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By applying hybrid inclusion and disclusion systems (HIDS), we establish several vectorial
variants of system of Ekeland’s variational principle on topological vector spaces, some existence
theorems of system of parametric vectorial quasi-equilibrium problem, and an existence theorem
of system of the Stampacchia-type vectorial equilibrium problem. As an application, a vectorial
minimization theorem is also given. Moreover, we discuss some equivalence relations between
our vectorial variant of Ekeland’s variational principle, common fixed point theorem, andmaximal
element theorem.

1. Introduction

Let X be a nonempty subset of a topological space (t.s., for short), and let f : X × X → R be
a function with f(x, x) ≥ 0 for all x ∈ X. Then the scalar equilibrium problem in the sense
of Blum and Oettli [1] is to find x ∈ X such that f(x, y) ≥ 0 for all y ∈ X. The equilibrium
problem was extensively investigated and generalized to the vectorial equilibrium problems
for single-valued or multivalued maps and contains optimization problems, variational
inequalities problems, saddle point problems, the Nash equilibrium problems, fixed point
problems, complementary problems, bilevel problems, and semi-infinite problems as special
cases and have some applications in mathematical program with equilibrium constraint; for
detail one can refer to [1–4] and references therein.

The famous Ekeland’s variational principle (EVP, for short) [5–7] is a forceful tool
in various fields of applied mathematical analysis and nonlinear analysis. A number of
generalizations in various different directions of these results for functions defined in metric
(or quasimetric) spaces and more general in topological vector spaces have been investigated
by several authors in the past; see [8–23] and references therein. It is wellknown that
the original EVP is equivalent to Caristi’s fixed point theorem, to Takahashi’s nonconvex
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minimization theorem; and to the flower petal theorem for detail, see [14, 16–18, 20] and
references therein. EVPs were extended to the vector case by using scalarization method
and were applied to the study of efficiency (or approximative efficiency) and others; see,
for example, [3, 8, 9, 12, 13, 15, 23].

Recently, the author first studied the following mathematical model about hybrid
inclusion and disclusion systems (HIDS, for short) [11]. Let I be any index set. For each i ∈ I,
let Yi be a nonempty closed convex subset of a Hausdorff topological vector space (t.v.s., for
short) Vi, Hi ⊆ Yi, Y =

∏
i∈IYi, Ai : Y � Yi, and let Ti : Y � Yi be multivalued maps. Hybrid

inclusion and disclusion systems (HIDS) are defined as follows:

(HIDS) Find v = (v)i∈I ∈ Y such that vi ∈ Hi,

yi /∈ Ai(v), ∀yi ∈ Ti(v), ∀i ∈ I.
(1.1)

In fact, HIDS contains several important problems as special cases. Let X be a
nonempty subset of a topological space E, and let u ∈ X be given. For each i ∈ I, let Ui

and Zi be real t.v.s. with zero vector θUi and θZi , respectively.

Example 1.1. For each i ∈ I, let Fi : X ×Yi → R and Gi : Y ×Yi → R be functions. IfHi andAi

are defined as follows:

Hi =
{
yi ∈ Yi : Fi

(
u, yi

) ≤ 0
}
,

Ai

(
y
)
=
{
zi ∈ Yi : Gi

(
y, zi

) ≤ 0
}
,

(1.2)

then HIDS will reduce to the following system of hybrid scalar equilibrium problem (P1):

(P1) Find v = (v)i∈I ∈ Y such that Fi(u, vi) ≤ 0 and Gi(v, yi) > 0 for all yi ∈ Ti(v) and for
all i ∈ I.

Example 1.2. For each i ∈ I, let Fi : X × Yi � Ui and Gi : Y × Yi � Zi be multivalued maps
with nonempty values, and let Ci and Di be nonempty subsets of Ui and Zi, respectively. If
Hi and Ai are defined as follows:

Hi =
{
yi ∈ Yi : Fi

(
u, yi

) ∩ (−Ci \ {θUi}) = ∅},

Ai

(
y
)
=
{
zi ∈ Yi : Gi

(
y, zi

) ∩ (−Di \ {θZi}) = ∅},
(1.3)

then HIDS will reduce to the following problem (P2), which is an abstract equilibrium
problem:

(P2) Find v = (v)i∈I ∈ Y such that Fi(u, vi) ∩ (−Ci \ {θUi}) = ∅ and Gi(v, yi) ∩ (−Di \
{θZi})/= ∅ for all yi ∈ Ti(v) and for all i ∈ I.

Example 1.3. For each i ∈ I, let Fi : Yi � Ui and Gi : Y × Yi � Zi be multivalued maps. If Hi

and Ai are defined as follows:

Hi =
{
yi ∈ Yi : yi ∈ Fi

(
yi

)}
,

Ai

(
y
)
=
{
zi ∈ Yi : y /∈ Gi

(
y, zi

)}
,

(1.4)
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then HIDS will reduce to the following fixed point problem (P3):

(P3) Find v = (v)i∈I ∈ Y such that vi ∈ Fi(vi) and v ∈ Gi(v, yi) for all yi ∈ Ti(v) for all
i ∈ I.

Example 1.4. For each i ∈ I, let Fi : X × Yi � Ui and Gi : Y × Yi � Zi be multivalued maps
with nonempty values. If Hi and Ai are defined as follows:

Hi =
{
yi ∈ Yi : θUi /∈ Fi

(
u, yi

)}
,

Ai

(
y
)
=
{
zi ∈ Yi : θZi /∈ Gi

(
y, zi

)}
,

(1.5)

then HIDS will reduce to the following system of mixed type of parametric variational
inclusion and disclusion problem (P4):

(P4) Find v = (v)i∈I ∈ Y such that θUi /∈ Fi(u, vi) and θZi ∈ Gi(v, yi) for all yi ∈ Ti(v) and
for all i ∈ I.

In this paper, we study the existence theorems of system of parametric vectorial
quasi-equilibrium problems, vectorial variants of system of Ekeland’s variational principle
(VSEVP, for short), and the existence theorems of system of the Stampacchia-type vectorial
equilibrium problem by using an HIDS theorem established by the author [11]. Our results
improve and generalize some theorems in [19] to the vector case. Till now, to my knowledge,
there are extremely few results about Stampacchia-type vectorial equilibrium problem in the
literature. The existence of VSEVP and the Stampacchia-type vectorial equilibrium problem
are established by applying the HIDS theorem without the use of any scalarization method.
So our results are completely different from [3, 8, 9, 12, 13, 15, 23]. As an application,
a vectorial minimization theorem is also proved. Moreover, we prove some equivalence
relations between our VSEVP, common fixed point theorem, and maximal element theorem.

