical functions (undef. are nondefined, most often
singular values of this function).

In the paper are used three known error functions as follows: erf(z)-basic, erfc(z)-cumu-
lative and erfi(z)-imaginary. When k values are even (0, 2, 4, . . .), in other words odd ones
(1, 3, 5, . . .), the series can be divided as dichotomous, so we can now obtain two comple-
mentary series

∞∑
k=0

HY(k, 3, 1) =
∞∑

k=0,2,4,...

HY(k, 3, r) +
∞∑

k=1,3,5,...

HY(k, 3, r)

= 2
(
1
π

+ reπr
2
erf
(
r
√
π
))

+ 2reπr
2
.

(2.3)

Well, the result (2.3) can be presented in the from of series with even (k = 2b) and odd
members (k = 2b + 1) that complement (one another). In that sense follows

∞∑
b=0

2πb−1(2r)2bb!
(2b)!

= 2
(
1
π

+ reπr
2
erf
(
r
√
π
))
,

∞∑
b=0

2πbr2b+1

b!
= 2reπr

2
. (2.4)

On the basis of the solution (2.3), as the starting and reference (one), and applying the
reference relations (1.2), we can obtain the series values for lower freedom degrees (n < 3).
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Figure 2: The surface graphic of the hypercylindrical function with the constant radius r = 1 and the
selected fields of freedom degrees (−4 < n ≤ 5) and (−2 < k ≤ 5) (using the softwareMathematica).

So, we establish the connection of cylinder hypervolume (n = 3)with its hypersurface (n = 2).
In that sense follows a new vector flux for n = 2:

∂

∂r

∞∑
k=0

HY(k, 3, r) =
∞∑
k=0

HY(k, 2, r), (2.5)

so that

∞∑
k=0

HY(k, 2, r) = 2
[
2r + eπr

2
erfc
(−r√π)(1 + 2πr2

)]
. (2.6)

Further, for the hypercylinder (n = 1), we obtain a series on the basis of the derivative of the
previous series, so that

∂

∂r

∞∑
k=0

HY(k, 2, r) =
∞∑
k=0

HY(k, 1, r) = 4
[
2
(
1 + πr2

)
+ πreπr

2
erfc
(−r√π)(3 + 2πr2

)]
. (2.7)

For the zero dimension n = 0, the series value is as well located on the derivative basis, so it
follows that

∞∑
k=0

HY(k, 0, r) =
∞∑
k=0

2rk−3
√
πk−1Γ(k + 1)

Γ(k − 2)Γ((k + 1)/2)

= 4π
[
r
(
10 + 4πr2

)
+ eπr

2
erfc
(−r√π)[3 + 4πr2

(
3 + πr2

)]]
.

(2.8)
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For greater freedom degree that n = 3, series are found through an inverse operation, that is,
by recurrent relation on the basis of integrating on the radius r. Well,

∞∑
k=0

HY(k, n + 1, r) =
∫ r
0

( ∞∑
k=0

HY(k, n, r)

)
dr, (2.9)

and for the fourth dimension is valid the next integral form

∞∑
k=0

HY(k, 4, r) =
∫ r
0

( ∞∑
k=0

HY(k, 3, r)

)
dr =

∫ r
0
2
[
1
π

+ reπr
2
erf
(
r
√
π
)]
dr

=
1
π

[
eπr

2
erfc
(−r√π) − 1

]
.

(2.10)

For greater freedom degree than n = 3, series are found through a recurrent relation (1.2), by
integrating on radius

∞∑
k=0

HY(k, 4, r) =
∫ r
0

( ∞∑
k=1,3,5,...

HY(k, 3, r)

)
dr +

∫ r
0

( ∞∑
k=0,2,4,...

HY(k, 3, r)

)
dr. (2.11)

So, we come to the expression

∞∑
k=0

HY(k, 4, r) =
∫ r
0
2reπr

2
dr +

∫ r
0

( ∞∑
b=0

22b+1πb−1r2bb!
(2b)!

