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This paper is concerned with a reaction-diffusion equation which describes the dynamics of single
bacillus population with free boundary. The local existence and uniqueness of the solution are
first obtained by using the contraction mapping theorem. Then we exhibit an energy condition,
involving the initial data, under which the solution blows up in finite time. Finally we examine the
long time behavior of global solutions; the global fast solution and slow solution are given. Our
results show that blowup occurs if the death rate is small and the initial value is large enough. If
the initial value is small the solution is global and fast, which decays at an exponential rate while
there is a global slow solution provided that the death rate is small and the initial value is suitably
large.

1. Introduction

As we know, mathematical aspects of biological population have been considered widely.
Most of the authors have studied growth and diffusions of biological population in a
homogeneous or heterogeneous fixed environment [1, 2], and the nonlinear differential
equations are described such as Logistic equation and Fisher equation.

In this paper, we consider the following single bacillus population model:

ut − dΔu = Kau2 − bu, (1.1)

which was first proposed by Verhulst see [3]. Parameters a, b, d and K are positive con-
stants. Ecologically, a represents the net birth rate, b is the death rate, d denotes the dif-
fusion coefficient, andK measures the living resource for bacillus. In [4], Jin et al. considered
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the model and established a time-dependent dynamic basis to quantitatively clarify the bio-
logical wave behavior of the popular growth and propagation.

The present paper aims to investigate the parabolic equation with a moving boundary
in one-dimensional space.

As in [5], assumed that the amount of the species flowing across the free boundary is
increasing with respect to the moving length, the condition on the interface (free boundary)
is s′(t) = −μux(s(t), t) by using the Taylor expansion. Here μ is a positive constant and
measures the ability of the bacillus disperse in a new area. The free boundary is regarded
as the moving front, the detailed biological implication see Section 6 of [6] for the logistic
model; the authors also compared their results in biological terms with some documented
ecological observations there. In this way, we have the following problem for u(x, t) and a
free boundary x = s(t) such that

ut − duxx = Kau2 − bu, 0 < x < s(t), 0 < t < T,

u(s(t), t) = 0, 0 < t < T,

ux(0, t) = 0, 0 < t < T,

s(0) = s0 > 0,

u(x, 0) = u0(x) � 0, 0 � x � s(0),

s′(t) = −μux(s(t), t), 0 < t < T,

(1.2)

where the condition ux(0, t) = 0 indicates that the habitat is semiunbounded domain and
there is no migration cross the left boundary.

WhenKa = b = 0, the problem is reduced to one phase Stefan problem, which accounts
for phase transitions between solid and fluid states such as the melting of ice in contact
with water [7]. Stefan problems have been studied by many authors. For example, the weak
solution was considered by Oleı̆nik in [8], and the existence of a classical solution was given
by Kinderlehrer and Nirenberg in [9]. For the two-phase Stefan problem, the local classical
solution was obtained in [10, 11], and the global classical solution was given by Borodin in
[12].

The free boundary problems have been investigated in many areas, for example, the
decrease of oxygen in a muscle in the vicinity of a clotted bloodvessel [13], the etching
problem [14], the combustion process [15], the American option pricing problem [16, 17],
chemical vapor deposition in hot wall reactor [18], image processing [19], wound healing
[20], tumor growth [21–24] and the dynamics of population [5, 25, 26].

In this paper, we consider the free boundary problem (1.2) and focus on studying the
blowup behavior of the solution and asymptotic behavior of the global solutions. We will
give sufficient conditions to ensure the existence of fast solution and slow solution. Here if
T = +∞, we say the solution exists globally whereas if the solution ceases to exist for some
finite time, that is, T < +∞ and limt→ T‖u(x, t)‖L∞([0,s(t)]×[0,t]) → +∞, we say that the solution
blows up. If T = ∞ and limt→∞s(t) < ∞, the solution is called fast solution since that the
solution decays uniformly to 0 at an exponential rate, while if T = ∞ and limt→∞s(t) = ∞, it
is called slow solution, see [27, 28] in detail.

The remainder of this paper is organized as follows. In Section 2, local existence and
uniqueness will be given. Section 3 deals with the result of blowup behavior by constructing
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an energy condition. Section 4 is devoted to long time behaviors of global solutions, including
the existence of global fast solution and slow solution.

2. Local Existence and Uniqueness

In this section, we prove the following local existence and uniqueness of the solution to (1.2)
by contraction mapping principle.