2. Preliminaries

Let A and B be nonempty sets. A multivalued map T : A � B is a function from A to the
power set 2B of B. We denote T(A) =

⋃{T(x) : x ∈ A} and let T− : B � A be defined by the
condition that x ∈ T−(y) if and only if y ∈ T(x). We recall that a point x ∈ A is a maximal
element of T : A → 2B if T(x) = ∅. Let X be a linear space with zero vector θ. A nonempty
subset C of X is called a convex cone if C + C ⊆ C and λC ⊆ C for all λ ≥ 0. A cone C in X is
pointed if C ∩ (−C) = {θ}. Let Z be a real t.v.s., and let D be a proper convex cone in Z, and
A ⊆ Z. A point y ∈ A is called a vectorial minimal point of A with respect to D if for any
y ∈ A, y − y /∈ −D \ {θ}. The set of vectorial minimal point of A is denoted by MinDA. The
convex hull of A and the closure of A are denoted by coA and clA, respectively.

Definition 2.1. Let X and Y be linear spaces, and let C be a proper convex cone in Y . A map
f : X � Y is called C-convex if for any x1, x2 ∈ X and λ ∈ [0, 1], one has

λf(x1) + (1 − λ)f(x2) − f(λx1 + (1 − λ)x2) ⊆ C. (2.1)

Clearly, if f1 and f2 are C-convex and α ≥ 0, then αf1 and f1 + f2 are C-convex.
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Definition 2.2. Let X be a nonempty convex subset of a vector space E, let Y be a nonempty
convex subset of a vector space V , and let Z be a real t.v.s. Let F : X × Y � Z and C : X � Z
be multivalued maps such that for each x ∈ X, C(x) is a nonempty closed convex cone. For
each fixed x ∈ X, y � F(x, y) is called C(x)-quasiconvex if for any y1, y2 ∈ Y and λ ∈ [0, 1],
one has either

F
(
x, y1

) ⊆ F
(
x, λy1 + (1 − λ)y2

)
+ C(x), (2.2)

or

F
(
x, y2

) ⊆ F
(
x, λy1 + (1 − λ)y2

)
+ C(x). (2.3)

Now, we define the concept of vectorial upper and lower semicontinuous on t.v.s.

Definition 2.3. Let X be a t.s., let Y be a t.v.s. with zero vector θ, and let C/= {θ} be a pointed
convex cone in Y . A map f : X → Y is said to be

(i) vectorial lower semicontinuous with respect to C (C-v.l.s.c., for short) at x0 ∈ X if for
any a ∈ C \ {θ}, there exists an open neighborhood N(x0) of x0 such that f(y) −
f(x0) + a ∈ C \ {θ} for all y ∈ N(x0),

(ii) vectorial upper semicontinuous with respect to C (C-v.u.s.c., for short) at x0 ∈ X if for
any a ∈ C \ {θ}, there exists an open neighborhood N(x0) of x0 such that f(x0) −
f(y) + a ∈ C \ {θ} for all y ∈ N(x0).

The function f is called C-v.l.s.c. (resp., C-v.u.s.c.) on X if f is C-v.l.s.c. (resp., C-v.u.s.c.) at
every point of X.

Proposition 2.4. LetX be a t.s., let Y be a t.v.s with zero vector θ, and letC/= {θ} be a pointed convex
cone in Y . Let f , g : X → Y be maps and γ ≥ 0. Then the following hold:

(a) f is C-v.u.s.c. (resp., C-v.l.s.c.) on X ⇐⇒ −f is C-v.l.s.c. (resp., C-v.u.s.c.) on X;

(b) if f and g are C-v.u.s.c. (resp., C-v.l.s.c.) on X, then γf and f + g are C-v.u.s.c. (resp.,
C-v.l.s.c.) on X;

(c) if f is C-v.u.s.c. on X, then

(i) {x ∈ X : λ − f(x) ∈ C \ {θ}} is open in X for all λ ∈ Y ,
(ii) {x ∈ X : λ − f(x) /∈ C \ {θ}} is closed in X for all λ ∈ Y ;

(d) if f is C-v.l.s.c. on X, then

(iii) {x ∈ X : f(x) − λ ∈ C \ {θ}} is open in X for all λ ∈ Y ,
(iv) {x ∈ X : f(x) − λ /∈ C \ {θ}} is closed in X for all λ ∈ Y .

Proof. Clearly, (a) and (b) hold from definition. To prove (c), it suffices to show (i). Suppose
that f is C-v.u.s.c. on X. Let λ ∈ Y and x0 ∈ {x ∈ X : λ− f(x) ∈ C \ {θ}}. Then α := λ− f(x0) ∈
C \ {θ}. Since f is C-v.u.s.c. at x0, there exists an open neighborhood N(x0) of x0 such that

λ − f
(
y
)
= f(x0) − f

(
y
)
+ α ∈ C \ {θ} (2.4)
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for all y ∈ N(x0). Hence {x ∈ X : λ − f(x) ∈ C \ {θ}} is an open set in X and (i) is proved.
Obviously, (ii) is immediate from (i). It is easy to see that conclusion (d) follows from (a) and
(c).

Remark 2.5. Let X be a t.v.s. and α ∈ X with α/= 0X , where 0X is the origin of X. Let f : X →
Lα = {γα : γ ∈ R} be a map. Hence in conclusion (c) (resp., (d)) of Proposition 2.4, we have

f is C-v.u.s.c. on X ⇐⇒ (i) ⇐⇒ (ii)
(
resp., f is C-v.l.s.c. on X ⇐⇒ (iii) ⇐⇒ (iv)

)
.

(2.5)

In particular, if X = R (the set of real numbers) and C = [0,∞), then the C-v.l.s.c. (resp.
C-v.u.s.c.) function f : X → R is l.s.c. (resp. u.s.c.) in usual.

The concept of C-vectorial �-function and C-vectorial quasi-distance on topological
spaces are introduced as follows.

Definition 2.6. Let X and E be t.v.s., let θ be the zero vector of E, and let C/= {θ}, a pointed
convex cone in E. A map p : X ×X → E is called

(a) a C-vectorial �-function (�C-function, for short) if the following are satisfied:

(VL1) p(x, x) ∈ C for all x ∈ X;
(VL2) for any x ∈ X, p(x, ·) is C-convex;
(VL3) for any y ∈ X, p(·, y) is C-v.u.s.c.