)
dr. (2.12)

Solving the integrals and using the relation on dichotomous series [2], we obtain the dimen-
sion flux of the fourth dimension

∞∑
k=0

HY(k, 4, r) =
eπr

2 − 1
π

+
∞∑
b=0

22b+1πb−1r2b+1b!
(2b + 1)!

. (2.13)

For the freedom degree of n = 5, series can be found through the integrating of the obtained
solution (2.10)

∞∑
k=0

HY(k, 5, r) =
∫ r
0

1
π

[
eπr

2
erfc
(−r√π) − 1

]
dr. (2.14)

The general solution is known, and it is

∫
ebz

2
erfc(az)dz =

√
π erf

(
z
√
b
)

2
√
b

− 1
b
√
π

ℵ∑
k=0

a2k+1Γ
(
k + 1,−bz2)

bkk!(2k + 1)
+ C. (2.15)
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After settling the expression, we get the concrete solution

∞∑
k=0

HY(k, 5, r) =
∞∑
k=0

2rk+2
√
πk−1Γ(k + 1)

Γ(k + 3)Γ((k + 1)/2)

=
1
π

[
erfi
(
r
√
π
)

2
− r + 1

π

∞∑
k=0

(−1)2k+1
2k + 1

(
1 − Γ

(
k + 1,−πr2)

k!

)]
.

(2.16)

For the same freedom degree, the series can be found with the integrating of the dichotomous
expression

∞∑
k=0

HY(k, 5, r) =
∫ r
0

eπr
2 − 1
π

dr +
∫ r
0

( ∞∑
b=0

22b+1πb−1r2b+1b!
(2b + 1)!

)
dr. (2.17)

So that

∞∑
k=0

HY(k, 5, r) =
1
π

(
erfi
(
r
√
π
)

2
− r
)

+
∞∑
b=0

22b+1πb−1r2(b+1)b!
(2b + 2)!

. (2.18)

The same result is obtained as well on the basis of the complementary dichotomous series

∞∑
k=0

HY(k, 5, r) =
∞∑
b=0

2πbr2b+3

(2b + 2)(2b + 3)b!
+

∞∑
b=0

22b+1πb−1r2(b+1)b!
(2b + 2)!

. (2.19)

Here, we use the imaginary error function that is equal to [14]

erfi(z) = −i · erf(i · z) = 2√
π

∞∑
k=0

z2k+1

k!(2k + 1)
. (2.20)

For the last analysed vector flux, through similar procedures follow:

∞∑
k=0

HY(k, 6, r) =
∫ r
0

( ∞∑
b=0

2πbr2b+3

(2b + 2)(2b + 3)b!

)
dr +

∫ r
0

( ∞∑
b=0

22b+1πb−1r2(b+1)b!
(2b + 2)!

)
dr. (2.21)

It can be presented that the first subintegral member of the dichotomous series (2.19) is equal
to

∞∑
b=0

2πbr2b+3

(2b + 2)(2b + 3)b!
=

1
π

(
erfi
(
r
√
π
)

2
− r
)
. (2.22)

So, its integral is

∫ r
0

1
π

(
erfi
(
r
√
π
)

2
− r
)
dr =

1
2π

[
1 − eπr2

π
+ r erfi

(
r
√
π
) − r2

]
. (2.23)
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The dimensional flux for the sixth freedom degree is now

∞∑
k=0

2rk+3
√
πk−1Γ(k + 1)

Γ(k + 4)Γ((k + 1)/2)
=

1
2π

[
1 − eπr2

π
+ r erfi

(
r
√
π
) − r2

]
+

∞∑
b=0

22b+1πb−1r2b+3b!
(2b + 3)!

. (2.24)

For each freedom degree the recurrent relation would be formulated as

∞∑
k=0

HY(k, n, r) =
∫ r
0

( ∞∑
k=0,2,...

HY(k, n − 1, r) +
∞∑

k=1,3,...

HY(k, n − 1, r)

)
dr. (2.25)

The similar formulation would be related as well to the recurrent relation of the type

∞∑
k=0

HY(k, n, r) =
∂

∂r

( ∞∑
k=0,2,...