Theorem 2.1. For any given u0 satisfying u0 ∈ C1+α([0, s0]) with α ∈ (0, 1), u′
0(0) = u0(s0) = 0

and u0 > 0 in [0, s0), there is a T > 0 such that problem (1.2) admits a unique solution

(u, s) ∈ C1+α,(1+α)/2([0, s(t)] × [0, T]) × C1+α/2([0, T]). (2.1)

Furthermore,

‖u(x, t)‖C1+α,(1+α)/2([0,s(t)]×[0,T]) + ‖s(t)‖C1+α/2([0,T]) � C, (2.2)

where C and T depend only on α, s0 and ‖u0‖C1+α([0,s0]).

Proof. We first make a change of variable to straighten the free boundary. Let

ξ =
x

s(t)
, u(x, t) = v(ξ, t). (2.3)

Then the problem (1.2) is reduced to

vt − s′(t)
s(t)

ξvξ − d

s2(t)
vξξ = Kav2 − bv, 0 < ξ < 1, 0 < t < T,

v(1, t) = 0, 0 < t < T,

vξ(0, t) = 0, 0 < t < T,

s(0) = s0 > 0,

v(ξ, 0) = v0(ξ) := u0(s0ξ) � 0, 0 � ξ � 1,

s′(t) = − μ

s(t)
vξ(1, t), 0 < t < T.

(2.4)

This transformation changes the free boundary x = s(t) to the fixed line ξ = 1 at the expense of
making the equation more complicated. In the first equation of (2.4), the coefficients contain
the unknown s(t).

Now we denote s∗ = −μv′
0(1) and set

ST =
{
s ∈ C1[0, T] : s(0) = s0, s

′(0)s0 = s∗, 0 � s′(t)s(t) � s∗ + 1
}
,

UT =
{
v ∈ C([0, 1] × [0, T]) : v(ξ, 0) = v0(ξ), ‖v − v0‖C([0,1]×[0,T]) � 1

}
.

(2.5)
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It is easy to see that ΣT := UT × ST is a complete metric space with the metric

D((v1, s1), (v2, s2)) = ‖v1 − v2‖C([0,1]×[0,T]) +
∥∥s′1s1 − s′2s2

∥∥
C([0,T]). (2.6)

Next applying standard Lp theory and the Sobolev imbedding theorem (see [29]), we
then find that for any (v, s) ∈ ΣT , the following initial boundary value problem:

ṽt − s′(t)
s(t)

ξṽξ − d

s2(t)
ṽξξ = Kav2 − bv, 0 < ξ < 1, 0 < t < T,

ṽ(1, t) = 0, 0 < t < T,

ṽξ(0, t) = 0, 0 < t < T,

ṽ(ξ, 0) = v0(ξ) � 0, 0 � ξ � 1

(2.7)

admits a unique solution ṽ ∈ C1+α,(1+α)/2([0, 1] × [0, T]) and

‖ṽ‖C1+α,(1+α)/2([0,1]×[0,T]) � C‖ṽ‖W2,1,p([0,1]×[0,T]) � C1, (2.8)

where p = 3/(1 − α), C1 is a constant dependent on α, s0 and ‖u0‖C1+α[0,s0].
Defining s̃ by using the last equation of (2.4)

s̃2(t) = s20 − 2
∫ t

0
μṽξ(1, τ)dτ, (2.9)

we have

s̃′(t)s̃(t) = −μṽξ(1, t), s̃(0) = s0, s̃′(0)s0 = −μṽξ(1, 0) = s∗, (2.10)

and hence s̃′ ∈ Cα/2([0, T])with

∥∥s̃′(t)s̃(t)∥∥Cα/2([0,T]) � C2 := μC1. (2.11)

Define map F: ΣT → C([0, 1] × [0, T]) × C1[0, T] by

F((v(ξ, t), s(t))) = (ṽ(ξ, t), s̃(t)). (2.12)

It is clear that (v, s) ∈ ΣT is a fixed point of F if and only if it solves (2.4).
By (2.10) and (2.11), we have

∥∥s̃′(t)s(t) − s̃′(0)s(0)
∥∥
C[0,T] �

∥∥s̃′(t)s(t)∥∥Cα/2[0,T]T
α/2 � C2T

α/2,

‖ṽ(ξ, t) − v0(ξ)‖C([0,1]×[0,T]) � ‖ṽ − v0‖C0,(1+α)/2([0,1]×[0,T])T
(1+α)/2 � C1T

(1+α)/2.
(2.13)

Therefore if we take T � min{(C2)
−2/α, C−2/(1+α)

1 }, then F maps ΣT into itself.
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To prove that F is a contraction mapping on ΣT for T > 0 sufficiently small, we take
(vi, si) ∈ ΣT (i = 1, 2) and denote (vi, si) = F(vi, si). Then it follows form (2.8) and (2.11) that

