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We introduce a new iterative scheme for finding a common element of the set of solutions of an
equilibrium problem and the set of common fixed point of a finite family of k-strictly pseudo-
contractive nonself-mappings. Strong convergence theorems are established in a real Hilbert space
under some suitable conditions. Our theorems presented in this paper improve and extend the
corresponding results announced by many others.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let K be
a nonempty closed convex subset of H. Let F be a bifunction from K x K into R, where R
denotes the set of real numbers. We consider the following problem: Find x € K such that

F(x,y) >0, Vyek, (1.1)

which is called equilibrium problem. We use EP(F) to denote the set of solution of the
problem (1.1). Given a mapping T : K — H, let F(x,y) = (Tx,y — x) for all x,y € K.
Then, z € EP(F) if and only if (Tz,y — z) > 0 for all y € K; that is, z is a solution of the
variational inequality. Numerous problems in physics, optimization, and economics reduce to
find a solution of (1.1). Some methods have been proposed to solve the equilibrium problem
(see, e.g., [1-3]).
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Recall that a nonself-mapping T : K — H is called a k-strict pseudocontraction if
there exists a constant k € [0,1) such that

|Tx = Ty|)? < ||x-y|| + k|| -T)x - (I -T)y|’, VxyekK. (1.2)

We use F(T) to denote the fixed point set of the mapping T, that is, F(T) := {x € K : Tx = x}.
As k = 0, T is said to be nonexpansive, that is, ||[Tx - Ty|| < |lx — y||, forall x,y € K. T is
said to be pseudocontractive if k = 1 and is also said to be strongly pseudocontractive if there
exists a positive constant A € (0, 1) such that T + AI is pseudocontractive. Clearly, the class of
k-strict pseudocontractions falls into the one between classes of nonexpansive mappings and
pseudocontractions. We remark also that the class of strongly pseudocontractive mappings is
independent of the class of k-strict pseudocontractions (see, e.g., [4, 5]).

Iterative methods for equilibrium problem and nonexpansive mappings have been
extensively investigated; see, for example, [1-18] and the references therein. However,
iterative methods for strict pseudocontractions are far less developed than those for non-
expansive mappings though Browder and Petryshyn [5] initiated their work in 1967; the
reason is probably that the second term appearing in the right-hand side of (1.2) impedes
the convergence analysis for iterative algorithms used to find a fixed point of the strict
pseudocontraction T. On the other hand, strict pseudocontractions have more powerful
applications than nonexpansive mappings do in solving inverse problems (see, e.g., [6]).
Therefore, it is interesting to develop the theory of iterative methods for equilibrium problem
and strict pseudocontractions.

In 2007, Acedo and Xu [12] proposed the following parallel algorithm for a finite
family of k;-strict pseudocontractions {T;}~, in Hilbert space H:

N
Vxg € K, xp1=(1-ay)x, +a, Z AiTix,, (1.3)
i=1

where {a,} ¢ (0,1), and {A;}Y, is a finite sequence of positive numbers such that
SN A = 1. They proved that the sequence {x,} defined by (1.3) converges weakly to a
common fixed point of {T;}~, under some appropriate conditions. Moreover, by applying
additional projections, they further proved that algorithm can be modified to have strong
convergence.

Recently, S. Takahashi and W. Takahashi [13] studied the equilibrium problem and
fixed point of nonexpansive self-mappings T in Hilbert spaces by a viscosity approximation
methods for finding an element of EP(F)(F(T). Very recently, by using the general
approximation method, Qin et al. [14] obtained a strong convergence theorem for finding
an element of F(T). On the other hand, Ceng et al. [16] proposed an iterative scheme for
finding an element of EP(F) (\ F(T) and then obtained some weak and strong convergence
theorems.

In this paper, inspired and motivated by research going in this area, we introduce a
modified parallel iteration, which is defined in the following way:

F(un,y) +%<y—un,un—xn> >0, VyeKk,
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N
Yn = Xply + (1 - an) Z Ufn)Tiun/
i=1

Xn+l = ﬁnu + YnXn + (1 - ﬁn - Yn)yn/ n>0,
(1.4)

where u € K is a given point, {T;}; ;

contractive nonself-mappings, { 715") }j\]
and {y,} are some sequences in (0,1).