(b) a C-vectorial quasi-distance if the following are satisfied:

(VQD1) p(x, x) ∈ C for all x ∈ X;
(VQD2) p(x, y) + p(y, z) ∈ p(x, z) + C for any x, y, z ∈ X;
(VQD3) for any x ∈ X, p(x, ·) is C-convex and C-v.l.s.c.;
(VQD4) for any y ∈ X, p(·, y) is C-v.u.s.c.

If E = (−∞,∞] and letting C = [0,∞) be in (a) and (b), then the function p :
X × X → (−∞,∞] is called a �-function and quasi-distance, respectively, introduced by
Lin and Du [19]. For examples and results of �-function and quasi-distance, one can see
[19].

Remark 2.7. (a) Obviously, a C-vectorial quasi-distance is a �C-function, but the reverse is not
true;

(b) if p1 and p2 are C-vectorial quasi-distances (resp., �C-functions) and α ≥ 0, then αp1
and p1 + p2 are C-vectorial quasi-distances (resp., �C-functions);

(c) if f : X → E is a C-v.l.s.c. and C-convex function, then the function p : X ×X → E
defined by p(x, y) = f(y) − f(x) is a C-vectorial quasi-distance.

Lemma 2.8 (see [24, 25]). Let X and Y be the Hausdorff topological spaces, and let T : X � Y be a
multivalued map. Then T is l.s.c. at x ∈ X if and only if for any y ∈ T(x) and for any net {xα} in X
converging to x, there exists a subnet {xφ(λ)}λ∈Λ of {xα} and a net {yλ}λ∈Λ with yλ → y such that
yλ ∈ T(xφ(λ)) for all λ ∈ Λ.
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3. The Existence of System of VSEVP and
Abstract Equilibrium Problems

The following existence theorem for the solution of HIDS was established in [11].

Theorem 3.1 (HIDS theorem [11]). Let I be any index set. For each i ∈ I, let Yi be a nonempty
closed convex subset of a Hausdorff t.v.s. Vi. Let X be a nonempty subset of a topological space E,
Y =

∏
i∈IYi and u ∈ X. For each i ∈ I, let Hi be a nonempty closed subset of Yi, let Ai : Y � Yi be

a multivalued map, and let Ti : Y � Yi be a multivalued map with nonempty values. For each i ∈ I,
suppose that the following conditions are satisfied:

(i) for each y = (yi)i∈I ∈ Y, yi /∈ Ai(y);

(ii) for each y ∈ Y , co Ti(y) ⊆ Hi and Ai(y) is convex;

(iii) for each zi ∈ Yi, T−
i (zi) and A−

i (zi) are open in Y ;

(iv) there exist a nonempty compact subsetK of Y and a nonempty compact convex subsetMi of
Yi for each i ∈ I such that for each y ∈ Y \K there exist j ∈ I and zj ∈ Mj ∩Tj(y)∩Aj(y).

Then there exists v = (vi)i∈I ∈ Y such that for each i ∈ I, vi ∈ Hi and yi /∈ Ai(v) for all yi ∈ Ti(v).

Example 3.2. Let X and Y be Hausdorff t.v.s., let U be a real t.v.s. with its zero vector θ, and
u ∈ X.

(a) Let F : X × Y � U be a multivalued map with nonempty values such that there
exists w = w(u) ∈ Y such that θ ∈ F(u,w) and the map y � F(u, y) is closed. Then it is easy
to see that H = {y ∈ Y : θ ∈ F(u, y)} is a nonempty closed subset of Y .

(b) Let G : Y × Y � U be a multivalued map with nonempty values and W be a
nonempty open set inU. Suppose that

(i) for each y ∈ Y, θ /∈ G(y, y) +W ,

(ii) for each y ∈ Y, G(y, ·) is {θ}-quasiconvex and for each z ∈ Y , G(·, z) is l.s.c.
Let A : Y � Y be defined by

A
(
y
)
=
{
z ∈ Y : θ ∈ G

(
y, z

)
+W

}
. (3.1)

Then y /∈ A(y) for each y ∈ Y . We claim that A−(z) is open in Y for each z ∈ Y . Indeed,
let z ∈ Y be given, and let y ∈ cl(Y \ A−(z)). Then there exists a net {yα}α∈Λ in Y \ A−(z)
such that yα → y. Thus we have θ /∈ G(yα, z) + W or G(yα, z) ⊆ U \ W . Clearly, y ∈ Y .
For any w ∈ G(y, z), since G(·, z) is l.s.c. at y and yα → y, by Lemma 2.8, there exists a net
{wα} with wα → w such that wα ∈ G(yα, z) ⊆ U \W . Since U \W is closed, w ∈ U \W . So
G(y, z) ⊆ U \ W . It implies cl(Y \ A−(z)) = Y \ A−(z), and hence A−(z) is open in Y . Next,
we show that for each y ∈ Y , A(y) is convex. Let a, b ∈ A(y). Then θ ∈ G(y, a) + W and
θ ∈ G(y, b) + W . For any λ ∈ [0, 1], let eλ := λa + (1 − λ)b ∈ Y . Suppose to the contrary that
there exists λ0 ∈ (0, 1) such that θ /∈ G(y, eλ0)+W . By the {θ}-quasiconvexity of G(y, ·), either

θ ∈ G
(
y, a

)
+W ⊆ G

(
y, eλ0

)
+W (3.2)

or

θ ∈ G
(
y, b

)
+W ⊆ G

(
y, eλ0

)
+W, (3.3)

which leads to a contradiction. Hence for each y ∈ Y , A(y) is convex.
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Applying Theorem 3.1, we establish the following existence theorem of system of
parametric vectorial quasi-equilibrium problem.

Theorem 3.3. Let I be any index set. For each i ∈ I, let Xi be a nonempty Hausdorff t.v.s., and let
Ci /= {θ} be a pointed convex cone in a t.v.s. E with zero vector θ. Let X =

∏
i∈IXi. For each i ∈ I, let

pi, qi : Xi × Xi → E be Ci-vectorial quasi-distances and let Ti : X � Xi be a multivalued map with
nonempty values. Let u = (ui)i∈I ∈ X with pi(ui, ui) = qi(ui, ui) = θ for all i ∈ I. For each i ∈ I,
suppose that the following conditions are satisfied:

(i) for each y ∈ X, co Ti(y) ⊆ {xi ∈ Xi : qi(ui, xi) /∈ Ci \ {θ}} and T−
i (zi) is open for all

zi ∈ Xi;

(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩Tj(y) such
that pj(yj, zj) ∈ −Cj \ {θ}.