‖vi‖C1+α,(1+α)/2([0,1]×[0,T]) � C‖vi‖W2,1,p([0,1]×[0,T]) � C1,
∥∥s′i(t)si(t)

∥∥
Cα/2[0,T] � C2. (2.14)

By setting V = v1 − v2 it follows that V (ξ, t) satisfies

Vt −
s′1
s1
ξVξ − d

s21
Vξξ −Ka(v1 + v2)V + bV

=

(
s′1
s1

− s′2
s2

)
ξv2,ξ +

(
1
s21

− 1
s22

)
dv2,ξξ, 0 < ξ < 1, 0 < t < T,

V (1, t) = 0, Vξ(0, t) = 0, 0 < t < T,

V (ξ, 0) = 0, 0 � ξ � 1.

(2.15)

Using theW2,1,p estimates for parabolic equations and Sobolev’s imbedding yields

‖v1 − v2‖C1+α,(1+α)/2([0,1]×[0,T]) � C3

(
‖v1 − v2‖C([0,1]×[0,T]) + ‖s1 − s2‖C1[0,T]

)
, (2.16)

where C3 is independent of T . Taking the difference of the equations for s′1s1, s
′
2s2 results in

∥∥s′1(t)s1(t) − s′2(t)s2(t)
∥∥
Cα/2[0,T] � μ

∥∥v1,ξ(ξ, t) − v2,ξ(ξ, t)
∥∥
C0,α/2([0,1]×[0,T]). (2.17)

Combining inequalities (2.16) and (2.17), we obtain

‖v1(ξ, t) − v2(ξ, t)‖C1+α,(1+α)/2([0,1]×[0,T]) +
∥∥s′1(t)s1(t) − s′2(t)s2(t)

∥∥
Cα/2[0,T]

� C4

(
‖v1(ξ, t) − v2(ξ, t)‖C([0,1]×[0,T]) + ‖s1(t) − s2(t)‖C1[0,T]

)
,

(2.18)

where C4 is independent of T . Using the property of norm

∥∥s′1(t)s1(t) − s′2(t)s2(t)
∥∥ �

∥∥(s′1(t) − s′2(t)
)
s1(t)

∥∥ − ∥∥s′2(t)
∥∥‖s1(t) − s2(t)‖, (2.19)

and the fact s1(0) = s2(0), si(t) � s0 and s′2(t) � (s∗ + 1)/s0 give that

∥∥s′1 − s′2
∥∥
C[0,T] � 1

s0

∥∥s′1s1 − s′2s2
∥∥
C[0,T] +

s∗ + 1
s20

T
∥∥s′1 − s′2

∥∥
C[0,T]

� 2
s0

∥∥s′1(t)s1(t) − s′2(t)s2(t)
∥∥
C[0,T]

(2.20)
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if T � s20/(2s
∗ + 2). Further,

‖s1 − s2‖C1[0,T] � (1 + T)
∥∥s′1 − s′2

∥∥
C[0,T] � 2 + 2T

s0

∥∥s′1s1 − s′2s2
∥∥
C[0,T]. (2.21)

Hence, for

T := min

{
1, C−2/α

2 , (C1)−2/(1+α),
s20

2s∗ + 2
,

[
2C4

(
1 +

4
s0

)]−2/α}
, (2.22)

we have

‖v1(ξ, t) − v2(ξ, t)‖C([0,1]×[0,T]) + s′1s1(t) − s′2(t)s2(t)C[0,T]

� T (1+α)/2‖v1 − v2‖C(1+α)/2, 1+α([0,1]×[0,T]) + Tα/2∥∥s′1s1(t) − s′2(t)s2(t)
∥∥
Cα/2[0,T]

� C4T
α/2
(
‖v1 − v2‖C([0,1]×[0,T]) + ‖s1 − s2‖C1[0,T]

)
(2.18)

� C4T
α/2
(
‖v1 − v2‖C([0,1]×[0,T]) +

2 + 2T
s0

∥∥s′1s1 − s′2s2
∥∥
C[0,T]

)
(2.21)

� 1
2

(
‖v1 − v2‖C([0,1]×[0,T]) +

∥∥s′1s1 − s′2s2
∥∥
C[0,T]

)
.

(2.23)

Thus for this T , F is a contraction. Now using the contraction mapping theorem gives the
conclusion that there is a (v(ξ, t), s(t)) in ΣT such that F(v(ξ, t), s(t)) = (v(ξ, t), s(t)). In
other words, (v(ξ, t), s(t)) is the solution of the problem (2.4) and therefore (u(x, t), s(t))
is the solution of the problem (1.2). Moreover, by using the Schauder estimates, we have
additional regularity of the solution, s(t) ∈ C1+α/2[0, T] and u ∈ C2+α,1+α/2((0, s(t)) × (0, T]).
Thus (u(x, t), s(t)) is the classical solution of the problem (1.2).