Our purpose is not only to modify the parallel algorithm (1.3) to the case of equilib-
rium problems and common fixed point for a finite family of k;-strictly pseudocontractive
nonself-mappings, but also to establish strong convergence theorems in a real Hilbert space
under some different conditions. Our theorems presented in this paper improve and extend

the main results of [9, 12-14, 16].

: K — H is a finite family of k;-strictly pseudo-

, is a finite sequences of positive numbers, {a,}, {f.},

2. Preliminaries

Let K be a nonempty closed and convex subset of a Hilbert space H. We use Pk to denote the
metric or nearest point projection of H onto K; that is, for x € H, Pxx is the only point in K
such that ||x — Pxx|| = inf{||x — z|| : z € K}. we write x, — x and x,, — x indicate that the
sequence {x,} convergence weakly and strongly to x, respectively.

It is well known that Hilbert space H satisfies Opial’s condition [8], that is, for any
sequence {x,} with x, — x and every y € H with y # x, we have

lim inf||x, — x|| <lim inf||x, - y/|. (2.1)
n— oo n— oo

To study the equilibrium problem (1.1), we may assume that the bifunction F of K x K
into R satisfies the following conditions.

(A1) F(x,x) =0 forall x e K.

(A2) F is monotone, thatis, F(x,y) + F(y,x) <0 forall x,y € K.

(A3) Foreach x,y,z € K, lim;_oF(tz+ (1 -t)x, y) < F(x,y).

(A4) For each x € K, y +— F(x,y) is convex and lower semi-continuous.

In order to prove our main results, we need the following Lemmas and Propositions.

Lemma 2.1 (see [1, 3]). Let F be a bifunction from K x K into R satisfying (A1)-(A4). Then, for
any r > 0and x € H, there exists z € K such that

F(z,y)+%<y—z,z—x)20, Yy e K. (2.2)

Further, if T,x = {z € K : F(z,y) + (1/r){(y —z,z—x) > 0, for all y € K}, then the following
holds.
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(1) T, is single-valued.

(2) T, is firmly nonexpansive, that is, ||T,x — Try||2 <(Tyx-T,y,x-y), forall x,y € H.
(3) F(T,) = EP(F).

(4) EP(F) is closed and convex.

Lemma 2.2 (see [7]). Let (E, (-, -)) be an inner product space. Then, forall x,y,z € Eand a, B,y €
[0,1] with a + p+y =1, we have

llax + By +yz|* = allxl + Blly|I* + vzl - apllx - y||* - ayllx - 2IP - pylly - z>.  (23)

Lemma 2.3 (see [19]). Let {x,} and {z,} be bounded sequence in Banach space E, and let {A,} be
a sequence in [0,1] such that 0 < liminf, A, <limsup,_, A, < 1. Suppose x,1 = Lyx, + (1 -
Ay)zy and

limsup([|zn+1 = Znll = |Xne1 = xal]) <0, VR 20. (2.4)

n— oo

Then lim,, , ||z, — x,|| = 0.

Lemma 2.4 (see [2, 10]). Let T : K — H be a k-strict pseudocontraction. For A € [k, 1), define
S:K — HbySx = Ax + (1 - \)Tx for each x € K. Then, as A € [k,1), S is a nonexpansive
mapping such that F(S) = F(T).

Lemma 2.5 (see [10]). If T : K — H is a k-strict pseudocontraction, then the fixed point set F(T)
is closed convex so that the projection Prry is well defined.

Lemma 2.6 (see [9]). Let K be a nonempty bounded closed convex subset of H. Given x € H and
z € K, then z = Pxx if and only if there holds the relation:

(x-z,z-y)>0, VyekK. (2.5)
Lemma 2.7 (see [20]). Assume {a,} is a sequence of nonnegative real numbers such that
Apt1 S (1 - Yn)an + Yn6nr n 2 0/ (26)

where {y,} is a sequence in (0,1) and {6, } is a real sequence such that
(i) X0 ¥n = o,
(i) imsup, , 6, <007 3720 [YnOn| < c0.

Then lim,, _, xa, = 0.

