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We investigate the existence and multiplicity of periodic solutions for a class of second-order
differential systems with impulses. By using variational methods and critical point theory, we
obtain such a system possesses at least one nonzero, two nonzero, or infinitely many periodic
solutions generated by impulses under different conditions, respectively. Recent results in the
literature are generalized and significantly improved.

1. Introduction

Consider the following second-order impulsive differential equations:

ü(t) + Vu(t, u(t)) = 0, t ∈ (sk−1, sk),

Δu̇(sk) = λgk(u(sk)),

u(0) − u(T) = u̇(0) − u̇(T) = 0,

(Pλ)

where sk, k = 1, 2, . . . , m, are instants in which the impulses occur and 0 = s0 < s1 < s2 <
· · · < sm < sm+1 = T , Δu̇(sk) = u̇(s+

k
) − u̇(s−

k
) with u̇(s±

k
) = limt→ s±k

u̇(t), gk(u) = graduGk(u),
Gk ∈ C1(�N ,�), V ∈ C1([0, T] × �N ,�), Vu(t, u(t)) = graduV (t, u), λ > 0 is a constant.

Impulsive differential equations can be used to describe the dynamics of processes
which possess abrupt changes at certain instants. Up to now, impulsive differential systems
have been widely applied in many science fields such as control theory, biology, mechanics,
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see [1–7] and references therein. For general theory of impulsive differential equations, we
refer the readers to the monographs as [8–10].

The existence of the solutions is one of the most important topics of impulsive
differential systems. Many classical methods and tools have been used to study them, such as
coincidence degree theory, fixed point theory, and the method of upper and lower solutions.
See [11–15] and references therein.

Recently, some authors creatively applied variational method to deal with impulsive
problems, see [16–21]. The variational method is opening a new approach for dealing with
discontinuity problems such as impulses. However, when the problems studied in [16–21]
degenerate to the cases without impulses, plenty of the corresponding results can also be
obtained. In other words, the effect of impulses was not seen evidently. As pointed out in
[22], these results, in some sense, mean that the nonlinear term Vu plays a more important
role than the impulsive terms gk do in guaranteeing the existence of solutions. Due to this
point, Zhang and Li [22] studied the existence of solutions for impulsive differential systems
generated by impulses.

Definition 1.1 (see [22]). A solution is called a solution generated by impulses if this solution
is nontrivial when impulsive terms are not zero, but it is trivial when impulsive term is zero.

For example, if problem (Pλ) does not possess non-zero solution when gk ≡ 0 for all
1 ≤ k ≤ m, then nonzero solution for problem (Pλ) is called solution generated by impulses.
In detail, Zhang and Li [22] obtained the following theorem.

Theorem A (see [22]). Assume that V, W satisfy the following conditions:

(V1) V is continuous differentiable and there exist positive constants b1, b2 > 0 such that b1|u|2 ≤
−V (t, u) ≤ b2|u|2 for all (t, u) ∈ [0, T] × �N ;

(V2) −V (t, u) ≤ −Vu(t, u)u ≤ −2V (t, u) for all (t, u) ∈ [0, T] × �N ;

(g1) there exists a θ > 2 such that gk(u)u ≤ θGk(u) < 0, for u ∈ �N \ {0} and k = 1, 2, . . . , m.

Then, problem (P1) possesses at least one non-zero solution generated by impulses.

Motivated by the facts mentioned above, in this paper, we will further study the
existence of solution for problem (Pλ) generated by impulses under more general conditions.
In addition, we will investigate the multiple solutions and infinitely many solutions
generated by impulses.

Now, we state our results.

Theorem 1.2. Assume that (g1) and the following (V ′
1), (V

′
2) hold.

(V ′
1) V is continuous differentiable and there exist positive constants b > 0 and γ ∈ (1, 2] such

that

−V (t, u) ≥ b|u|γ ∀(t, u) ∈ [0, T] × �N ; (1.1)

(V ′
2) there exists a constant � ∈ [2, θ) such that

−V (t, u) ≤ −Vu(t, u)u ≤ −�V (t, u) ∀(t, u) ∈ [0, T] × �N . (1.2)

Then, problem (P1) possesses at least one non-zero solution generated by impulses.
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Remark 1.3. It is easy to see that (V ′
1), (V

′
2) are weaker than (V1), (V2). Therefore, Theorem 1.2

improves Theorem A.