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) qi(ui, vi) /∈ Ci \ {θ},
(b) pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ Ti(v).

Proof. For each i ∈ I, define Fi : X ×Xi � E and Gi : X ×X ×Xi � E by

Fi

(
x, yi

)
= −qi

(
xi, yi

)
+ Ci \ {θ}, ∀(x, yi

) ∈ X ×Xi, (3.4)

G
(
t, x, yi

)
= pi

(
xi, yi

)
+ Ci \ {θ}, ∀(t, x, yi

) ∈ X ×X ×Xi, (3.5)

respectively. Thus, for each i ∈ I, we let

Hi := {xi ∈ Xi : θ /∈ Fi(u, xi)} =
{
xi ∈ Xi : qi(ui, xi) /∈ Ci \ {θ}

}
, (3.6)

and let Ai : X � Xi be defined by

Ai(x) =
{
yi ∈ Xi : θ ∈ Gi

(
u, x, yi

)}

=
{
yi ∈ Xi : pi

(
xi, yi

) ∈ −Ci \ {θ}
}
, ∀x = (xi)i∈I ∈ X.

(3.7)

Clearly, for each i ∈ I, θ /∈ Gi(u, x, xi) for all x = (xi)i∈I ∈ X, and hence xi /∈ Ai(x) for all
x = (xi)i∈I ∈ X. By the Ci-vectorial lower semicontinuity of qi(ui, ·), Hi is a nonempty closed
subset of Xi. By (i), for each x ∈ X, co Ti(x) ⊆ Hi. For each yi ∈ Xi, by the vectorial upper
semicontinuity of pi(·, yi), the set {xi ∈ Xi : pi(xi, yi) ∈ −Ci \ {θ}} is open in Xi, and hence
A−

i (yi) = {xi ∈ Xi : qi(xi, yi) ∈ −Ci \ {θ}} × ∏
j /= iXj is open in X. For each x ∈ X, Ai(x) is

convex from the Ci-convexity of pi(xi, ·) for all i ∈ I. By (ii), there exist a nonempty compact
subset K of X and a nonempty compact convex subset Mi of Xi for each i ∈ I such that for
each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩ Tj(y) ∩ Aj(y). Therefore all the conditions of
Theorem 3.1 are satisfied. Applying Theorem 3.1, there exists v = (vi)i∈I ∈ X such that:

(1) qi(ui, vi) /∈ Ci \ {θ},
(2) pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ Ti(v).
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Theorem 3.4. Let I, Xi, X, Ci, E, θ, Ti, and pi be the same as in Theorem 3.3. Let u = (ui)i∈I ∈ X
with pi(ui, ui) = θ for all i ∈ I. For each i ∈ I, suppose that the following conditions are satisfied:

(i) for each y ∈ X, co Ti(y) ⊆ {xi ∈ Xi : pi(ui, xi) /∈ Ci \ {θ}} and T−
i (zi) is open for all

zi ∈ Xi;

(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩Tj(y) such
that pj(yj, zj) ∈ −Cj \ {θ}.

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) pi(ui, vi) /∈ Ci \ {θ},
(b) pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ Ti(v) ∪ {zi ∈ Xi : pi(ui, zi) ∈ Ci \ {θ}}.

Proof. For each i ∈ I, let qi : Xi × Xi → E be defined by qi = pi. By Theorem 3.3, there exists
v = (vi)i∈I ∈ X such that for each i ∈ I, we have

(1) pi(ui, vi) /∈ Ci \ {θ},
(2) pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ Ti(v).

We claim that for each i ∈ I, pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ {zi ∈ Xi : pi(ui, zi) ∈
Ci \ {θ}}. For each xi ∈ {zi ∈ Xi : pi(ui, zi) ∈ Ci \ {θ}}, we have pi(ui, xi) ∈ Ci \ {θ}. If
pi(vi, xi) ∈ −Ci \ {θ}, then, by (VQD2) (in Definition 2.6(b)), we obtain

pi(ui, vi) ∈ pi(ui, xi) − pi(vi, xi) + Ci ⊆ Ci \ {θ}, (3.8)

which contradict with (1). Hence pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ Ti(v) ∪ {zi ∈ Xi : pi(ui, zi) ∈
Ci \ {θ}}, and the proof is completed.

Remark 3.5. (i) Let X be a nonempty Hausdorff t.v.s., and let C/= {θ} be a nonempty pointed
convex cone in a t.v.s. Ewith zero vector θ. If a map p : X×X → E satisfies that for each x ∈ X,
p(x, ·) isC-quasiconvex, then for each u ∈ Xwith p(u, u) = θ,Wu := {x ∈ X : p(u, x) /∈ C\{θ}}
is a nonempty convex subset in X.

(ii) In Theorem 3.3, if for each i ∈ I,Wi := {xi ∈ Xi : pi(ui, xi) /∈ Ci \ {θ}} is convex and
Ti(x) = Wi for all x ∈ X, then conclusion (b) can be replaced with conclusion (b)′, where

(b)′ pi(vi, xi) /∈ −Ci \ {θ}, for all xi ∈ Xi.

Since the sum of two Ci-vectorial quasi-distances is also a Ci-vectorial quasi-distance,
the following results related with system of VSEVP for vectorial quasi-distances in a
Hausdorff t.v.s. are immediate from Theorem 3.3.

Theorem 3.6. Let I, Xi, X, Ci, E, θ, Ti, and pi be the same as in Theorem 3.3. Let u = (ui)i∈I ∈ X
with pi(ui, ui) = θ for all i ∈ I. For each i ∈ I, let fi : Xi → E be a Ci-v.l.s.c. and Ci-convex function
and suppose that the following conditions are satisfied:

(i) for each y ∈ X, co Ti(y) ⊆ {xi ∈ Xi : fi(xi) − fi(ui) /∈ Ci \ {θ}} and T−
i (zi) is open for all

zi ∈ Xi;

(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩Tj(y) such
that pj(yj, zj) + fj(zj) − fj(yj) ∈ −Cj \ {θ}.
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Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) fi(vi) − fi(ui) /∈ Ci \ {θ},
(b) pi(vi, xi) + fi(xi) − fi(vi) /∈ −Ci \ {θ} for all xi ∈ Ti(v).

