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We study the tight representation of a semilattice in {0, 1} by some examples. Then we introduce
the concept of the complex tight representation of an inverse semigroup S by the concept of the
tight representation of the semilattice of idempotents E of S in {0, 1}. Specifically we describe the
tight representation of a 0-E-unitary inverse semigroup and prove that if σ is a tight semilattice
representation of the 0-E-unitary inverse semigroup S in {0, 1}, then σ is a complex tight repre-
sentation.

1. Introduction

A semigroup is a set equipped with an associative binary operation. A monoid is a semigroup
with an identity. A semigroup S is said to be an inverse semigroup, provided there exists, for
each s in S, a unique element s∗ in S such that

s = ss∗s, s∗ = s∗ss∗ (1.1)

Good references for inverse semigroups are [1–3].
For a given set X, let I(X) be the set of all bijective functions f : A → B, where A

and B are subsets of X. The multiplication on I(X) is by composition of functions, defined
on the largest possible domain. More precisely, for f, g ∈ I(X), let fog be the function with
dom(fog) = g−1(ran(g) ∩ dom(f)), and fog(x) = f(g(x)). The involution on I(X) sends a
function to its inverse. I(X) is called the inverse semigroup of partial bijections on X.

By the Wagner-Preston representation theorem, (see [1, 1.5.1]) every inverse semi-
group is an inverse semigroup of partial bijection.
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Let S be an inverse semigroup. An idempotent is an element e ∈ S such that e2 = e. The
set of idempotents of S is usually denoted by E(S), or just E. A partial bijection is idempotent
if and only if it is the identity function on its domain.

The natural partial order ≤ on S is defined by

s ≤ t iff s = te for some idempotent e. (1.2)

The natural partial order induces a semilattice structure on the set E(S) of idempotents by
the order

e ≤ f iff e = ef. (1.3)

So, one often refers to E(S) as the semilattices of idempotents of S. For f, g in I(X), f ≤ g if
and only if g restricted to dom(f) is f .

Let Bn = {(i, j) : 1 ≤ i, j ≤ n} ∪ {0}. Define a multiplication on Bn by

(
i, j
)
(k, l) =

⎧
⎨

⎩

(i, l), i = j,

0, otherwise,
(1.4)

and (i, j)0 = 0(i, j) = 0. Define the involution on Bn by (i, j)∗ = (j, i). The inverse semigroup
Bn in called a Brandt semigroup.

2. Tight Representations of Semilattices

In this section we define the tight representation of a semilattice E on {0, 1} and introduce
two characteristic functions on E that are tight representations. One can see more about
representations and semilattices in [4–7].

Definition 2.1. Let E be a partially ordered set. A subset F ⊆ E is said to be connected if, for
every f1 and f2 in F, there exists an element f in F such that

f ≤ f1, f ≤ f2. (2.1)

A component of E is a maximal connected subset of E. For a partially ordered set E with the
minimum element 0, we denote by Emin the set of all minimal elements of E∗ = E \ {0}.

Definition 2.2. Given a partially ordered set E with smallest element 0, we say that two
elements s and t in E are disjoint, in symbols s ⊥ t, if there is no nonzero u ∈ E such that
u ≤ s, t. Otherwise we say that s and t intersect, in symbols s ∩ t /= ∅.

For any subsetU of E, we say that a subset V ⊆ U is a cover forU if, for every nonzero
u ∈ U, there exists v ∈ V such that u ∩ v /= ∅.

A semilattice is a partially ordered set E such that for every s, t ∈ E, the set {u ∈ E : u ≤
s, t} contains a maximum element.
From now on we will fix a semilattice E.
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Definition 2.3. For a finite subset F ⊆ E, define [0, F] to be the subset of E given by

[0, F] =
{
e ∈ E : e ≤ f, ∀f ∈ F

}
, (2.2)

and denote by F⊥ the subset of E given by

F⊥ =
{
e ∈ E : e ⊥ f, ∀f ∈ F

}
. (2.3)

It is obvious that 0 ∈ [0, F] and if F is not contained in a component of E∗, then [0, F] = {0}.
If F and G are finite subsets of E, we denote by EF,G the subset [0, F] ∩G⊥ of E.