Indeed, taking

V (t, u) = −|u|γ − |u|ς, 1 < γ < ς ≤ 2, Gk(u) = −|u|θ, (1.3)

all conditions in Theorem 1.4 are satisfied, but conditions in Theorem A cannot be satisfied.

Theorem 1.4. Assume that (V1), (V2) hold. Moreover, the following conditions are satisfied:

(V3) Vu(t, u1 − u2) = Vu(t, u1) − Vu(t, u2);
(H1)

∑m
k=1Gk(u) ≤ 0 and

max

{

lim sup
u→ 0

(
−∑m

k=1Gk(u)

|u|2
)

, lim sup
|u|→+∞

(
−∑m

k=1Gk(u)

|u|2
)}

< A, 0 < AC2
1 < b3, (1.4)

where b3 = min{1/2, b1} and C1 is a constant which will be defined in Section 2;

(H2) there exists a constant vector ξ = (ξ1, ξ2, . . . , ξN) ∈ �
N \ {0} such that

∑m
k=1 Gk(ξ) <∫T

0 V (t, ξ)dt.

Then, there exists B > 0 such that problem (P1) possesses at least two non-zero solutions generated by
impulses; moreover, their norms are less than B.

Remark 1.5. Compared with Theorem A, Theorem 1.4 deals with the multiple solutions
generated by impulses. In Theorem A and Theorem 1.2, impulses are superquadratic.
However, some impulses which are subquadratic can satisfy the conditions of Theorem 1.4.

Example 1.6. Let V (t, u) = −|u|2. It is easy to see that conditions (V1), (V2), and (V3) hold. Let
T = 1,m = 1, ξ = (1, 0, . . . , 0), and

G1(u) =

⎧
⎨

⎩

−2|u|3, |u| < 1,

−6|u| + 4, |u| ≥ 1.
(1.5)

Then, we have

lim sup
u→ 0

−G1(u)

|u|2
= lim sup

|u| →+∞

−G1(u)

|u|2
= 0,

−2 = G1(ξ) <
∫T

0
V (t, ξ)dt = −1.

(1.6)

Hence, conditions (H1) and (H2) in Theorem 1.4 are satisfied.
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Theorem 1.7. Assume that (V1), (V2) hold. Moreover, the following conditions are satisfied:

(H3) let

α = lim inf
ρ→+∞

max|u|≤ρ
[−∑m

k=1Gk(u)
]

ρ2
,

β = lim sup
|u|→+∞

−∑m
k=1Gk(u)

|u|2
,

(1.7)

and Tb2C2
1α < b3β.

Then, for every λ ∈ Λ := (Tb2/β, b3/C2
1α), problem (Pλ) possesses an unbounded

sequence of solutions generated by impulses.

Example 1.8. Let V (t, u) = (−1/2)|u|2, T = 1, m = 1, N = 1,

an =
2n!(n + 2)! − 1

4(n + 1)!
, bn =

2n!(n + 2)! + 1
4(n + 1)!

, (1.8)

g1(u) =

⎧
⎨

⎩

π(n + 1)!
[
(n + 1)!2 − n!2

]
sin(2π(n + 1)!(u − an)), |u| ∈

⋃

n∈�
[an, bn],

0, otherwise,
(1.9)

and g2 = max{0, 2u}. Let

g = g1 + g2, −G =
∫u

0
g(t)dt. (1.10)

Then, −G is a C1 function with −G′ = g. From the computation of Example 3.2 in [23], one
has C1 =

√
2, b2 = 1/2, b3 = 1/2 in this case and

lim
n→+∞

−G(an)
a2n

= 1, lim
n→+∞

−G(bn)
b2n

= 5. (1.11)

Moreover,

lim inf
|u|→+∞

−G(u)
u2

= 1, lim sup
|u| →+∞

−G(u)
u2

= 5. (1.12)

In addition, −G is nondecreasing. By the monotonicity of −G, one has

max
|u|≤ρ

[−G(u)] = −G(ρ). (1.13)
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Hence, we have

α = 1, β = 5. (1.14)

Then, for λ ∈ [1/10, 1/4], problem

ü(t) − u = 0, t /= s1,

Δu̇(s1) = λg(u(s1)),

u(0) − u(1) = u̇(0) − u̇(1) = 0

(1.15)

possesses an unbounded sequence of solutions generated by impulses.