In Theorem 3.6, if E = (−∞,∞] and Ci = [0,∞) for all i ∈ I, then we have the following
result.

Corollary 3.7. Let I, Xi, X, and Ti be the same as in Theorem 3.3. For each i ∈ I, let fi : Xi →
(−∞,∞] be a l.s.c. and convex function and let pi : Xi × Xi → (−∞,∞] be a quasi-distance. Let
u = (ui)i∈I ∈ X with pi(ui, ui) = 0 for all i ∈ I. Suppose that the following conditions are satisfied:

(i) for each y ∈ X, co Ti(y) ⊆ {xi ∈ Xi : fi(xi) ≤ fi(ui)} and T−
i (zi) is open for all zi ∈ Xi;

(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩Tj(y) such
that pj(yj, zj) < fj(yj) − fj(zj).

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) fi(vi) ≤ fi(ui),

(b) pi(vi, xi) ≥ fi(vi) − fi(xi) for all xi ∈ Ti(v).

Theorem 3.8. Let I, Xi, X, Ci, E, θ, Ti, and pi be the same as in Theorem 3.3. Let u = (ui)i∈I ∈ X
with pi(ui, ui) = θ for all i ∈ I. For each i ∈ I, let fi : Xi → E be a Ci-v.l.s.c. and Ci-convex function
and suppose that the following conditions are satisfied:

(i) for each y ∈ X, co Ti(y) ⊆ {xi ∈ Xi : pi(ui, xi) + fi(xi) − fi(ui) /∈ Ci \ {θ}} and T−
i (zi) is

open for all zi ∈ Xi;

(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩Tj(y) such
that pj(yj, zj) + fj(zj) − fj(yj) ∈ −Cj \ {θ}.

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) pi(ui, vi) + fi(vi) − fi(ui) /∈ Ci \ {θ},
(b) pi(vi, xi) + fi(xi) − fi(vi) /∈ −Ci \ {θ} for all xi ∈ Ti(v) ∪ {zi ∈ Xi : pi(ui, zi) + fi(zi) −

fi(ui) ∈ Ci \ {θ}}.

Corollary 3.9. Let I, Xi, X, and Ti be the same as in Theorem 3.3. For each i ∈ I, let fi : Xi →
(−∞,∞] be a l.s.c. and convex function and pi : Xi × Xi → (−∞,∞] be a quasi-distance. Let
u = (ui)i∈I ∈ X with pi(ui, ui) = 0 for all i ∈ I. Suppose that the following conditions are satisfied:

(i) for each y ∈ X, co Ti(y) ⊆ {xi ∈ Xi : pi(ui, xi) ≤ fi(ui) − fi(xi)} and T−
i (zi) is open for

all zi ∈ Xi;

(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj ∩Tj(y) such
that pj(yj, zj) < fj(yj) − fj(zj).
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Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) pi(ui, vi) ≤ fi(ui) − fi(vi),

(b) pi(vi, xi) ≥ fi(vi) − fi(xi) for all xi ∈ Ti(v) ∪ {zi ∈ Xi : pi(ui, zi) > fi(ui) − fi(zi)}.

By using Theorem 3.1 again, we have the following result.

Theorem 3.10. Let I, Xi, X, Ci, E, θ, u, pi, and qi be the same as in Theorem 3.3. Suppose that there
exist a nonempty compact subset K of X and a nonempty compact convex subset Mi of Xi for each
i ∈ I such that for each y ∈ X \ K there exist j ∈ I and zj ∈ Mj such that qj(uj, zj) ∈ −Cj and
pj(yj, zj) ∈ −Cj \ {θ}. Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) qi(ui, vi) /∈ Ci \ {θ},
(b) pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ {zi ∈ Xi : qi(ui, zi) ∈ −Ci}.

Proof. For each i ∈ I, letHi and multivalued maps Fi, Gi, and Ai be defined as in the proof of
Theorem 3.3. For each i ∈ I, define Ti : X � Xi by

Ti(x) = Li :=
{
zi ∈ Xi : qi(ui, zi) ∈ −Ci

}
, ∀x ∈ X

⇐⇒ T−
i (zi) =

⎧
⎨

⎩

X if zi ∈ Li,

∅ if zi ∈ Xi \ Li.

(3.9)

Clearly, for each i ∈ I, T−
i (zi) is open in X for all zi ∈ Xi. By the Ci-convexity of qi(ui, ·), Li is

a nonempty convex subset of Xi for all i ∈ I. Since Li is convex in Xi and Li ⊆ Hi, we have
co Ti(x) ⊆ Hi for all i ∈ I. By our hypothesis, there exist a nonempty compact subset K of X
and a nonempty compact convex subset Mi of Xi for each i ∈ I such that for each y ∈ X \K
there exist j ∈ I and zj ∈ Mj ∩ Tj(y) ∩ Aj(y). Thus all the conditions of Theorem 3.1 are
satisfied, and the conclusion follows from Theorem 3.1.

Remark 3.11. In Theorem 3.10, the multivalued map Ti and the condition “for each y ∈ Y ,
co Ti(y) ⊆ {xi ∈ Xi : qi(ui, xi) /∈ Ci \ {θ}}” are not assumed. So Theorems 3.10 and 3.3 are
different.

Theorem 3.12. Let I, Xi, X, Ci, E, θ, and pi be the same as in Theorem 3.3. Let u = (ui)i∈I ∈ X
with pi(ui, ui) = θ for all i ∈ I. Suppose that there exist a nonempty compact subset K of X and a
nonempty compact convex subsetMi ofXi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I
and zj ∈ Mj such that pj(uj, zj) ∈ −Cj and pj(yj , zj) ∈ −Cj \{θ}. Then there exists v = (vi)i∈I ∈ X
such that for each i ∈ I, one has

(a) pi(ui, vi) /∈ Ci \ {θ},
(b) pi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ {zi ∈ Xi : pi(ui, zi) ∈ −Ci} ∪ {zi ∈ Xi : pi(ui, zi) ∈

Ci \ {θ}}.

Proof. For each i ∈ I, let qi = pi. Applying Theorem 3.10 and following the same argument as
in the proof of Theorem 3.4, one can prove the theorem.