HY(k, n + 1, r) +
∞∑

k=1,3,...

HY(k, n + 1, r)

)
. (2.26)

It can be supposed that the values of the vector fluxes are less and less with the increasing of
the freedom degree n, so that the limit values are equal

lim
n→∞

∞∑
k=0

HY(k, n, r) = 0, respectively, lim
n→∞

∫∞

0
HY(k, n, r)dk = 0. (2.27)

The systematized numerical values of the discrete and continual fluxes, (for r = 1), are given
in Table 1.

The dimensional fluxes can be studied as well for the complex part. So, for example
with recurrence we get the series value for negative freedom degrees, and so for n = −1,
follows [2]

∞∑
k=0

HY(k,−1, r) =
∞∑
k=0

2rk−4
√
πk−1Γ(k + 1)

Γ(k − 3)Γ((k + 1)/2)

= 8π
{
2
(
1 + 2πr2

)(
4 + πr2

)
+ πreπr

2
erfc
(−r√π)[ 15 + 4πr2

(
5 + πr2

)]}
.

(2.28)

For more lower freedom degree, that is n = −2, the flux is more complex and is defined by the
next analytical value

∞∑
k=0

HY(k,−2, r) = ∂

∂r

∞∑
k=0

HY(k,−1, r) =
∞∑
k=0

2 rk−5
√
πk−1Γ(k + 1)

Γ(k − 4)Γ((k + 1)/2)

= 8π2
{
2r
(
3 + 2πr2

)(
11 + 2πr2

)
+ eπr

2
erfc
(−r√π)

×
[
2πr2

(
2πr2

(
15 + 2πr2

)
+ 45

)
+ 15

]}
.

(2.29)
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Table 1

The freedom degree n
∑∞

k=0 HY(k, n, 1)
∫∞
0 HY(k, n, 1)dk

0 46629.763683374723 46629.884250891254

1 5399.2276899298969 5399.1696270574682

2 674.04323182871168 674.09309651202785

3 92.635271951133292 92.399315367283533

4 14.323730365858739 14.034919970188039

5 2.4571998816772904 2.2995389510681934

6 0.4379835171696227 0.3825093919178916

7 0.0753101246771644 0.0609006925490481

8 0.0119175529305197 0.0089502805193842

9 0.0017014681733111 0.0011952249074813

10 0.0002182341952046 0.0001445005596724

11 0.0000252196190879 0.0000158503684769

12 0.0000026406525791 0.0000015847488146
...

...
...

30 6.610193523821e − 29 2.6540266176391e − 29
...

...
...

∞ limn→∞
∑∞

k=0 HY(k, n, r) = 0 limn→∞
∫∞
0 HY(k, n, r)dk = 0

∑
n

∑
k 52812.977966365550 —

So, for example, the flux for radius r = 1/2 is
∑∞

k=0 HY(k,−2, 1/2) ≈ 43770.014449969689. The
other values, also can be established on the basis of the recurrent relations (2.25), in other
words (2.26).

2.2. The Fluxes on the Basis of the Series of the Hypercylindrical
Functional Matrix

The discrete dimensional fluxes can be calculated as well on the “horizontal line”, that is,
adding functions values on the submatrix seriesM[HY]k,n (Figure 1). For example, through
the series development for k = 3 the flux would contain the next members:

∞∑
n=0

HY(3, n, r) = 12π + 12πr + 6πr2 + 2πr3 +
1
2
πr4 + · · · + ε

(
12πrn

Γ(n + 1)

)
. (2.30)

Some values of discrete and continual fluxes (for r = 1) are given in Table 2.
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Table 2