Remark 1.9. In Theorem 1.7, substituting ρ → +∞ and |u| → +∞ with ρ → 0+ and |u| → 0+,
applying part (g) of Lemma 2.4 instead of part (f) in the proof, we can obtain a sequence of
pairwise distinct solutions generated by impulses.

The paper is organized as follows. In Section 2, we present some preliminaries. In
Section 3, we give the proof of our main results.

2. Preliminaries

In order to prove our main results, we give some definitions and lemmas that will be used in
the proof of our main results. Let

H1
T =

{
u : [0, T] → �

N | u is absoltely continuous, u(0) = u(T), u̇ ∈ L2([0, T],�n)
}
.

(2.1)

Then,H1
T is a Hilbert space with the inner product

〈u, v〉 =
∫T

0
[(u(t), v(t)) + (u̇(t), v̇(t))]dt, ∀u, v ∈ H1

T , (2.2)

where (·, ·) denotes the inner product in �N . The corresponding norm is defined by

‖u‖ =

(∫T

0

[
|u̇(t)|2 + |u(t)|2

]
dt

)1/2

, ∀u ∈H1
T . (2.3)

Let ‖ · ‖2 = (
∫T
0 |u(t)|2)1/2 denote the norm of Banach space of Lp([0, T],�N ). Since (H1

T , ‖ · ‖) is
compactly embedded inC([0, T],�N ) (see [24]), we claim that there exists a positive constant
C1 such that

‖u‖∞ ≤ C1‖u‖, (2.4)
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where ‖u‖∞ = maxt∈[0,T]|u(t)|.
To study the problem (Pλ), we consider the functional I defined by

I(u) =
∫T

0

[
1
2
|u̇|2 − V (t, u)

]

dt + λ
m∑

k=1

Gk(u(sk)). (2.5)

Similar to the proof of Lemma 1 of [22] (see also [20, 21]), we can easily prove the following
Lemma 2.1.

Lemma 2.1. Suppose V ∈ C1[0, T] × �N → �, Gk ∈ C1(�N ,�N ), k = 1, 2, . . . , m. Then, I is
Frechét differentiable with

I ′(u)v =
∫T

0
[u̇v̇ − Vu(t, u)v]dt + λ

m∑

k=1

gk(u(sk))v(sk), (2.6)

for any u and v in H1
T . Furthermore, u is a solution of (Pλ) if and only if u is a critical point of I in

H1
T .

Lemma 2.2 (see [24, 25]). Let E be a real Banach space and I ∈ C1(E,�) satisfying the (P.S.)
condition. Suppose I(0) = 0 and

(I1) there are constants ρ, β > 0 such that I|∂Bρ ≥ β, where Bρ = {x ∈ E | ‖x‖ < ρ},
(I2) there is an e ∈ E \ Bρ such that I(e) ≤ 0.

Then, I possesses a critical value c ≥ β.

If E is a real Banach space, denote by WX the class of all functionals Φ : E → �

possessing the following property: if {un} is a sequence in E converging weakly to u and
lim infn→∞Φ(un) ≤ Φ(u), then {un} has a subsequence converging strongly to u. For example,
if E is uniformly convex and g : [0,+∞) → � is a continuous, strictly increasing function,
then, by a classical results, the functional u → g(‖u‖) belongs to the classWX .