Theorem 3.13. Let I, Xi, X, Ci, E, θ, and pi be the same as in Theorem 3.3. Let u = (ui)i∈I ∈ X with
pi(ui, ui) = θ for all i ∈ I. For each i ∈ I, let fi : Xi → E be a Ci-v.l.s.c. and Ci-convex function.
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Suppose that there exist a nonempty compact subset K of X and a nonempty compact convex subset
Mi of Xi for each i ∈ I such that for each y ∈ X \ K there exist j ∈ I and zj ∈ Mj such that
fj(zj)− fj(uj) ∈ −Cj and pj(yj, zj) + fj(zj)− fj(yj) ∈ −Cj \ {θ}. Then there exists v = (vi)i∈I ∈ X
such that for each i ∈ I, one has

(a) fi(vi) − fi(ui) /∈ Ci \ {θ},
(b) pi(vi, xi) + fi(xi) − fi(vi) /∈ −Ci \ {θ} for all xi ∈ {zi ∈ Xi : fi(zi) − fi(ui) ∈ −Ci}.

Corollary 3.14. Let I, Xi, and X be the same as in Theorem 3.3. For each i ∈ I, let fi : Xi →
(−∞,∞] be a l.s.c. and convex function and pi : Xi × Xi → (−∞,∞] be a quasi-distance. Let
u = (ui)i∈I ∈ X with pi(ui, ui) = 0 for all i ∈ I. Suppose that there exist a nonempty compact subset
K of X and a nonempty compact convex subset Mi of Xi for each i ∈ I such that for each y ∈ X \K
there exist j ∈ I and zj ∈ Mj such that fj(zj) ≤ fj(uj) and pj(yj, zj) < fj(yj) − fj(zj). Then there
exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has

(a) fi(vi) ≤ fi(ui),

(b) pi(vi, xi) ≥ fi(vi) − fi(xi) for all xi ∈ {zi ∈ Xi : fi(zi) ≤ fi(ui)}.

Remark 3.15. [19, Theorem 4.3] is a special case of Corollary 3.14.

Theorem 3.16. Let I, Xi, X, Ci, E, θ, and pi be the same as in Theorem 3.3. Let u = (ui)i∈I ∈ X
with pi(ui, ui) = θ for all i ∈ I. For each i ∈ I, let fi : Xi → E be a Ci-v.l.s.c. and Ci-convex
function, and suppose that there exist a nonempty compact subset K of X and a nonempty compact
convex subsetMi of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj such
that pj(uj, zj) + fj(zj) − fj(uj) ∈ −Cj and pj(yj, zj) + fj(zj) − fj(yj) ∈ −Cj \ {θ}. Then for each
u = (ui)i∈I ∈ X with pi(ui, ui) = θ for all i ∈ I, there exists v = (vi)i∈I ∈ X such that for each i ∈ I,
one has

(a) pi(ui, vi) + fi(vi) − fi(ui) /∈ Ci \ {θ},
(b) pi(vi, xi) + fi(xi) − fi(vi) /∈ −Ci \ {θ} for all xi ∈ {zi ∈ Xi : pi(ui, zi) + fi(zi) − fi(ui) ∈

−Ci} ∪ {zi ∈ Xi : pi(ui, zi) + fi(zi) − fi(ui) ∈ Ci \ {θ}}.

In Theorem 3.16, if E = (−∞,∞] and Ci = [0,∞) for all i ∈ I, then we have the following
system of Lin and Du’s variant of system of Ekeland’s variational principle in t.v.s.

Corollary 3.17. Let I, Xi, and X be the same as in Theorem 3.3. For each i ∈ I, let fi : Xi → E be a
l.s.c. and convex function and let pi : Xi × Xi → (−∞,∞] be a quasi-distance. Let u = (ui)i∈I ∈ X
with pi(ui, ui) = 0 for all i ∈ I. Suppose that there exist a nonempty compact subset K of X and a
nonempty compact convex subset Mi of Xi for each i ∈ I such that for each y ∈ X \ K there exist
j ∈ I and zj ∈ Mj such that pj(uj, zj) ≤ fj(uj) − fj(zj) and pj(yj, zj) < fj(yj) − fj(zj). Then for
each u = (ui)i∈I ∈ X with pi(ui, ui) = 0 for all i ∈ I, there exists v = (vi)i∈I ∈ X such that for each
i ∈ I, one has

(a) pi(ui, vi) ≤ fi(ui) − fi(vi),

(b) pi(vi, xi) ≥ fi(vi) − fi(xi) for all xi ∈ Xi.

Remark 3.18. Corollary 3.17 generalizes [19, Theorem 4.1].
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4. A Vectorial Minimization Theorem and Equivalent
Formulations of VSEVP

Using Theorem 3.1 again, we also obtain an existence theorem of system of generalized
vectorial equilibrium problem of the Stampacchia-type which can be regarded as a weak
form of VSEVP for C-vectorial �-function in a Hausdorff t.v.s.

Theorem 4.1. Let I be any index set. For each i ∈ I, let Xi be a nonempty Hausdorff t.v.s. and
Ci /= {θ} be a nonempty pointed convex cone in a t.v.s. E with zero vector θ. LetX =

∏
i∈IXi. For each

i ∈ I, let pi, qi : Xi ×Xi → E be �Ci-function. Suppose that

(i) L = {x = (xi)i∈I ∈ X : pi(xi, xi) = qi(xi, xi) = θ for all i ∈ I}/= ∅,
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj such that
pj(yj, zj) + qj(yj, zj) ∈ −Ci \ {θ}.

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has pi(vi, xi) + qi(vi, xi) /∈ −Ci \ {θ}
for all xi ∈ Xi.

Proof. Let u = (ui)i∈I ∈ L be given. For each i ∈ I, we define Fi : X×Xi � E,Gi : X×X×Xi � E
and Ai : X � Xi by

Fi

(
x, yi

)
= Ci \ {θ}, ∀(x, yi

) ∈ X ×Xi ,

G
(
t, x, yi

)
= pi

(
xi, yi

)
+ qi

(
xi, yi

)
+ Ci \ {θ}, ∀(t, x, yi

) ∈ X ×X ×Xi,
(4.1)

Ai(x) =
{
yi ∈ Xi : θ ∈ Gi

(
u, x, yi

)}
, ∀x = (xi)i∈I ∈ X, (4.2)

respectively. Clearly,

Hi := {xi ∈ Xi : θ /∈ Fi(u, xi)} = X, ∀i ∈ I. (4.3)

Using the same argument in the proof of Theorem 3.3, one can verify that all the conditions
of Theorem 3.1 are satisfied. By Theorem 3.1, there exists v = (vi)i∈I ∈ X such that for each
i ∈ I, we have pi(vi, xi) + qi(vi, xi) /∈ −Ci \ {θ} for all xi ∈ Xi.