Proposition 2.8 (see, e.g., Acedo and Xu [12]). Let K be a nonempty closed convex subset of
Hilbert space H. Given an integer N > 1, assume that {T;}Y, : K — H is a finite family of k;-strict
pseudocontractions. Suppose that {\; )%, is a positive sequence such that YN, A; = 1. Then XN, \;T;
is a k-strict pseudocontraction with k = max{k; : 1 <i < N}.
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Proposition 2.9 (see, e.g., Acedo and Xu [12]). Let {Ti}f-\zj1 and {/\i}gl be given as in
Proposition 2.8 above. Then F(XY, \iT;) = NY, F(T;).

3. Main Results

Theorem 3.1. Let K be a nonempty closed convex subset of Hilbert space H, and let F be a bifunction
from K x K into R satisfying (A1)~(A4). Let (T;}~, : K — H be a finite family of k;-strict
pseudocontmctzons such that k = max{k; : 1 <i < N} and F = ﬂl 1 F(Ti) NEP(F) #¢. Assume

{111(") i isa ﬁmte sequences of posztlve numbers such that ¥, 11(") =1foralln > 0. Givenu € K

and xg € K, AP}, and {y,} are some sequences in (0,1); the following control conditions are
satisfied.

(i) k<a,<A<1foralln>0andlim,_, .a, = a,
(ii) limy— oo = 0 and 352 fu = oo,
(iii) 0 <lim inf, oY, < limsup, 12 <1,

(iv) hmn_mm(nﬂ) 111.(")| =0

Then the sequence {x,} generated by (1.4) converges strongly to q € ¥, where q = Pgu.

Proof From Lemma 2.1, we see that EP(F) = F(T,), and note that u,, can be rewritten as

= Trxy. Puttmg Ap=3N, 111 'T,, wehave A, : K — H is a k-strict pseudocontraction and
F(An) = 01:1 F(T;) by Propositions 2.8 and 2.9, where k = max{k; : 1 <i < N}.
From (1.4), condition (i), and Lemma 2.2, taking a point p € ¢, we have

[y =PI = lan(un = p) + (1 - @) Ayt~ p)]||*
= s~ p|)” + (1= ) || Anttn = p||* = n (1~ )it~ A
<ty = I + (1 = ) [l = >+ llitn = Ayren]?]
— (1 = ay) [ty — Ay (3.1)
= [l = pII* = (1 = ) (@ = k) 4 = At
2

<|ITx, - Top

< [lxn = plI*.
Furthermore, we have

lyn =Pl < llun—pll < |lx:—pll- (3.2)



6 Abstract and Applied Analysis

It follows from (1.4) and (3.2) that

l|xne1 = pll = [|Bute + Yuxn + (1= Pu = Yu) yu = p|
< Pullu = pll +yull2n = pll + (1= fu = va) |y — Pl
< Pullu=pll + (1= Bu)lxn = p|

Nlxo = pll}-

(3.3)

< max{ Ju - p

Consequently, sequence {x,} is bounded and so are {u,} and {y,}.

Define a mapping T,x = a,x + (1 — a,)A,x foreach x € K. ThenT, : K — H is
nonexpansive. Indeed, by using (1.1), condition (i), and Lemma 2.2, we have for all x, y € K
that

T = Ty |I” = [lan (x = ) + (1 = @) (Anx = Auy) |
= anflx = y|I* + (1 - @) [|Anx - Any |
— (1= )|l = Aux = (y = Awy) |’
< anflx =yl + (1= a) [[lx =yl + kllx - Awx = (y - A) ] (3.4)
— (1= ay)||x = Aux = (v = Awy) ||
= e =yl* - (- ) @ - R)flx - Aux = (y - Ay I
2
<|lx-yll

which shows that T,, : K — H is nonexpansive.
Next we show that lim,, _, o, ||X4+1 — x5 || = 0. Setting x,,41 = ynxy + (1 — ¥4) 24, we have

_ X2 = Yn+1Xn+l Xn+l — YnXn

Zpel — Zp = 1= Yun - T
,Bn+1u + (1 - ,Bn+1 - Yn+1)yn+1 ﬁnu + (1 - ,Bn - Yn)]/n
= - (3.5)
1- Yn+1 1- Yn
_ ﬂm—l n
= T ) * (Yt =) = 7 (= )
It follows that
Pz 2l < T2 eyl -l = Tl G0
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From (1.4), we have y,, = T,,u, and

||]/n+1 - ]/n” S Tus1ttnsr — Tuaatdnll + | Trs1ttn — Tytay|
< ||un+1 - un” + ”lxn+1un + (1 - an+1)An+1un - [anun + (1 - lxn)Anun] ”