Freedom degree k
∑∞

n=0 HY(k, n, r)
∑∞

n=0 HY(k, n, 1)
∫+∞
0 HY(k, n, 1)dn

0 2er/π 1.730511958864530 1.846084380068597

1 2er 5.43656365691809 5.248099060246887

2 8er 21.7462546276723 22.46216193622815

3 12πer 102.4768106720828 85.44633790197124

4 64π(er − 1) 345.4810604213614 237.5329239075405

5 120π2(er − r − 1) 850.6988994458283 508.7293133444046

6 384π2[2er − (r + 1)2 − 1] 1654.544866434988 892.2064355912792

7
∑∞

n=0(1680π
3rn+4/Γ(n + 5)) 2688.661898887322 1338.143855891663

8
∑∞

n=0(12288π
3rn+5/Γ(n + 6)) 3790.427657262334 1768.586344896620

9
∑∞

n=0(30240π
4rn+6/Γ(n + 7)) 4757.702808149823 2104.228782270664

10
∑∞

n=0(245760π
4rn+7/Γ(n + 8)) 5416.805463135256 2289.343605902835

11
∑∞

n=0(665280π
5rn+8/Γ(n + 9)) 5672.025047777118 2304.879158127108

12
∑∞

n=0(5898240π
5rn+9/Γ(n + 10)) 5520.736405122306 2167.383511182325

13
∑∞

n=0(17297280π
6rn+10/Γ(n + 11)) 5036.815477026034 1917.751163982797

...
...

...
...

50
∑∞

n=0 HY(50, n, r) 0.000000117826838 0.000000029841827
...

...
...

...

∞ limk→∞
∑∞

n=0 HY(k, n, r) = 0 0 limk→∞
∫∞
0 HY(k, n, r)dn = 0

—
∑

k

∑
n 52812.977966365550 —

2.3. Some Continual Fluxes of the Hypercylindrical Function

The trend of the distribution of the vector fluxes is increasing, and then asymptotically falling,
with the linear growth of the freedomdegree n. From the standpoint of the functional analysis
the most interesting series of the matrix M[HY]k,n are the ones referring to the freedom
degrees k = 2 and k = 3. The first series (k = 2) covers the known functions for the
square size (8r) and surface (4r2). The members of the following series are, among the
others, the cylinder functions of the surface (6πr2) and volume (2πr3) (Figure 1). The same
series are interesting as well for calculatiing continual fluxes. So the continual natural flux
for the hypercylinder surface is analysed in view of integrals, instead of series. This integral
is specific, because its subintegral function is the reciprocal gamma function. Its value, as it is
known, is equal to the value of Fransen-Robinson’s constant [15]

F =
∫∞

0

1
Γ(x)

dx = e +
∫∞

0

e−n

π2 + ln2n
dn ≈ 2.8077702420285. (2.31)
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The integral values of the wanted flux is now
∫∞
0 HY(2, n, 1)dn =

∑∞
n=0 HY(2, n, 1) +∫∞

0 (8e−n/(π2 + ln2n))dn, what concretely for the unit radius is

∫∞

0

8
Γ(n)

dn = 8
(
e +
∫∞

0

e−n

π2 + ln2n
dn

)
= 8F ≈ 22.462161936228. (2.32)

In respect to the continual dimension n, the more generalized cylinder volume flux follows
in view of Ramanujan-Hardy’s integral [16, 17]:

∫∞

0

yx

Γ(x + 1)
dx = ey −

∫∞

0

e−xy

x
(
π2 + ln2x

)dx. (2.33)

Ramanujan defined this integral, and it was analytically intensified by Hardy. In that sense,
the previous expression can be applied in calculating the hypercylindrical function flux, when
k = 3, as

∫∞

0
HY(3, n, 1)dn =

∫∞

0

12πrn

Γ(n + 1)
dn = 12π

⎛
⎜⎝er −

∫∞

0

e−nr

n
(
π2 + ln2n

)dn
⎞
⎟⎠ (

for x = n, y = r
)
.