Now we give the monotone behavior of the free boundary s(t).

Theorem 2.2. The free boundary for the problem (1.2) is strictly monotone increasing, that is, for any
solution in (0, T], one has

s′(t) > 0 for 0 < t � T. (2.24)

Proof. Using the Hopf lemma to the equation (1.2) yields that

ux(s(t), t) < 0 for 0 < t � T. (2.25)

Thus, combining this inequality with the Stefan condition gives the result.
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Remark 2.3. If the initial function u0 is smooth and satisfies the consistency condition:

−du′′
0(s0) + μu′

0(s0)u
′
0(s0) = u0(s0)(Kau0(s0) − b), (2.26)

then the solution (u, s) ∈ C2+α, 1+α/2([0, s(t)] × [0, T]) × C1+(1+α)/2([0, T]).

3. Finite Time Blowup

In this section we discuss the blowup behavior. First we present the following lemma.

Lemma 3.1. The solution of the problem (1.2) exists and is unique, and it can be extended to [0, Tmax)
where Tmax � ∞. Moreover, if Tmax < ∞, one has

lim sup
t→ Tmax

‖u(x, t)‖L∞([0,s(t)]×[0,t]) = ∞. (3.1)

Proof. It follows from the uniqueness and Zorn’s lemma that there is a number Tmax such
that [0, Tmax) is the maximal time interval in which the solution exists. In order to prove the
present lemma, it suffices to show that, when Tmax < ∞,

lim sup
t→ Tmax

‖u‖L∞([0,s(t)]×[0,t]) = ∞. (3.2)

In what follows we use the contradiction argument. Assume that Tmax < ∞ and
‖u‖L∞([0,s(t)]×[0,t]) < ∞. Since s′(t) is bounded in [0, Tmax) by Theorem 2.1, using a bootstrap
argument and Schauder’s estimate yields a priori bound of ‖u(t, x)‖C1+α[0,s(t)] for all t ∈
[0, Tmax). Let the bound be M∗. It follows from the proof of Theorem 2.1 that there exists
a τ > 0 depending only on M∗ such that the solution of the problem (1.2) with the initial
time Tmax − τ/2 can be extended uniquely to the time Tmax − τ/2 + τ , which contradicts the
assumption. This completes the proof.

In order to investigate the behavior of the free boundary, we introduce the energy of
the solution u at t by

E(t) =
∫s(t)

0

(
d

2
(ux)2 − Ka

3
u3 +

b

2
u2
)
(x, t)dx, (3.3)

and its L1-norm by |u(t)|1 =
∫s(t)
0 u(x, t)dx. Then we have the following lemma.

Lemma 3.2. Let u be the solution of the problem (1.2). Then one has the relations

dE
dt

= −
∫ s(t)

0
u2
t (x, t)dx − d

2μ2
s
′3(t), (3.4)

|u(t)|1 − |u0|1 =
d

μ
(s0 − s(t)) +

∫ t

0

∫s(τ)

0

(
Kau2 − bu

)
(x, τ)dx dτ. (3.5)
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Proof. It is easy to see that

dE
dt

=
∫s(t)

0

(
duxuxt −Kau2ut + buut

)
(x, t)dx + s′(t)

×
[
d

2
(ux)2(s(t), t) − Ka

3
u3(s(t), t) +

b

2
u2(s(t), t)

]
.

(3.6)

Integrating by parts and using ux(0, t) = 0 yield

∫s(t)

0
uxuxtdx = −

∫s(t)

0
uxxutdx + uxut(s(t), t). (3.7)

Differentiating the second equation of (1.2)with respect to t, we have

d
dt

(u(s(t), t)) = s′(t)ux(s(t), t) + ut(s(t), t) = 0, (3.8)

which implies that

uxut(s(t), t) = −s′(t)u2
x(s(t), t) = −s

′3(t)
μ2

. (3.9)

By substitution, we get

dE
dt

= −
∫ s(t)

0

(
duxxut +Kau2ut − buut

)
(x, t)dx − d

μ2
s
′3(t) +

d

2μ2
s
′3(t)

= −
∫ s(t)

0
u2
t (x, t)dx − d

2μ2
s′3(t),

(3.10)

that is (3.4).
Now we show (3.5). It is obvious that

d
dt

∫ s(t)

0
u(x, t)dx =

∫ s(t)

0
ut(x, t)dx + s′(t)u(s(t), t)

=
∫ s(t)

0
duxx(x, t)dx +

∫s(t)

0

(
Kau2 − bu

)
(x, t)dx

= −d
μ
s′(t) +

∫s(t)

0

(
Kau2 − bu

)
(x, t)dx.