< ||un+1 - un” + |an+1 - anl ”un - Anun” + (1 - an+1)”An+1un - Anun”

N
1
< ttns1 — Unl| + i1 — |||t — Anttn]| + (1 - a”H)ZI’Zi(M ) ﬂlgn) I Tittnll-
i1

(3.7)
By Lemma 2.1, u,, = T, x, and uy41 = T X441, we have
1
F(un,y) + ;(y—un,un—xn> >0, YyeKk, (3.8)
1
F(unaa,y) + 2 (Y = tnst, Uns = X1 ) 20, Vy € K. (3.9)
Putting v = 1,41 in (3.8) and y = u, in (3.9), we obtain
1
P(unr un+1) + ;<un+l — Un,Un — xn> > 0,
) (3.10)
F(un+1/ un) + ;(un — Un+l, Un+1 — xn+1> > 0.
So, from (A2) and r > 0, we have
<un+1 —Up, Uy — Up+1 + U1 — Xy — (un+1 - xn+1)> >0, (3.11)
and hence
lttn — un”z < (Uns1 — Un, Xpa1 — Xn), (3.12)
which implies that
[ttn1 = tn|| < || Xps1 — Xl (3.13)
Combining (3.6), (3.7), and (3.13), we have
ﬂn+1 ﬂn
_ < _ _ —
|zns1 — zall £ T— Yt ”u yn+1” + || Xp1 = xa]| + T- 1 ”u ]/n”
(3.14)

N
1
L =l = Ayl + (1 = ) 1" =0 [Tl
i=1
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This together with (i), (ii) and (iv) imply that

limsup(||zns1 = zull = [[Xns1 = xull) <O. (3.15)

n—oo

Hence, by Lemma 2.3, we obtain

Jim [z, =, = 0. (316)
Consequently,
Jim floenen = xall = Hm (1= y) 120 = xall = 0. (3.17)

On the other hand, by (1.4) and (iii), we have

”xn+1 - anI < ﬁn”u - ynll + Yullxn = Xnaa || + Yn”xml - anI/ (3.18)
which implies that
1t = yll < =2 = il + L = ot (319)
1-v, 1-v,

Combining (ii), (3.17), and (3.19), we have

Jim [|xp1 =yl = 0. (3.20)
Note that
”x" - ]/n” < ”xn - xn+1|| + ||xn+1 - ]/n”r (321)

which together with (3.17) and (3.20) implies

Jim [|xn = yul| = 0. (3.22)
Moreover, forp € F = nfﬁl F(T;) NEP(F), we have
llun = pII* = 1Trs = Top|* < xw =Py = p)
1 . . i (3.23)
= 5 (llza = pI*+ lltn = pII* = Mo = 200l),
and hence

e = pII* < |20 = I = 10 = 4l (3.24)
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From Lemma 2.2, (3.2) and (3.24), we have

[EE P||2 = [|Butt + yuxn + (1= = Y)Y _P"2

< Bullu=p|I” + yallxw =21 + (1= Bu =) lyn =PI’

5 s 5 , (3.25)
< Bullu=p I+ pallta = I+ (1= B =1) (150 = I = e = 1017)
< Bullu=plI* + 12 =pII* = (1= o = y) I =
and hence
2 2 2 2
(1= Bn = yu)llxn = wnll” < Bulle = p||” + [0 = p[I” = [l 01 = |
, (3.26)
< Pullu=pl" + llxn = xuall([lxn = pl| + |20 = pl])-
By (ii) and (3.17), we obtain
Jim [l = un|| = 0. (3.27)
It follows from (3.22) and (3.27) that
Tim [|y, — | = 0. (3.28)

Define S, : K — H by S,x = ax+(1-a)A,x. Then, S, is a nonexpansive with F(S,) = F(A,)
by Lemma 2.4. Note that lim, _, &, = & € [k, 1) by condition (i) and

”un - Snun” S ”un - yn” + ”yn - Snun”
< ”un - ]/n” + lanttn + (1 = ay) Aptty — [au, + (1 - a) Ayu,]|| (3.29)

< “un - yn” + oy — all|luy — Apuyll,
which combines with condition (i) and (3.28) yielding that
T}i_{l(}o”un — Spttn|| = 0. (3.30)