(2.34)

The integral can be calculated as well as the difference between the series and the integral
with the value (for r = 1)

∫∞

0

12πrn

Γ(n + 1)
dn =

∞∑
n=0

12πrn

Γ(n + 1)
−
∫∞

0

12πe−nr

n(π2 + ln2n)
dn

∣∣∣∣∣
r=1

≈ 278.6085228836. (2.35)

2.4. The Progressions of the Vector Fluxes

The whole dimension flux in the freedom degree domain with the natural numbers, is
obtained in the result of double amount with which are considered the integer values of
the hypercylindrical function HY(k, n, r), for all k, n, r ≥ 0. This double series must be
convergent, and this characteristic is in the function of hypercylinder radius. The flux can
be watched as well for every columnM[HY]k,n of the matrix individually. So, there is for the
nth column (in the mark 〈n〉), the flux in the form of series

Φ〈n〉
HY(k, n, r) =

∞∑
k=0

HY(k, n, r). (2.36)

2.5. The Orthogonal Dimensional Fluxes

These fluxes are the fluxes of the all columns or of all series of the matrix M[HY]k,n. As the
number of columns, that is of the series infinite, the total flux is as follows.
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Definition 2.1. The dimensional flux (potentional) of the functional matrix with two freedom
degrees k and n is defined as a double series

ΦHY(k, n, r) =
∞∑
n=0

Φ〈n〉
HY(k, n, r) =

∞∑
n=0

∞∑
k=0

HY(k, n, r). (2.37)

When the certain number of members is calculated, the flux has the next form:

ΦHY(k, n, r) =
∞∑
n=0

∞∑
k=0

HY(k, n, r)

= 4π
[
r
(
10 + 4πr2

)
+ eπr

2
erfc
(−r√π)[3 + 4πr2

(
3 + πr2

)]]

+ 4
[
2
(
1 + πr2

)
+ πreπr

2
erfc
(−r√π)(3 + 2πr2

)]

+ 2
[
2r + eπr

2
erfc
(−r√π)(1 + 2πr2

)]

+ 2
(
1
π

+ reπr
2
erfc
(−r√π)

)
+

1
π

[
eπr

2
erfc
(−r√π) − 1

]

+
1
π

(
erfi
(
r
√
π
)

2
− r
)

+
1
π2

∞∑
k=0

(−1)2k+1
2k + 1

(
1 − Γ

(
k + 1,−πr2)

k!

)

+
1
2π

[
1 − eπr2

π
+ r erfi

(
r
√
π
) − r2

]
+ · · · .

(2.38)

The flux on the matrix series in the domain of the natural number is defined as a double
series, but with the changed sequence of summing. This dimensional flux is, thus, defined as

ΩHY(k, n, r) =
∞∑
k=0

∞∑
n=0

HY(k, n, r). (2.39)

In view of previously established members, the matrix flux has the following form:

ΩHY(k, n, r) =
∞∑
k=0

∞∑
n=0

HY(k, n, r)

=
2er

π
+ 2er + 8er + 12πer + 64π(er − 1) + 120π2(er − r − 1)

+ 768π2

(
er + r − r2

2
+ 1

)
+

∞∑
n=0

1680π3rn+4

Γ(n + 5)
+

∞∑
n=0

12288π3rn+5

Γ(n + 6)
+ · · · .

(2.40)

The equivalence of the orthogonal dimensional fluxes means the equality of the double series

ΦHY(k, n, r) = ΩHY(k, n, r). (2.41)
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So, for example, for r = 1 the dimensional fluxes have the unambiguous numerical value that
is:

ΦHY(k, n, 1) = ΩHY(k, n, 1) = 52812.977966365550. (2.42)

2.6. The Application of the Recurrent Operators with Defining the Diagonal
Dimensional Fluxes of the HY Function

In the previous analyses the defining of the dimensional fluxes of the matrix M[HY]k,n is
performed in view of the adding up of the HY function value for (on) the columns, in
other words, the series of this matrix. The more detailed analysis would be very ample
including the exponential function, then error functions erf(z), erfc(z), erfi(z), the incomplete
gamma function Γ(a, z) and the like. When we use the ideas of transition operators from
the reference function into the destined HY function, in the functional hypercylindrical
matrixM[HY]k,n we can also establish the dimensional fluxes values on the diagonals (2.44),
whose total would present the whole flux for the matrix in the field of freedom degrees for
natural numbers, that is, k, n ∈ N. Such matrix contains infinite number of elements. For
reference functions we take HY functions on the positions of the first series of the matrix,
and they are so-called zero HY functions: HY(0, 0, r),HY(0, 1, r), . . . ,HY(0, n, r), . . . The
destined functions are arranged on the “gradual” growth law (+Δk) and decrease (−Δn) of
increments.