(3.11)
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Integrating the equation above, we get

|u(t)|1 − |u0|1 =
d

μ
(s0 − s(t)) +

∫ t

0

∫ s(t)

0

(
Kau2 − bu

)
(x, τ)dxdτ. (3.12)

This completes the proof.

Lemma 3.3. Assume Tmax = ∞, and letA =
∫∞
0 s′3(t)dt. If b < πd3/8(2ds0 +μ|u0|1)2, then one has

A � μ3d3π2|u0|31/64(2ds0 + μ|u0|1)4.

Proof. We see the following auxiliary free boundary problem:

vt − dvxx = −bv, 0 < x < h(t), 0 < t < ∞,

v(x, 0) = u0(x), 0 � x � s0, h(0) = s0,

v(h(t), t) = vx(0, t) = 0, 0 < t < ∞,

h′(t) = −μvx(h(t), t), 0 < t < ∞.

(3.13)

By the same argument as in Theorem 2.1, the solution of the above problem exists for all
t > 0 since the solution is bounded. Moreover, one can deduce from the maximum principle
that u � v � 0 and s(t) � h(t) � s0 on (0, Tmax). Similarly as in Lemma 3.2, denoting
|v(t)|1 =

∫h(t)
0 v(t, x)dx, we easily obtains

h(t) − s0 =
μ

d
(|u0|1 − |v(t)|1) −

μb

d

∫ t

0
|v(τ)|1dτ. (3.14)

Using Hölder’s inequality and the fact that s(t) � h(t) � s0 yields that for all t � 0,

∫ t

0
s′(τ)dτ �

(∫ t

0

(
s′(τ)

)3dτ
)1/3(∫ t

0
dτ

)2/3

� A1/3t2/3, (3.15)

so we have

A � t−2
(∫ t

0
s′(τ)dτ

)3

= t−2(s(t) − s0)3

� t−2
(

μ

d
(|u0|1 − |v(t)|1) −

μb

d

∫ t

0
|v(τ)|1dτ

)3

.

(3.16)



10 Abstract and Applied Analysis

On the other hand, by the maximum principle, we have v � w, wherew is the solution
of the following Cauchy problem:

wt − dwxx = 0, −∞ < x < ∞, t > 0,

w(x, 0) = u0(x) =

⎧
⎪⎨
⎪⎩

u0(|x|), −s0 � x � s0,

0, x ∈ R

[−s0, s0] .
(3.17)

By the L1 − L∞ estimate for the heat equation, we have

‖v(t)‖∞ � ‖w(t)‖∞ � (4dπt)−1/2|w(0)|1 = (dπt)−1/2|u0|1, (3.18)

hence, by (3.14),

|v(t)|1 � h(t)‖v(t)‖∞ � h(t)(dπt)−1/2|u0|1

=

(
s0 +

μ

d
|u0|1 −

μ

d
|v(t)|1 −

μb

d

∫ t

0
|v(t)|1dτ

)
(dπt)−1/2|u0|1

�
(
s0 +

μ

d
|u0|1 −

μ

d
|v(t)|1

)
(dπt)−1/2|u0|1.

(3.19)

Therefore, we have |v(t0)|1 � |u0|1/2 for t0 = (dπ)−1(2s0 + (μ/d)|u0|1)2. If b < πd3/8(2ds0 +
μ|u0|1)2, we get b

∫ t0
0 |v(τ)|1dτ � (1/4)|u0|1. Taking t = t0 in the inequality (3.16) yields the

desired estimate.

Theorem 3.4. Let u be the solution of the problem (1.2), if b < πd3/8(2ds0 + μ|u0|1)2, then one has
Tmax < ∞ whenever

E(0) <
μd4π2|u0|31

128
(
2ds0 + μ|u0|1

)4 . (3.20)

Proof. As in [28], define the function

F(t) =
∫ t

0

∫s(τ)

0
u2(x, τ)dxdτ. (3.21)
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Direct calculations show that F ′(t) =
∫s(t)
0 u2(x, t)dx and

F ′′(t) =
∫s(t)

0
2uut(x, t)dx + s′(t)u2(s(t), t) =

∫s(t)

0
2uut(x, t)dx

= 2
∫ s(t)

0

(
duuxx + u2(Kau − b)

)
(x, t)dx

= 2
∫ s(t)

0

(
u2(Kau − b) − du2

x

)
(x, t)dx + 2duux(x, t)

∣∣∣
s(t)

0

= −6E(t) +
∫ s(t)

0

(
du2

x + bu2
)
(x, t)dx.