Lemma 2.3 (see [26]). Let E be a separable and reflexive real Banach space; let Φ : E → � be
a coercive, sequentially weakly lower semicontinuous C1 functional, belonging to WX , bounded on
each bounded subset of E, and whose derivative admits a continuous inverse on E∗; J : E → � a
C1 functional with compact derivative. Assume that Φ has a strict local minimum u0 with Φ(u0) =
J(u0) = 0. Finally, setting

α′ = max

{

0, lim sup
‖u‖→+∞

J(u)
Φ(u)

, lim sup
u→u0

J(u)
Φ(u)

}

,

β′ = sup
u∈Φ−1(0,+∞)

J(u)
Φ(u)

,

(2.7)

assume that α′ < β′. Then, for each compact interval [a, b] ⊂ (1/β′, 1/α′) (with the conventions
1/0 = +∞, 1/+∞ = 0), there exists B > 0 with the following property: for every λ ∈ [a, b] and every
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C1 functional Ψ : E → � with compact derivative, there exists δ > 0 such that, for each μ ∈ [0, δ],
the equation

Φ′(x) = λJ ′(x) + μΨ′(x) (2.8)

has at least three solutions in E whose norms are less than B.

Now, we recall a result which insures infinitely critical points. For all r > infXΦ, we
put

ψ(r) = inf
x∈Φ−1((−∞,r))

(
supx∈Φ−1((−∞,r))Ψ(x)

)
−Ψ(x)

r −Φ(x)
,

γ := lim inf
r→+∞

ψ(r), δ := lim inf
r→ (infXΦ)+

ψ(r).

(2.9)

Lemma 2.4 (see [27]). Let X be a reflexive real Banach space, let Φ : X → R be a (strongly)
continuous, coercive, and sequentially weakly lower semicontinuous and Gâteaux differentiable
function, and let Ψ : X → R be a sequentially weakly upper semicontinuous and Gâteaux
differentiable function. One has

(e) for every r > infXΦ and every λ ∈ (0, 1/ψ(r)), the restriction of the functional Φ − λΨ
to Φ−1((−∞, r)) admits a global minimum, which is a critical point (local minimum) of
Φ − λΨ in X.

(f) if γ < +∞, then, for each λ ∈ (0, 1/γ), the following alternative holds:

either
(f1) Φ − λΨ possesses a global minimum

or
(f2) there is a sequence {xn} of critical points (local minima) of Φ − λΨ such that

lim
n→+∞

Φ(xn) = +∞. (2.10)

(g) if δ < +∞, then, for each λ ∈ (0, 1/δ), the following alternative holds:

either
(g1) here is a global minimum of Φ which is a local minimum of Φ − λΨ

or
(g2) there is a sequence of pairwise distinct critical points (local minima) of Φ − λΨ, with

limn→+∞Φ(xn) = infXΦ which weakly converges to a global minimum of Φ.

3. Proof of the Main Results

In this section, we give the proof of our main results in turn. Ci, i = 1, 2, . . . denote different
constants.
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Proof of Theorem 1.2. We firstly show that I satisfies the P.S. condition. Assume that {uj}j∈� ⊂
H1

T is a sequence such that {I(uj)}j∈� is bounded and I ′(uj) → 0 as j → +∞. Then, there
exists a constant C2 > 0 such that

∣
∣I
(
uj
)∣
∣ ≤ C2,

∣
∣I ′
(
uj
)∣
∣ ≤ C2, ∀j ∈ �. (3.1)

By (3.1), (2.4), (2.5), (2.6), (V ′
1), (V

′
2), and (g1), we have

2C2 + C3
∥
∥uj

∥
∥ ≥ 2I

(
uj
) − 2

θ
I ′
(
uj
)
uj

=
(

1 − 2
θ

)∫T

0

∣
∣u̇j
∣
∣2dt

+
∫T

0

[
2
θ
Vu
(
t, uj

)
uj − 2V

(
t, uj

)
]

dt

+ 2
m∑

k=1

Gk

(
uj(sk)

) − 2
θ

m∑

k=1

gk
(
uj(sk)

)
uj(sk)

≥
(

1 − 2
θ

)∫T

0

∣
∣u̇j
∣
∣2dt + 2

(

1 − �

θ

)∫T

0
b
∣
∣uj
∣
∣γdt

≥
(

1 − 2
θ

)∫T

0

∣
∣u̇j
∣
∣2dt

+ 2
(

1 − �

θ

)

bC
γ−2
1

∥
∥uj

∥
∥γ−2

∫T

0

∣
∣uj
∣
∣2dt

≥ min
{(

1 − 2
θ

)

, 2
(

1 − ρ

θ

)

bC
γ−2
1

∥
∥uj

∥
∥γ−2

}
∥
∥uj

∥
∥2

≥ min
{(

1 − 2
θ

)
∥
∥uj

∥
∥2, 2

(

1 − �

θ

)

bC
γ−2
1

∥
∥uj

∥
∥γ
}

.