Definition 2.2. The flux series operator ϑ(Δk,Δn, 0) is defined by the relation

ϑ(Δk,Δn, 0) =
HY(k + Δk, n + Δn, r)

HY(k, n, r)

=
πΔk/2rΔk+ΔnΓ(k + n − 2)Γ(k + Δk + 1)

Γ(k + 1)Γ(k + n + Δk + Δn − 2)Γ((k + Δk + 1)/2)
Γ
(
k + 1
2

)
.

(2.43)

0 1 2 3 4 5 6

0

1

2

3

4

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
2
π

2
π
r

1
π
r2

1
3π

r3 · · ·

· · ·

0 0 2 2r r2
1
3
r3

1
12

r4 · · ·

0 8 8r 4r2
4
3
r3

1
3
r4

1
15

r5 · · ·

12π 12πr 6πr2 2πr3
π

2
r4

π

10
r5

π

60
r6 . . .

64πr 32πr2
32π
3

r3
8π
2

r4
8π
15

r5
4π
45

r6
4π
315

r7 · · ·

60π2r2 20π2r3 5π2r4 π2r5
π2

6
r6

4π2

42
r7

π2

336
r8 · · ·

...
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

k

(2.44)
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Meanwhile, as increments for the absolute value are mutually equal and unit ones, that is,
|Δk| = | −Δn| = 1, to them is assigned a new joint argument u (Δk = Δn = u). In addition, the
starting value of the k-og freedom degree states k = 0, so the theta operator gets the form

θ(u,−u, 0) = 2u
√
πuΓ
(u
2
+ 1
)
. (2.45)

The destined function is now calculated as

HY(u, n − u, r) = θ(u,−u, 0) ·HY(0, n, r) =
2u+1

√
πu−2rn−3

Γ(n − 2)
Γ
(u
2
+ 1
)
. (2.46)

The dimensional flux on the diagonal presents the total of ist particular nembers. So, for the
first diagonal (with the mark 〈0〉) flux is equal

Π〈0〉(k, n, r) = HY(0, 0, r) = 0, (2.47)

then for the second,

Π〈1〉(k, n, r) = HY(0, 1, r) +HY(1, 0, r) = 0. (2.48)

For the third,

Π〈2〉(k, n, r) = HY(0, 2, r) +HY(1, 1, r) +HY(2, 0, r) = 0. (2.49)

Or for the fourth,

Π〈3〉(k, n, r) = HY(0, 3, r) +HY(1, 2, r) +HY(2, 1, r) +HY(3, 0, r) = 10 +
2
π

+ 12π. (2.50)

The flux in the nth diagonal would be reckoned in the sum form

Π〈n〉(k, n, r) =
n∑
u=0

HY(u, n − u, r) = rn−3

Γ(n − 2)

n∑
u=0

2u+1
√
πu−2Γ

(u
2
+ 1
)

(n/= 2). (2.51)

The flux for the value n = 2 is calculated on the basis of the highest function value.
Considering that the equivalence of the double factorial and trigonometric functions [18]
is known

u!! = 2(1/4)[1+2u−cos(πu)]π(1/4)[ cos(πu)−1]Γ
(u
2
+ 1
)
. (2.52)

The expression (2.19) can after settling be written as well in the equivalent form

Π〈n〉(k, n, r) =
rn−3

(n − 3)!

n∑
u=0

u!!
4

√
(2π)2u

(
2
π

)3+cos(πu)

. (2.53)
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So, we get for the fifth diagonal (n = 4), using the expressions (2.51) or (2.53)

Π〈4〉(k, n, r) =
n∑
u=0

HY(u, n − u, r) = 2r
π

(
5π + 38π2 + 1

)
. (2.54)

For the sixth diagonal (n = 5) follows:

Π〈5〉(k, n, r) =
n=5∑
u=0

HY(u, n − u, r) = r2

π

(
5π + 38π2 + 60π3 + 1

)
. (2.55)

As the number of diagonals is infinite, the total flux is formed as the series of all diagonal
fluxes

ΠHY(k, n, r) =
∞∑
n=0

Π〈n〉(k, n, r), or concretely,

ΠHY(k, n, r) =
∞∑
n=0

n∑
u=0

HY(u, n − u, r) =
∞∑
n=0

(
rn−3

Γ(n − 2)

n∑
u=0

2u+1
√
πu−1Γ

(
u + 1
2

))
.