An existence theorem of system of generalized vector equilibrium problem is
immediate from Theorem 4.1 if qi ≡ 0 (the zero map) for all i ∈ I.

Theorem 4.2. Let I be any index set. For each i ∈ I, let Xi be a nonempty Hausdorff t.v.s., and let
Ci /= {θ} be a nonempty pointed convex cone in a t.v.s. E with zero vector θ. LetX =

∏
i∈IXi. For each

i ∈ I, let pi : Xi ×Xi → E be a �Ci-function. Suppose that

(i) H = {x = (xi)i∈I ∈ X : pi(xi, xi) = θ for all i ∈ I}/= ∅;
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj such that
pj(yj, zj) ∈ −Ci \ {θ}.

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has pi(vi, xi) /∈ −Ci \ {θ} for all
xi ∈ Xi.
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Remark 4.3. (a) Notice that Theorems 4.1 and 4.2 are indeed equivalent since the sum of two
�Ci-functions is also a �Ci-function.

(b) In Theorem 4.1, themaps pi and qi are only assumed to be �Ci-functions which need
not be Ci-vectorial quasi-distances. So Theorem 4.1 is different from any theorem in Section 3
and is not a special case of any theorem in Section 3.

Theorem 4.4. Let I, Xi, X, Ci, E, and θ be the same as in Theorem 4.1. For each i ∈ I, let pi :
Xi × Xi → E be a �Ci-function and let fi : Xi → E be a Ci-v.l.s.c. and Ci-convex function. Suppose
that

(i) H = {x = (xi)i∈I ∈ X : pi(xi, xi) = θ for all i ∈ I}/= ∅,
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj such that
pj(yj, zj) + fj(zi) − fj(yi) ∈ −Cj \ {θ}.

Then there exists v = (vi)i∈I ∈ X such that for each i ∈ I, one has pi(vi, xi)+fi(xi)−fi(vi) /∈ −Ci\{θ}
for all xi ∈ Xi.

Remark 4.5. [19, Theorem 4.2] is a special case of Theorem 4.4.
Applying Theorem 4.4, we obtain the following vectorial minimization theorem.

Theorem 4.6 (vectorial minimization theorem). Let I, Xi, X, Ci, E, and θ be the same as in
Theorem 4.1. For each i ∈ I, let pi : Xi ×Xi → E be a �Ci-function and let fi : Xi → E be a Ci-v.l.s.c.
and Ci-convex function. Suppose that

(i) H = {x = (xi)i∈I ∈ X : pi(xi, xi) = θ for all i ∈ I}/= ∅,
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj such that
pj(yj, zj) + fj(zi) − fj(yi) ∈ −Cj \ {θ},

(iii) for i ∈ I and xi ∈ Xi with fi(xi) /∈ MinCifi(Xi), there exists yi ∈ Xi with yi /=xi such that
pi(xi, yi) + fi(yi) − fi(xi) ∈ −Ci \ {θ}.

Then there exists x̂ = (x̂i)i∈I ∈ X such that fi(x̂i) ∈ MinCifi(Xi) for all i ∈ I.

Proof. Applying Theorem 4.4, there exists v = (vi)i∈I ∈ X such that for each i ∈ I, we have
pi(vi, xi) + fi(xi) − fi(vi) /∈ −Ci \ {θ} for all xi ∈ Xi. We claim that fi(vi) ∈ MinCifi(Xi) for
all i ∈ I. Suppose to the contrary that there exists i0 ∈ I such that fi0(vi0) /∈ MinCi0

fi0(Xi0).
Then, by our assumption, there exists yi0 = yi0(vi0) ∈ Xi0 with yi0 /=vi0 such that pi0(vi0 , yi0) +
fi0(yi0) − fi0(vi0) ∈ −Ci0 \ {θ}, which leads to a contradiction. Therefore fi(vi) ∈ MinCifi(Xi)
for all i ∈ I.

The following scalar minimization theorem follows from Theorem 4.6 immediately.

Corollary 4.7. Let I,Xi, andX be the same as in Theorem 4.1. For each i ∈ I, let fi : Xi → (−∞,∞]
be a l.s.c. and convex function and let pi : Xi ×Xi → (−∞,∞] be a �-function. Suppose that

(i) D = {x = (xi)i∈I ∈ X : pi(xi, xi) = 0 for all i ∈ I}/= ∅,
(ii) there exist a nonempty compact subset K of X and a nonempty compact convex subset Mi

of Xi for each i ∈ I such that for each y ∈ X \K there exist j ∈ I and zj ∈ Mj such that
pj(yj, zj) < fj(yi) − fj(zi),



14 Abstract and Applied Analysis

(iii) for any i ∈ I and xi ∈ Xi with fi(xi) > infzi∈Xifi(zi) there exists yi ∈ Xi with yi /=xi such
that pi(xi, yi) < fi(xi) − fi(yi).

Then there exists x̂ = (x̂i)i∈I ∈ X such that fi(x̂i) = infzi∈Xifi(zi) for all i ∈ I.

Remark 4.8. (a) [19, Theorem 5.5] is a special case of Corollary 4.7.
(b) Theorems 4.4 and 4.6 are equivalent if they further add the condition “for each

i ∈ I, pi(xi, yi) ∈ Ci for all xi, yi ∈ Xi.” Indeed, it suffices to show that Theorem 4.6 implies
Theorem 4.4. Suppose that for each x = (xi)i∈I ∈ X, there exists ix ∈ I such that pix(xix , yix) +
fix(yix) − fix(xix) ∈ −Cix \ {θ} for some yix ∈ Xix with yix /=xix . Then, by Theorem 4.6, there
exists v = (vi)i∈I ∈ X such that fi(vi) ∈ MinCifi(Xi) or

fi(xi) − fi(vi) /∈ −Ci \ {θ}, ∀xi ∈ Xi, ∀i ∈ I. (4.4)

But from our assumption, there exists iv ∈ I such that

piv(viv ,wiv) + fiv(wiv) − fiv(viv) ∈ −Ci \ {θ} (4.5)

for some wiv ∈ Xiv with wiv /=viv . It follows that

fiv(wiv) − fiv(viv) ∈ −piv(viv ,wiv) − Ci \ {θ} ⊆ −Ci \ {θ}, (4.6)

which leads to a contradiction.