(3.2)

It follows from (3.2) that {uj}j∈� is bounded in H1
T . In a similar way to Lemma 2 in [22],

we can prove that {uj}j∈� has a convergent subsequence in H1
T . Hence, I satisfies the P.S.

condition.
Second, we verify (I1) of Lemma 2.2. By (g1) and (2.4), there exists a δ1 > 0 such that,

for any ‖u‖∞ ≤ δ1,

|Gk(u)| ≤ 1
4mC1

|u|2. (3.3)
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By (2.4), there exists a 0 < δ < 1 such that, for any ‖u‖ ≤ δ, the inequality ‖u‖∞ ≤ δ1 holds.
Then for u ∈ H1

T with ‖u‖ = δ0, δ0 small enough (0 < δ0 < min{(2bCγ−2
1 )1/2−γ , δ}) such that

the following inequality holds

I(u) ≥ 1
2

∫T

0
|u̇(t)|2dt + b

∫T

0
|u(t)|γdt − 1

4C1
‖u‖2∞

≥ min
{
1
2
‖u‖2, bCγ−2

1 ‖u‖γ
}

− 1
4
‖u‖2

≥ 1
2
‖u‖2 − 1

4
‖u‖2

≥ 1
4
‖δ0‖2.

(3.4)

By (V ′
2), there exist C3, C4 > 0 such that

−V (t, u) ≤ C3|u|� + C4, ∀(t, u) ∈ [0, T] × �n . (3.5)

By (g1), there exist C5, C6 > 0 such that

Gk(u) ≤ −C5|u|θ +C6, ∀u ∈ �n , k ∈ {1, 2, . . . , m}. (3.6)

To verify (I2) of Lemma 2.2, choose u ∈ H1
T such that u(sk)/= 0 for some k ∈ {1, 2, . . . , m}.

Hence, we obtain

I(tu) ≤ t2

2

∫T

0
|u̇(t)|2dt + C3|t|�

∫T

0
|u(t)|�dt

− C5|t|θ
m∑

k=1

|u(sk)|θ + C7,

(3.7)

whereC7 is a positive constant. Since θ > 2, � ∈ [2, θ), (3.7) implies I(tu) → −∞ as t → ∞. So,
for t large enough, e = tu satisfies condition (I2). By the Mountain Pass Lemma (Lemma 2.2),
I possesses at least one non-zero critical point. Then, by Lemma 2.1, problem (P1) has at least
one non-zero solution.
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Finally, we verify that the solution is generated by impulses. Suppose gk ≡ 0 and u is
a solution for problem (P1). Then, by (V ′

1) and (V ′
2),

0 =
∫T

0

[
|u̇|2 − Vu(t, u)u

]
dt

≥
∫T

0

[
|u̇|2 + b|u|γ

]
dt

≥
∫T

0
|u̇|2dt + b‖u‖γ−2∞

∫T

0
|u|2dt

≥
∫T

0
|u̇|2dt + bCγ−2

1 ‖u‖γ−2
∫T

0
|u|2dt

≥ min
{
1, bCγ−2

1 ‖u‖γ−2
}
‖u‖2

= min
{
‖u‖2, bCγ−2

1 ‖u‖γ
}
.

(3.8)

This implies that u ≡ 0, that is, problem (P1) does not possess any non-zero solutions when
impulses are zero.Hence, byDefinition 1.1, the non-zero solution obtained above is generated
by impulses.

Proof of Theorem 1.4. In order to apply Lemma 2.3, we let

Φ(u) =
∫T

0

[
1
2
|u̇(t)|2 − V (t, u(t))

]

dt,

J(u) = −
m∑

k=1

Gk(u(sk)).