(2.56)

For example, approximately, the flux for r = 1 and n = 11 it concretely is

ΠHY(k, 11, 1) =
109601
20160π

+
109601
4032

+
1437299
10080

π +
426437
1680

π2 +
58497
280

π3 +
2901
28

π4 +
33
2
π5.

(2.57)

In the developed, form the total flux has the polynominal structure of members

ΠHY(k, n, r) = 10 +
2
π

+ 12π + r
(
10 +

2
π

+ 76π
)
+ r2
(
5 +

1
π

+ 38π + 60π2
)

+ r3
(
5
3
+

1
3π

+
38
3
π + 148π2

)
+ r4
(

5
12

+
1

12π
+ 37π2 + 70π3

)

+ r5
(

1
12

+
1

60π
+
19
30
π +

37
5
π2 +

582
5
π3 +

1
12

)

+ r6
(

1
72

+
1

360π
+

19
180

π +
37
30
π2 +

97
5
π3 + 42π4

)
+ · · · .

(2.58)

The diagonal flux of the hypercylindrical function can be expressed by the series of general
form

ΠHY(v, r) =
∞∑
v=0

avr
v. (2.59)

Here, r is the summation index with which we take into consideration the order of elements
from left to right and from top to bottom on (along) the diagonal (Figure 3). The polynomial
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0

1

2

u

n
HY (u, n − u, r)

HY (0 + 2∆k, n − 2∆n, r)

HY (0 + ∆k, n −∆n, r)

HY (0, n, r)

. .
.

. . .

Figure 3: The representative submatrix (above) and the addition principle of the matrix members on the
diagonal.

coefficients contain the rational numbers and the graded constant π (Table 3). The first three
coefficients are equal to zero, so they are not put in the summation sequence. Its other values
are (v = 0, 1, . . . , 12) given in Table 3.

The series approximation with 13 coefficients in the decimal notation is in the form

12∑
v=0

avr
v ≈ 48, 33 + 249, 4r + 716, 87r2 + 1502, 27r3 + 2546, 01r4 + 3684, 24r5

+ 4705, 22r6 + 5422, 03r7 + 5727, 08r8 + 5610, 38r9 + 5143, 66r10

+ 4445, 23r11 + 3642, 42r12.

(2.60)

Approximately, the double series leads us to the solution that is very near to the correct one.
Namely, for the unit radius and reducing on∞ ∼ n = 30 the double series of the diagonal flux
develops the following structure:

ΠHY(u, n, 1) ≈
n=30∑
n=0

n∑
u=0

HY(u, n − u, r)

=
739975398988375932899873137
27222173626045880401920000

+
739975398988375932899873137
136110868130229402009600000

π−1

+
510736042137463255831073137
3581864950795510579200000

π

+
238514305877004451811873137
11342572344185783500800000

π2 +
395025082463267992919694289
1890428724030963916800000

π3

+
103021449478899595399537
986310638624850739200

π4

+
3457149785418899743999223
94521436201548195840000

π5 +
2633045028485350315237
270061246290137702400

π6

+
7044091324892514823027
3375765578626721280000

π7
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+
9964355179641216157
26791790306561280000

π8 +
354387723451762783
6251417738197632000

π9

+
1285336197080807
170493211041753600

π10 +
14026248671711

15786408429792000
π11

+
513480360467

5464525994928000
π12 +

3516397543
390323285352000

π13 +
101418347

130107761784000
π14

≈ 52810, 5103716.