We now show thatlimsup, , (u#—q,x,—q) <0, where g = Pgu. To see this, we choose
a subsequence {x,,} of {x,} such that

limsup(u =g, % - q) = lim (u = 4,2z, - q). (3.31)

n— oo

Since {u,,} is bounded, there exists a subsequence {uni]_ } of {u,,} converging weakly to u*.
Without loss of generality, we assume that u,, — u* asi — oo. Form (3.27), we obtain x,,, — u*
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as i — oo. Since K is closed and convex, K is weakly closed. So, we have u* € K and
u* € F(S,). Otherwise, from u* # S,u* and Opial’s condition, we obtain

lim inf||u,, — u*|| < lim inf||u,, — S, u"||
1—00 1— 00
< h%’r_l)éonf(”un; - Sniuni” + ”Sniuni - Sniu*”) (332)

< lim infl|u,, — u*|.
This is a contradiction. Hence, we get u* € F(S,) = F(A,). Moreover, by u, = T,x,, we have
1
F(un,y) + (Y = thn, tn = %0) 20, Yy €K. (3.33)
It follows from (A2) that
1
;(y—un,un —xn) > F(y,uy). (3.34)
Replacing n by n;, we have
1
;(y = Upy, Un, — X, ) > F(y, ;). (3.35)

Since uy,, — x,, — 0 and u,, — u*, it follows from (A4) that F(y,u*) < 0 for all y € K. Put
zy=ty+ (1-fHu* forallt € (0,1] and y € K. Then, we have z; € K, and hence, F(z;, u*) < 0.
By (A1) and (A4), we have

0=F(z,zt) <tF(z1,y) + (1 - t)F(z, u*) < tF(z1,y), (3.36)

which implies F(z, y) > 0. From (A3), we have F(u*,y) > 0 for all y € K, and hence, u* €
EP(F). Therefore, u* € F(S,)) N EP(F). From Lemma 2.6, we know that

(u— Pgu,u* — Pgu) <0. (3.37)
It follows from (3.31) and (3.37) that

lim sup(u - g, %, = q) = lim (u— ¢, = q) = (4= q,u" - q) <O. (3.38)

n— oo
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Finally, we prove that x, — g = Pguasn — oo. From (1.4) again, we have

l1%ne1 = qlI* = (Bute + Yurtn + (1= B = Y)Y = 4, X1 = q)
= Pt = 4, Xne1 = q) + Yu(Xn = 4, X1 = ) + (1= Pu = Yu) (Yn — 4, Xns1 = q)
< Pt = q, Xn1 = q) + Yal|xn = ql[ [|2ne1 = gl + (1= B = 12) [|yn = | | X021 - 4|
< (1= pn)llxn = allllxner = ql| + Pu(e = g, %01 - q)

1 — FPn
< P (It =l + s = ql) + Bt~ g0 - 9)
P,

1
—q|*+ 7 % = qll? + Bu(u = 4, X1 - q),
(3.39)

which implies that
xn1 = qll* < (1= Ba) 10 = qll” + 20 (= 4, %01 — ). (3.40)
It follows from (3.38), (3.40), and Lemma 2.7 that lim, _, .||x, — g|| = 0. This completes the

proof. O

As N =1, thatis, A, = T and qf") = 1 in Theorem 3.1, we have the following results
immediately.

Theorem 3.2. Let K be a nonempty closed convex subset of Hilbert space H, and let F be a bifunction
from K x K into R satisfying (A1)-(A4). Let T : K — H be a k-strict pseudocontractions such that
F = F(T) N EP(F) # ¢. Let {x,,} be a sequence generated in the following manner:

1
F(un,y) + ;(y—un,un -x,) >0, Vyek,

Yn = antty + (1 — an)Tuy, (3.41)
X1 = Path + YnXn + (1= Pu—Yn)Yn, n20,
where u € K and xy € K, {a,}, {Pn}, and {y,} are some sequences in (0,1). If the following control

conditions are satisfied:

(i) k<a,<A<1foralln>0and lim,_, .a, = a,
(ii) imy— oo fn = 0and 352 Pu = 00,

(iii) 0 < lim inf, .y, <limsup, , _y. <1,

then {x,} converges strongly to q € F, where q = Pgu.
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