(3.22)

It follows from the identity (3.4) that

F ′′(t) = 6
∫ t

0

∫ s(τ)

0
u2
t (x, τ)dxdτ +

3d
μ2

∫ t

0
s
′3(τ)dτ − 6E(0)

+
∫ s(t)

0

(
du2

x + bu2
)
(x, t)dx.

(3.23)

Now assume Tmax = ∞ by contradiction. The assumption (3.20), together with Lemma 3.3,
implies that

E(0) <
d

2μ2

∫ t

0
s
′3(τ)dτ (3.24)

for all t � t0 sufficiently large, we then have

F ′′(t) > 6
∫ t

0

∫s(τ)

0
u2
t (x, τ)dxdτ, t � t0. (3.25)

Applying the Cauchy-Schwarz inequality yields

F(t)F ′′(t) � 6
∫ t

0

∫ s(τ)

0
u2dxdτ

∫ t

0

∫s(τ)

0
u2
tdxdτ

� 6

(∫ t

0

∫s(τ)

0
uutdxdτ

)2

=
3
2
(
F ′(t) − F ′(0)

)2
(3.26)

since F ′′(τ) =
∫s(τ)
0 2uut(x, τ)dx by (3.22).

On the other hand, (3.25) implies that

F ′(t) � F ′(t0 + 1) =
∫ s(t0+1)

0
u2(x, t0 + 1)dx > 0, t � t0 + 1, (3.27)
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so that limt→∞F(t) = ∞. We then obtain

F(t)F ′′(t) � 5
4
F

′2(t), t � t1 (3.28)

for some large t1 > t0 + 1.
Defining G(t) = F−1/4(t) for t � t1, it follows that

G′(t) = −1
4
F ′(t)F−5/4(t) < 0, t � t1,

G′′(t) = −1
4
F−9/4

(
FF ′′ − 5

4
F ′2(t)

)
� 0, t � t1.

(3.29)

This implies that G is concave, decreasing, and positive for t � t1, which is impossible. The
contradiction shows that Tmax < ∞, which gives the blowup result.

Remark 3.5. The above theorem shows that the solution of the free boundary problem (1.2)
blows up if the death rate (b) is sufficiently small and the initial datum (u0) is sufficiently
large.

4. Global Fast Solution and Slow Solution

In this section, we study the asymptotic behavior of the global solutions of (1.2). We first give
the following existence of fast solution.

Theorem 4.1 (fast solution). Let u be a solution of problem (1.2). If u0 is small in the following
sense:

‖u0‖∞ � d

32
min

{
1

Kas20
,
1
μ

}
, (4.1)

then Tmax = ∞. Moreover, s∞ < ∞ and there exist real numbers C, β > 0 depending on u0 such that

‖u(t)‖∞ � Ce−βt, t � 0. (4.2)

Proof. It suffices to construct a suitable global supersolution. Inspired by [30], we define

ϑ(t) = 2s0
(
2 − e−γt

)
, t � 0, V

(
y
)
= 1 − y2, 0 � y � 1,

v(x, t) = εe−βtV
(

x

ϑ(t)

)
, 0 � x � ϑ(t), t � 0,

(4.3)

where γ, β and ε > 0 to be chosen later.
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An easy computation yields

vt − dvxx − v(Kav − b) = εe−βt
[
−βV − xϑ′ϑ−2V ′ − dϑ−2V ′′ − V

(
Kaεe−βtV − b

)]

� εe−βtV

[
−β +

d

8s20
−Kaε

]
,

(4.4)

for all t > 0 and 0 < x < ϑ(t).
On the other hand, we have ϑ′(t) = 2γs0e−γt > 0 and −vx(ϑ(t), t) = 2εe−βt/ϑ(t). Setting

γ = β = d/16s20, and ε � ε0 = min{d/16Kas20, d/16μ}, it follows that

vt − dvxx − v(Kav − b) � 0, 0 < x < ϑ(t), t > 0,

ϑ′(t) > −μvx(ϑ(t), t), t > 0,

v(ϑ(t), t) = vx(0, t) = 0, t > 0,

ϑ(0) = 2s0 > s0.

(4.5)

Assume that ‖u0‖∞ � min{d/32Kas20, d/32μ} and choose ε = 2‖u0‖∞, we also get u0(x) <
v(x, 0) for 0 � x � s0.

By using the maximum principle, one then sees that s(t) < ϑ(t) and u(x, t) < v(x, t) for
0 � x � s(t), as long as u exists. In particular, it follows from the continuation property (3.1)
that u exists globally. The proof is complete.