(3.9)

Obviously, E = H1
T is a separable and uniformly convex Banach space. By (V1), we have

b3‖u‖2 ≤ Φ(u) ≤ b4‖u‖2, (3.10)

where b3 = min{1/2, b1} and b4 = min{1/2, b2}. Hence, by (3.10) and Lemma 2.1, we can
obtain that Φ(u) is a coercive, C1 functional, and bounded on each bounded subset of E.
For a sequence {un} ⊂ H1

T , if un ⇀ u ∈ H1
T and lim infn→∞Φ(un) ≤ Φ(u), then un →

u ∈ C[0, T]. This means that
∫T
0 [(−1/2)|u(t)|2 − V (t, u(t))]dt is weakly continuous. Hence,

we have that Φ(u) = (1/2)‖u‖2 + ∫T0 [(−1/2)|u(t)|2 −V (t, u(t))]dt is sequentially weakly lower
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semicontinuous and lim infn→∞‖un‖2 ≤ ‖u‖2. Therefore, {un} has a subsequence converging
strongly to u, that is, Φ(u) belongs toWX . For any u ∈H1

T \ {0}, we have

〈
Φ′(u), u

〉
=
∫T

0
[(u̇(t), u̇(t)) − (Vu(t, u(t)), u(t))]dt

≥
∫T

0

[
(u̇(t), u̇(t)) + b1|u(t)|2

]
dt

≥ min{1, b1}‖u‖2.

(3.11)

So, lim‖u‖→∞〈Φ′(u), u〉/‖u‖ = +∞, that is, Φ′ is coercive. For any u, v ∈ H1
T , one has

〈
Φ′(u) −Φ′(v), u − v〉 =

∫T

0
(u̇(t) − v̇(t), u̇(t) − v̇(t))dt

−
∫T

0
(Vu(t, u(t)) − Vu(t, v(t)), u(t) − v(t))dt

≥
∫T

0
(u̇(t) − v̇(t), u̇(t) − v̇(t))dt

+
∫T

0
b1|u(t) − v(t)|2dt

≥ min{1, b1}‖u − v‖2.

(3.12)

So, Φ′ is uniformly monotone. By [28, Theorem 26.A(d)], we have that (Φ′)−1 exists and is
continuous. For any u, v ∈H1

T ,

〈
J ′(u), u

〉
= −

m∑

k=1

gk(u(sk))u(sk). (3.13)

Let un ⇀ u ∈ H1
T , then un → u ∈ C[0, T]. Hence, J ′(un) → J ′(u), Ψ′(un) → Ψ′(u) as n → ∞.

Therefore, we have that J ′ is a compact operator by [28, Proposition 26.2]. In addition, Φ has
a strict local minimum 0 with Φ(0) = J(0) = 0. In view of (H1), there exist τ1 > τ2 > 0 such
that

−
m∑

k=1

Gk(u) ≤ A|u|2 (3.14)

for any |u| ∈ [0, τ2) ∪ (τ1,+∞). By the continuity of Gk,
∑m

k=1Gk(u) is bounded for any |u| ∈
[τ2, τ1]. We can choose C8 > 0 and σ > 2 such that

−
m∑

k=1

Gk(u) ≤ A|u|2 + C8|u|σ (3.15)
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for any u ∈ �N . Hence, by (2.4), we have

J(u) ≤ AC2
1‖u‖2 + C8C

σ
1 ‖u‖σ (3.16)

for all u ∈H1
T . By (3.16) and (H1), we obtain

lim sup
u→ 0

J(u)
Φ(u)

≤ lim sup
u→ 0

(
AC2

1

b3
+
C8C

σ
1

b3
‖u‖σ−2

)

≤ AC2
1

b3
< 1. (3.17)

On the other hand, by (H1), −
∑m

k=1 Gk(u) ≥ 0. Then, one has

−∑m
k=1Gk(u(sk))
Φ(u)

=
−∑m

k=1Gk(u(sk))||u(sk)|≤τ1
Φ(u)

+
−∑m

k=1Gk(u(sk))||u(sk)|>τ1
Φ(u)

≤ C9

Φ(u)
+
−∑m

k=1Gk(u(sk))||u(sk)|>τ1
Φ(u)