Notice that if F = G = ∅, than EF,G = E, if F = ∅, EF,G = G⊥ and if G = ∅, EF,G = [0, F].
If e ≤ f , then E{e},{f} = {0} and E∗{e},{f} = ∅. However E{f},{e} is not necessarily zero. Note
that if e and f belong to different components of E∗, then E{e},{f} = (0, e]. For elements e and
f in E such that e ≤ f , e is said to be dense in f if E{f},{e} = {0}.

Definition 2.4. Amap σ : E → {0, 1} is said to be a representation of E in {0, 1}, if σ(0) = 0 and
σ(x ∧ y) = σ(x)σ(y), for all x, y in E. We say that σ is tight if for all finite subsets F,G ⊆ E,
and for all finite cover H for EF,G, one has that

sgn

(
∑

h∈H
σ(h)

)

=
∏

f∈F
σ
(
f
)∏

g∈G

(
1 − σ

(
g
))
. (2.4)

Proposition 2.5. Let e and f be in E with e being dense in f . Then σ(e) = σ(f) for every tight
representation σ of E in {0, 1}.

Proof. Suppose that σ is a tight representation of E in {0, 1} and choose e, f in E such that
E{f},{e} = {0}. Then ∅ is a cover for E{f},{e}. So by the definition of tight representation we
have σ(f)(1 − σ(e)) = 0. Therefore σ(f) ≤ σ(e). On the other hand, since e ≤ f , then σ(e) ≤
σ(f).

Theorem 2.6. Let E be a semilattice with minimum element 0. If e ∈ Emin, then χ[e,∞) is a tight
representation of E in {0, 1}.

Proof. Set σ = χ[e,∞). If x, y ∈ E are such that x ≤ y, then σ(x) ≤ σ(y). On the other hand if x
and y are disjoint, then σ(x) and σ(y) are disjoint too. So σ(x) ≤ 1 − σ(y). More generally, if
F and G are finite subsets of E, and h ∈ E is such that h ≤ f for every f ∈ F, and h ⊥ g, for
every g ∈ G, then

σ(h) ≤
∏

f∈F
σ
(
f
)∏

g∈G

(
1 − σ

(
g
))
. (2.5)

Conversely, let F,G be finite subsets of E, and letH be a cover for EF,G. To prove the inequality

sgn

(
∑

h∈H
σ(h)

)

≥
∏

f∈F
σ
(
f
)∏

g∈G

(
1 − σ

(
g
))
, (2.6)
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we see that if the right-hand side is 0, then the inequality holds obviously. So suppose that
the right-hand side is 1. Then we show that the left-hand side is 1 too. Since σ = χ[e,∞), we
have F ⊆ [e,∞) and G ∩ [0,∞) = ∅. Also e ∈ EF, G. Then there exists h ∈ H such that h ∩ e /= ∅.
This means that there exists a nonzero t ∈ E such that t ≤ h, e. Since e ∈ Emin, then e ≤ h and
so h ∈ [0,∞) and σ(h) = 1. Therefore the left-hand side is 1 too.

By the definition of Emin, one can show that every element of Emin is the minimum
element of some component of E∗. But it may happen that some component of E∗ does not
have a minimum element. So the following theorem holds.

Theorem 2.7. If F is a component of E∗, then χF is a tight representation of E in {0, 1}.

3. Complex Tight Representations of 0-E-Unitary Inverse Semigroups

The class of E-unitary inverse semigroups is one of the most important in inverse semigroup
theory. When an inverse semigroup contains a zero, then every element of E must be
idempotent. Thus motivated by Szendrei [8], we define the class of 0-E-unitary inverse
semigroups (although she called them E∗-unitary). The term 0-E-unitary appears to be due
to Meakin and Sapir [9]. More references for 0-E-unitary inverse semigroups are [10–12].

Throughout this section we define complex tight representations of inverse semi-
groups and prove that every semilattice tight representation on a 0-E-unitary inverse semi-
group is a complex tight representation.

Definition 3.1. An inverse semigroup S with semilattice of idempotent E is E-unitary if, for
every e ∈ E, e ≤ s for some s ∈ S implies that s is idempotent.

Proposition 3.2 (see [1]). Let S be an inverse semigroup. For s, t ∈ S, the following are equivalent:

(i) s ≤ t,

(ii) there exists f ∈ E such that s = ft,

(iii) s = ts∗s,

(iv) s = ss∗t,

(v) s∗ ≤ t∗.