(2.61)

The diagonal dimension flux is characteristic with its coefficients that contain the πn constant
in the graded series numbers, as distinguished from the vertical fluxes with the destination
of the errors functions and π and e constants. The horizontal fluxes, as it is presented (2.40)
contain the exponential functions. Meanwhile, the total flux for the unit radius is convergent
and it can be calculated with considerably greater value. The value aberration (2.61) of the
accurate value is only (or 0,00467%)

ΔΠ = 52812, 97796636 − 52810, 5103716 ≈ 2, 467595. (2.62)

The whole dimensional continual flux (k, n ∈ N) of the unit hypercylindrical function
HY(k, n, 1) is equal to the value of the twofold integral

∫∫∞

0

2
√
πk−1Γ(k + 1)

Γ(k + n − 2)Γ((k + 1)/2)
dk dn, (2.63)

and we find its solution on the analytical and numerical bases.

3. Conclusion

On view of the supposition of recurrent relations (1.2), namely, (2.25) and (2.26) that exist
in the scope of the hypercylindrical function, we can calculate the discrete dimension flux
of this function in the domain of integer freedom degrees. The quantitative flux value at
the most depends of the formulated value of the hypercylinder radius. Meanwhile, as the
function HY(k, n, r) is the three variables function, its dependence is by all means restricted
by the values of k variables, namely n. In the paper are calculated several continual fluxes
for the contour hypercylindrical functions, in view of Ramanujan-Hardy’s integrals. With the
continual flux in the domain k, n ∈ 0,∞ the problem is more complex, because we must, for
its defining, to perform the twofold integration (2.63). Although it is not yet calculated, we
suppose that its value is very close to the discrete flux, obtained in view of the double series.

Calculating the dimensional flux by the diagonal algorithm is much simpler and faster
by computer, because the total flux is now defined as the convergent graded series and does
not contain as components the special functions. In any case its value is identical with the
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Table 3

v av- polynomial coefficient
∑

v avr
v

0 10 +
2
π

+ 12π

1
2
π

+ 10 + 76π

2
1
π

+ 5 + 38π + 60π2

3
1
3π

+
5
3
+
38π
3

+ 148π2

4
1

12π
+

5
12

+
19π
6

+ 37π2 + 70π3

5
1

60π
+

1
12

+
19π
30

+
37π2

5
+
582π3

5

6
1

360π
+

1
72

+
19π
180

+
37π2

30
+
97π3

5
+ 42π4

7
1

2520π
+

1
504

+
19π
1260

+
37π2

210
+
97π3

35
+
1150π4

21

8
1

20160π
+

1
4032

+
19π
10080

+
37π2

1680
+
97π3

280
+
575π4

84
+
33π5

5

9
1

181440π
+

1
36288

+
19π
90720

+
37π2

15120
+
97π3

2520
+
575π4

756
+
2279π5

126

10
1

1814400π
+

1
362880

+
19π

907200
+

37π2

151200
+

97π3

25200
+
115π4

1512
+
2279π5

1260
+
143π6

30

11
1

19958400π
+

1
3991680

+
19π

9979200
+

37π2

1663200
+

97π3

277200
+
115π4

16632
+
2279π5

13860
+
905π6

198

12
1

47900160
+

1
239500800π

+
19π

119750400
+

37π2

19958400
+

97π3

3326400
+

115π4

199584
+
2279π5

166320
+
905π6

2376
+
13π7

12

fluxes that are calculated on the basis of the series, relatively to HY-matrix columns, so there
is valid the numerically verified statement that

ΦHY(k, n, r) = ΩHY(k, n, r) = ΠHY(k, n, r)|r=1 = 52812.977966365550. (3.1)

In any case, this solution is initial for solving the other dimensional fluxes, both for hypercyl-
indrical and hyperspherical [3, 19], in other words hypercube function [20].
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[17] D. Letić andN. Cakić, Srinivasa Ramanujan: The Prince of Numbers, Computer Library, Belgrade, Serbia,

2010.
[18] http://mathworld.wolfram.com/DoubleFactorial.html.
[19] http://mathworld.wolfram.com/Hypersphere.html.
[20] http://mathworld.wolfram.com/Hypercube.html.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