Now, we give some equivalent formulations of Theorem 4.1 (when I is a singleton) as
follows.

Theorem 4.9. Let X be a Hausdorff t.v.s., let C/= {θ} be a nonempty pointed convex cone in a t.v.s.
E with zero vector θ, p, q : X ×X → E be �C-functions. Suppose that

(1) R = {x ∈ X : p(x, x) = q(x, x) = 0}/= ∅,
(2) there exist a nonempty compact subsetK ofX and a nonempty compact convex subsetM of

X such that for each y ∈ X \K there exists z ∈ M such that p(y, z) + q(y, z) ∈ −C \ {θ}.

Then the following statements are equivalent.

(i) (Vectorial Variant of Ekeland’s Variational Principle). There exists v ∈ X such that
p(v, x) + q(v, x) /∈ −C \ {θ} for all x ∈ X.

(ii) (Common Fixed Point Theorem for a Family of Multivalued Maps). Let Λ be an index set.
For each i ∈ Λ, let Ti : X � X be a multivalued map with nonempty values such that for
each (i, x) ∈ Λ ×X with x /∈ Ti(x), there exists y = y(x, i) ∈ X with y /=x such that

p
(
x, y

)
+ q

(
x, y

) ∈ −C \ {θ}. (4.7)

Then there exists x0 ∈ X such that x0 ∈ ⋂
i∈Λ Ti(x0). That is, {Ti}i∈Λ has a common fixed

point in X.
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(iii) (Common Fixed Point Theorem for a Family of Single-Valued Maps). LetΛ be an index set.
For each i ∈ Λ, suppose that Ti : X → X is a self-map satisfying

p(x, Tix) + q(x, Tix) ∈ −C \ {θ}. (4.8)

for all x /= Ti(x). Then there exists x0 ∈ X such that Tix0 = x0 for all i ∈ Λ;

(iv) (Maximal Element Theorem for a Family of Multivalued Maps). Let Λ be an index set. For
each i ∈ Λ, let Ti : X � X be a multivalued map. Suppose that for each (i, x) ∈ Λ × X
with Ti(x)/= ∅, there exists y = y(x, i) ∈ X with y /=x such that

p
(
x, y

)
+ q

(
x, y

) ∈ −C \ {θ}. (4.9)

Then there exists x0 ∈ X such that Ti(x0) = ∅ for all i ∈ Λ.

Proof. By Theorem 4.1, conclusion (i) holds.

(a) “(i)⇐⇒ (ii)”

(⇒) By (i), there exists v ∈ X such that p(v, x)+q(v, x) /∈ −C \{θ} for all x ∈ X. We claim that
v ∈ Ti(v) for all i ∈ I. If v /∈ Ti0v for some i0 ∈ I, then, by hypothesis, there exists w(v, i0) ∈ X
with w(v, i0)/=v such that

p(v,w(v, i0)) + q(v,w(v, i0)) ∈ −C \ {θ}, (4.10)

which leads to a contradiction. Hence v ∈ ⋂
i∈I Ti(v) and v is a common fixed point of {Ti}i∈I .

(⇐) Suppose that for each x ∈ X, there exists y ∈ X with y /=x such that p(x, y) +
q(x, y) ∈ −C \ {θ}. Then for each x ∈ X, we can define a multivalued map T : X � X \ {∅} by

T(x) =
{
y ∈ X : p

(
x, y

)
+ q

(
x, y

) ∈ −C \ {θ}}. (4.11)

Clearly, x /∈ T(x) for all x ∈ X. But, by (ii), T has a fixed point v in X, a contradiction. So (i)
is true.

(b) “(ii)⇐⇒ (iii)”

(⇒) Suppose (ii) holds. Under the assumption of (iii), for each i ∈ I, let ϕi : X � X be
defined by ϕi(x) = {Ti(x)}. Then for each (i, x) ∈ I × X with x /∈ ϕi(x), we have x /= Ti(x). By
hypothesis of (iii), p(x, Tix) + q(x, Tix) ∈ −C \ {θ}. Therefore, by (ii), there exists v ∈ X such
that v ∈ ⋂

i∈I ϕi(v) or Tiv = v for all i ∈ I, and hence (iii) is proved.
(⇐) Assume (iii) holds. Under the assumption of (ii), for each (i, x) ∈ I × X with

x /∈ Ti(x), there exists y(x, i) ∈ X with y(x, i)/=x such that

p
(
x, y(x, i)

)
+ q

(
x, y(x, i)

) ∈ −C \ {θ}. (4.12)
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Define τi : X → X by

τi(x) =

⎧
⎨

⎩

x if x ∈ Ti(x),

y(x, i) if x /∈ Ti(x).
(4.13)

Hence τi is a self-map ofX intoX satisfying p(x, τi(x))+q(x, τi(x)) ∈ −C\{θ} for all x /= τi(x).
By (iii), there exists v ∈ X such that v = τi(v) ∈ Ti(v) for all i ∈ I. This shows that (iii) implies
(ii).

(c) ”(i)⇐⇒ (iv)”

(⇒) Using (i), there exists v ∈ X such that p(v, x) + q(v, x) /∈ −C \ {θ} for all x ∈ X. We want
to show that Ti(v) = ∅ for all i ∈ I. Suppose to the contrary that there exists i0 ∈ I such that
Ti0(v)/= ∅. By hypothesis of (iv), there exists w = w(v, i0) ∈ X with w/=v such that

p(v,w) + q(v,w) ∈ −C \ {θ}, (4.14)

which is a contradiction. Therefore Ti(v) = ∅ for all i ∈ I.
(⇐) Suppose that for each x ∈ X, there exists y ∈ X with y /=x such that p(x, y) +

q(x, y) ∈ −C \ {θ}. For each x ∈ X, define a multivalued map T : X � X \ {∅} by

T(x) =
{
y ∈ X : p

(
x, y

)
+ q

(
x, y

) ∈ −C \ {θ}}. (4.15)

Then T(x)/= ∅ for all x ∈ X. But applying (iv), there exists x0 ∈ X such that T(x0) = ∅, a
contradiction. Hence (i) holds.

Remark 4.10. Theorem 4.9 improves and generalizes Theorems 4.2, 5.1, 5.2, 5.3, and 5.4 in [19].
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