Proposition 3.3. Let S be an inverse semigroup and e is an idempotent in E. If s ∈ S such that s ≤ e,
then s is also an idempotent.

Proof. If s ≤ e, then by the previous proposition there exists an idempotent f ∈ E such that
s = ef . Since the semilattice of idempotents is closed under multiplication, we have s ∈ E.

Definition 3.4. An inverse semigroup S is said to be a 0-E-unitary if, for every nonzero
idempotent e, e ≤ s for some s ∈ S implies s is idempotent. The components of E∗ are in
the form [s,∞) or (s,∞) for some nonzero element s ∈ S. By Proposition 3.3, if F is any
component of S∗ = S \ {0}, then F ⊆ E or F ∩ E = ∅.

Lemma 3.5 (see [4]). If S is a 0-E-unitary inverse semigroup and s, t ∈ S are such that s∗s = t∗t
and se = te for some nonzero idempotent e ≤ s∗s, then s = t.
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Proposition 3.6. If S is a 0-E-unitary inverse semigroup with zero, then S is a semilattice with
respect to natural order.

Proof. Let s, t ∈ S. If there is no nonzero u ∈ S such that u ≤ s, t, then st = 0. So 0 is the
infimum of s, t. Now suppose that there exists a nonzero element u such that u ≤ s, t. By [1],
u∗u ≤ s∗s and u∗u ≤ t∗t. Let f = s∗st∗t. Then u∗u ≤ f . Setting s1 = sf and t1 = tf , we have

s∗1s1 = fs∗sf = f = ft∗tf = t∗1t1. (3.1)

Since

s1u
∗u = sfu∗u = su∗u = u = tu∗u = tfu∗u = t1u

∗u, (3.2)

by Lemma 3.5 we have s1 = t1. So

st∗t = ss∗st∗t = sf = s1 = t1 = tf = ts∗s. (3.3)

Since 0/=u1 ≤ s1, t1 we may apply the above argument to s1, u1, t1 in order to prove that
s∗tt∗ = t∗ss∗, which implies that tt∗s = ss∗t.

The fact that u ≤ s, t implies that su∗u = u = tu∗u. So

t∗su∗u = t∗tu∗u = u∗u. (3.4)

Since S is 0-E-unitary, t∗s is an idempotent. Also we can prove similarly that ts∗ is an
idempotent. Thus st∗t = ts∗t = tt∗s. Therefore

st∗t = ts∗s = tt∗s = ss∗t. (3.5)

We claim that st∗t is the infimum of s, t. It is obvious that st∗t ≤ s, t. Since

u = su∗u = sfu∗u = ss∗st∗tu∗u = st∗tu∗u, (3.6)

then u ≤ st∗t.

Note that if σ is a representation of an inverse semigroup S in the complex plane
(as a Hilbert space), then σ(e) = 0 or 1, for every idempotent element e ∈ E(S). Such
representations are called complex representations.

Now we will fix an inverse semigroup S with 0.

Definition 3.7. A complex representation σ of S on the complex plane is said to be tight if the
restriction of σ to E(S) is a tight representation of E(S) in {0, 1}.

From the definition one can show that if s0 is a minimum element of S∗ = S \ {0}, then
χ[s0,∞) is a complex tight representation on S. Also if T is a component of S∗, then χT is a
complex tight representation on S.
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Since every 0-E-unitary inverse semigroup is a semilattice with zero, a representation
of S in {0, 1} is both a representation of the semilattice S in {0, 1} and a complex representation
of the inverse semigroup S.

Theorem 3.8. Let S be a 0-E-unitary inverse semigroup and let σ be a representation of S in {0, 1}.
If σ is tight as a semilattice representation, then it is tight as a complex representation.

Proof. Suppose that σ is a semilattice tight representation of S in {0, 1}. Let F and G be finite
subsets of E and H a cover for EF, G. Since E ⊆ S, then EF,G ⊆ SF,G. Since H is a cover of EF,G,
then there is a coverK of SF, G such thatH ⊆ K. Therefore

∑

h∈H
σ(h) ≤

∑

k∈K
σ(k), (3.7)

and hence

sgn

(
∑

k∈K
σ(k)

)

≥
∏

f∈F
σ
(
f
)∏

g∈G

(
1 − σ

(
g
))
. (3.8)

Then σ|E is a tight representation of E in {0, 1} and therefore σ is a complex tight representa-
tion of S in {0, 1}.
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