Remark 4.2. The above result shows that the free boundary converges to a finite limit and
that the solution u(t) decays uniformly to 0 at an exponential rate. Compared to the case (see
Theorem 4.5), the free boundary grows up to infinity and the decay rate of the solution is at
most polynomial, the former solution is therefore called fast solution.

Before we give the existence result of slow solution, we need the following uniform a
priori estimate for all global solutions of problem (1.2).

Proposition 4.3. Let u be a solution of the problem (1.2) with Tmax = ∞. Then there is a constant
C = C(‖u0‖C1+α , s0, 1/s0) > 0, such that

sup
t�0

‖u(x, t)‖L∞(0,s(t)) � C, (4.6)

where C remains bounded for ‖u0‖C1+α , s0, and 1/s0 bounded.

Proof. First from the local theory for problem (1.2), for each M > 1 there exists σ > 0 such
that, if ‖u0‖C1+α < M and 1/M < s0 < M, then ‖u(x, t)‖L∞ < 2M on [0, σ].
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Assume that the result is false. Then there exists a M > 0 and a sequence of global
solutions (un, sn) of (1.2), such that

1
M

< sn(0) < M, ‖un(x, 0)‖C1+α[0,s0] < M,

sup
t�0

‖un(x, t)‖L∞(0,sn(t)) −→ ∞ as n −→ ∞.
(4.7)

For all large n there exist tn � σ and xn ∈ [0, sn(tn)) such that

sup
t�0

‖un(x, t)‖L∞(0,sn(t)) = un(xn, tn) � �n. (4.8)

We define λn = �−1/2n , then it is evident to see that λn → 0 as n → ∞. We extend un(·, t) by 0
on (sn(t),∞) and define the rescaled function

vn

(
y, τ

)
= λ2nun

(
xn + λny, tn + λ2nτ

)
, (4.9)

for (y, τ) ∈ D̃n = {(y, τ) : −λ−1n xn � y < ∞ and − λ−2n tn � τ � 0}. Also, we denote

y1 = −λ−1n xn, y2(τ) = λ−1n
(
s
(
tn + λ2nτ

)
− xn

)
,

Dn =
{(

y, τ
)
: y1 � y < y2(τ) and − λ−2n tn � τ � 0

}
,

(4.10)

which corresponds to the domain {x < s(t)}. The function vn satisfies vn(0, 0) = 1, 0 � vn � 1
and

∂τvn − d∂2yvn = vn(Kavn − bn),
(
y, τ

) ∈ Dn, (4.11)

where bn = λ2nb. Note that bn → 0 as n → +∞. Similarly as Lemma 2.1 in [27], there exists a
subsequence {vnk} of {vn} such that {vnk} converges in L

p

loc([0,+∞) × (−∞, 0]) to a function
w(y, t) ∈ L

p

loc([0,+∞)×(−∞, 0]) and {vnk(y, 0)} converges inCloc([0,+∞)) to a function z(y) ∈
C([0,+∞)), which satisfies z(0) = 1. Moreover, similarly as Lemmas 2.2 and 2.3 in [27],wt = 0
in D′((0,+∞) × (−∞, 0)) and there is a function w(y) � 0 which is bounded, continuous on
[0,∞) and satisfies that −wyy = Kaw2, hence w is concave. Therefore w ≡ 0, which leads to
a contradiction to the fact that w(0) = z(0) = 1. This completes the proof of Proposition 4.3.

The above proposition shows that all global solutions are uniformly bounded and the
coming result implies that all global solutions decay uniformly to 0.

Proposition 4.4. Let u be a solution of the problem (1.2) with Tmax = ∞. Then it holds that

lim
t→+∞

‖u(x, t)‖L∞(0,s(t)) = 0. (4.12)
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Proof. Assume that l := lim supt→+∞‖u(x, t)‖L∞(0,s(t)) > 0 by contradiction. It follows from
Proposition 4.3 that l < +∞. Let t0 > 0 be such that sup[t0,+∞)‖u(x, t)‖L∞(0,s(t)) � (3/2)l. Then
there exists a sequence tn → +∞ such that ‖u(x, tn)‖L∞(0,s(tn)) � (3/4)l.