≤ C9

b3‖u‖2
+
A|u(sk)|2
b3‖u‖2

≤ C9

b3‖u‖2
+
AC2

1‖u‖2

b3‖u‖2
,

(3.18)

where C9 is a positive constant and f |A denotes the restriction of the functional f to the set
A. Hence, we have

lim sup
‖u‖→∞

J(u)
Φ(u)

≤ lim sup
‖u‖→∞

(
C9

b3‖u‖2
+
AC2

1

b3

)

≤ AC2
1

b3
< 1. (3.19)

Combining (3.18) with (3.19), one has α′ < 1.
By {H2}, we obtain

β′ = sup
u∈Φ−1(0,+∞)

J(u)
Φ(u)

≥ −∑m
k=1Gk(ξ)

− ∫T0 V (t, ξ)dt
> 1. (3.20)

Then, for each compact interval [a, b] ⊂ (1/β′, 1/α′), 1 ∈ [a, b], there exists B > 0 with the
following property: for every f(t), there exists δ > 0 such that, for each μ ∈ [0, δ],

Φ′(x) = J ′(x) + μΨ′(x). (3.21)

Let μ = 0, then we can obtain that problem (P1) has at least three solutions in E whose norms
are less than B.

Finally, by Theorem 4 in [22], we can prove that problem (P1) does not possess any
non-zero periodic solutions when impulses are zero. By Definition 1.1, problem (P1) has at
least two solutions generated by impulses.
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Proof of Theorem 1.7. Let

Φ(u) =
∫T

0

[
1
2
|u̇(t)|2 − V (t, u(t))

]

dt,

Ψ(u) = −
m∑

k=1

Gk(u(sk)).

(3.22)

Similar to the proof of Theorems 3.1 and 3.3 in [27], it is easy to see that the functionals Φ,Ψ
satisfy the regularity assumptions required in Lemma 2.4. Let us now verify that

γ < +∞. (3.23)

Let {ρn} be a sequence of positive numbers such that ρn → +∞ and

lim
n→+∞

max|u|≤ρn
[−∑m

k=1Gk(u)
]

ρ2n
= lim inf

ρ→+∞
max|u|≤ρn

[−∑m
k=1 Gk(u)

]

ρ2
. (3.24)

If we put, for every n ∈ �,

rn =
ρ2nb3

C2
1

, (3.25)

then, by (2.4) and (3.10), Φ(u) ≤ rn implies that ‖u‖∞ ≤ ρn. Since 0 ∈ Φ−1((−∞, rn)), the
following inequality holds:

ψ(rn) = inf
x∈Φ−1((−∞,rn))

(
supx∈Φ−1((−∞,rn))Ψ(x)

)
−Ψ(x)

rn −Φ(x)

≤ C2
1max|u|≤ρn

[−∑m
k=1Gk(u)

]

ρ2nb3
.

(3.26)

Hence,

0 < γ ≤ C2
1α

b3
< +∞. (3.27)

From λ ∈ Λ := (Tb2/β, b3/C2
1α), we have

Λ ⊂
(

0,
1
γ

)

. (3.28)



14 Abstract and Applied Analysis

Fix λ ∈ Λ and let us verify that the functional I = Φ − λΨ is unbounded from below. In fact,
by the choice of λ and the positivity of β, one has that there exists a sequence {yn} in �n such
that limn→∞|yn| = +∞ and −∑m

k=1Gk(yn)/|yn|2 > Tb2/λ. Let vn(t) = yn. Then,

I(vn) =
∫T

0
[−V (t, vn)]dt − λ

[

−
m∑

k=1

Gk(vn)

]

≤
(

Tb2 − λ
−∑m

k=1Gk

(
yn
)

∣
∣yn
∣
∣2

)
∣
∣yn
∣
∣2.

(3.29)

Note that Tb2 − λ(−
∑m

k=1Gk(yn)/|yn|2) < 0, I has no global minimum. Hence, by Lemma 2.4,
there is a sequence {xn} of critical points (local minima) ofΦ−λΨ such that limn→+∞Φ(xn) =
+∞. By Theorem 4 in [22], we can prove that problem (Pλ) does not possess any non-
zero periodic solutions when impulses are zero. Therefore, by Definition 1.1, the solutions
obtained above are all generated by impulses.
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