Now pick xn ∈ [0, sn(tn)) such that

‖u(x, tn)‖L∞(0,s(tn)) = u(xn, tn). (4.13)

As above, we define λn = u−1/2(xn, tn) and then 0 < λn � (3l/4)−1/2. We extend u(·, t) by 0 on
(s(t),∞) and define the rescaled function

vn

(
y, τ

)
= λ2nu

(
xn + λny, tn + λ2nτ

)
(4.14)

for (y, τ) ∈ D̃n = {(y, τ) : −λ−1n xn � y < ∞ and λ−2n (t0 − tn) � τ � 0}. Also, we denote

y1 = −λ−1n xn, y2(τ) = λ−1n
(
s
(
tn + λ2nτ

)
− xn

)
,

Dn =
{(

y, τ
)
: y1 � y < y2(τ) and λ−2n (t0 − tn) � τ � 0

}
.

(4.15)

Therefore the function vn satisfies vn(0, 0) = 1, 0 � vn � 2, limy→+∞vn(y, τ) = 0 and

∂τvn − d∂2yvn = vn(Kavn − bn),
(
y, τ

) ∈ Dn, (4.16)

where bn = λ2nb. Note that bn � b(3l/4)−1, therefore there exists a subsequence {bnk} and
b∗ � b(3l/4)−1 such that bnk → b∗ as k → +∞. Similarly as Lemmas 2.1–2.3 in [27], we have
obtained a function w(y) � 0, bounded and continuous on [0,∞) and satisfies that −wyy =
Kaw2 − b∗w. Therefore w ≡ 0 or w ≡ b∗/Ka. If w ≡ 0, this is a contradiction to the fact that
w(0) = 1 since vn(0, 0) = 1. If w ≡ b∗/Ka, this is also a contradiction to the fact that
limy→+∞w(y) = 0.

Theorem 4.5 (slow solution). Let φ ∈ C1([0, s0]) satisfy φ � 0, φ /≡ 0 with φx(0) = φ(s0) = 0,
and b satisfy the same condition as in Theorem 3.4. Then there exists λ > 0 such that the solution of
(1.2) with initial data u0 = λφ is a global slow solution, which satisfies that s∞ = ∞ and

s(t) = O
(
t2/3

)
as t −→ ∞. (4.17)

Proof. Denote the solution of (1.2) as u(u0; ·) to emphasize the dependence on the initial
function u0 when necessary. So as to s(t), s∞ and the maximal existence time Tmax.

Similarly as in [27], define

Σ =
{
λ > 0; Tmax

(
λφ
)
= ∞ and s∞

(
λφ
)
< ∞}. (4.18)

According to the Theorem 4.1, Σ/= ∅ since that the solution is global if λ is sufficiently small.
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If b < πd3/8(2ds0 + μ|u0|1)2, then for λ sufficiently large, we have E(λφ) < 0, which
implies Tmax(λφ) < ∞. Therefore Σ is bounded.

Let λ∗ = supΣ ∈ (0,∞), v(x, t) = u(λ∗φ;x, t), σ(t) = s(λ∗φ; t) and τ = Tmax(λ∗φ).
We first claim that τ = ∞. In fact, by continuous dependence, when λ → λ∗, we

know that u(λφ;x, t) approaches v(x, t) in L∞(0,∞) and s(λφ; t) → σ(t) for each fixed
t ∈ [0, τ). Since Tmax(λφ) = ∞ for all λ ∈ (0, λ∗), it follows from Proposition 4.3 that
‖v(x, t)‖L∞(0,σ(t)) � C for all t ∈ [0, τ). Therefore, τ = ∞ since nonglobal solutions must satisfy
lim supt→ T‖u(x, t)‖L∞(0,s(t)) = ∞.

Next we claim that σ∞ = ∞. Assume σ∞ < ∞ for contradiction. If follows from
Proposition 4.4 that ‖v(x, t)‖L∞(0,σ(t)) → 0 as t → ∞, which implies

‖v(x, t0)‖L∞(0,σ(t0)) < min
{

d

32Kaσ2(t0)
,

d

32μ

}
(4.19)

for some large t0. By continuous dependence, we have

∥∥u(λφ;x, t0
)∥∥

L∞(0,h(t0))
� min

{
d

32Kas2(t0)
,

d

32μ

}
(4.20)

for λ > λ∗ sufficiently close to λ∗. But this implies that s∞(λφ) < ∞ by Theorem 4.1, which is
a contradiction with the definition of λ∗.

On the other hand, as a consequence of the blowup result of Theorem 3.4, we know
that Tmax = ∞ implies E(t) � 0 for all t � 0, hence by using (3.4)we have

∫∞

0

∫s(t)

0
u2
t (x, t)dx dt +

d

2μ2

∫∞

0
s′3(t)dt � E(0) < ∞. (4.21)

The estimate (4.17) follows from Hölder’s inequality and (4.21), by writing s(t) − s0 =∫ t
0 s

′(τ)dτ � (
∫ t
0(s

′(τ))3dτ)1/3t2/3. The proof is complete.
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