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We consider the following real two-dimensional nonlinear analytic quasi-periodic Hamiltonian
system ẋ = J∇xH, whereH(x, t, ε) = (1/2)β(x2

1 + x
2
2) + F(x, t, ε) with β /= 0, ∂xF(0, t, ε) = O(ε) and

∂xxF(0, t, ε) = O(ε) as ε → 0. Without any nondegeneracy condition with respect to ε, we prove
that for most of the sufficiently small ε, by a quasi-periodic symplectic transformation, it can be
reduced to a quasi-periodic Hamiltonian system with an equilibrium.

1. Introduction

We first give some definitions and notations for our problem. A function f(t) is called a quasi-
periodic function with frequencies ω = (ω1, ω2, . . . , ωl) if f(t) = F(ω1t, ω2t, . . . , ωlt) with θi =
ωit, where F(θ1, θ2, . . . , θl) is 2π periodic in all the arguments θj , j = 1, 2, . . . , l. If F(θ) (θ =
(θ1, θ2, . . . , θl)) is analytic on Dρ = {θ ∈ Cl/2πZl | | Im θi| ≤ ρ, i = 1, 2, . . . , l}, we call f(t)
analytic quasi-periodic on Dρ. If all qij(t) (i, j = 1, 2 . . . , n) are analytic quasi-periodic on Dρ,
then the matrix function Q(t) = (qij(t))1≤i, j≤n is called analytic quasi-periodic on Dρ.

If f(t) is analytic quasi-periodic on Dρ, we can write it as Fourier series:

f(t) =
∑

k∈Zl

fke
i〈k,ω〉t. (1.1)

Define a norm of f by ‖f‖ρ =
∑

k∈Zl |fk|e|k|ρ. It follows that |fk| ≤ ‖f‖ρe−|k|ρ. If the matrix
function Q(t) is analytic quasi-periodic on Dρ, we define the norm of Q by ‖Q‖ρ = n ×
max1≤i,j≤n‖qij‖ρ. It is easy to verify ‖Q1Q2‖ρ ≤ ‖Q1‖ρ‖Q2‖ρ. The average of Q(t) is denoted
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by [Q] = ([qij])1≤i,j≤n, where

[
qij

]
= lim

T→∞
1
2T

∫T

−T
qij(t)dt. (1.2)

For the existence of the above limit, see [1].
Denote

D
(
r, ρ, ε0

)
=

{
(x, θ, ε) ∈ Cn ×

(
Cl

2πZl

)
× C | |x| ≤ r, θ ∈ Dρ, |ε| ≤ ε0

}
, (1.3)

where x = (x1, x2, . . . , xn) and |x| = |x1| + |x2| + · · · + |xn|.
Let f(x, t, ε) be analytic quasi-periodic of t and analytic in x and ε on D(r, ρ, ε0). Then

f(x, t, ε) can be expanded as

f(x, t, ε) =
∞∑

m=0

∑

k∈Zl

fmk(x)εm ei〈k,ω〉t. (1.4)

Define a norm by

∥∥f
∥∥
D(r,ρ,ε0)

=
∞∑

m=0

∑

k∈Zl

∣∣fmk
∣∣
rε
m
0 e

ρ|k|, (1.5)

where |fmk|r = sup|x|≤r |fmk(x)|. Note that

∥∥f1 · f2
∥∥
D(r,ρ,ε0)

≤ ∥∥f1
∥∥
D(r,ρ,ε0)

· ∥∥f2
∥∥
D(r,ρ,ε0)

. (1.6)

Problems

The reducibility on the linear differential system has been studied for a long time. The well-
known Floquet theorem tells us that if A(t) is a T -periodic matrix, then the linear system
ẋ = A(t)x is always reducible to the constant coefficient one by a T -periodic change of
variables. However, this cannot be generalized to the quasi-periodic system. In [2], Johnson
and Sell considered the quasi-periodic system ẋ = A(t)x, where A(t) is a quasi-periodic
matrix. Under some “full spectrum” conditions, they proved that ẋ = A(t)x is reducible.
That is, there exists a quasi-periodic nonsingular transformation x = φ(t)y, where φ(t) and
φ(t)−1 are quasi-periodic and bounded, such that ẋ = A(t)x is transformed to ẏ = By, where
B is a constant matrix.

In [3], Jorba and Simó considered the reducibility of the following linear system:

ẋ = (A + εQ(t))x, x ∈ Rn, (1.7)
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where A is an n × n constant matrix with n different eigenvalues λ1, λ2, . . . , λn and Q(t) is
analytic quasi-periodic with respect to t with frequencies ω = (ω1, ω2, . . . , ωl). Here ε is a
small perturbation parameter. Suppose that the following nonresonance conditions hold:

∣∣∣〈k,ω〉
√
−1 + λi − λj

∣∣∣ ≥ α

|k|τ , (1.8)

for all k ∈ Zl \ {0}, where α > 0 is a small constant and τ > l − 1. Assume that λ0j (ε) (j =
1, 2, . . . , n) are eigenvalues of A + ε[Q]. If the following non-degeneracy conditions hold:

d

dε

(
λ0i (ε) − λ0j (ε)

)∣∣∣∣
ε=0

/= 0, ∀i /= j, (1.9)

then authors proved that for sufficiently small ε0 > 0, there exists a nonempty Cantor subset
E ⊂ (0, ε0), such that for ε ∈ E, the system (1.7) is reducible. Moreover, meas((0, ε0) \ E) =
o(ε0).

Some related problems were considered by Eliasson in [4, 5]. In the paper [4], to study
one-dimensional linear Schrödinger equation

d2q

dt2
+Q(ωt)q = Eq, (1.10)

Eliasson considered the following equivalent two-dimensional quasi-periodic Hamiltonian
system:

ṗ = (E −Q(ωt))q, q̇ = p, (1.11)

whereQ is an analytic quasi-periodic function and E is an energy parameter. The result in [4]
implies that for almost every sufficiently large E, the quasi-periodic system (1.11) is reducible.
Later, in [5] the author considered the almost reducibility of linear quasi-periodic systems.
Recently, the similar problem was considered by Her and You [6]. Let Cω(Λ, gl(m,C)) be the
set ofm×mmatricesA(λ) depending analytically on a parameter λ in a closed intervalΛ ⊂ R.
In [6], Her and You considered one-parameter families of quasi-periodic linear equations

ẋ =
(
A(λ) + g(ω1t, . . . , ωlt, λ)

)
x, (1.12)

where A ∈ Cω(Λ, gl(m,C)), and g is analytic and sufficiently small. They proved that under
some nonresonance conditions and some non-degeneracy conditions, there exists an open
and dense set A in Cω(Λ, gl(m,C)), such that for each A ∈ A, the system (1.12) is reducible
for almost all λ ∈ Λ.

In 1996, Jorba and Simó extended the conclusion of the linear system to the nonlinear
case. In [7], Jorba and Simó considered the quasi-periodic system

ẋ = (A + εQ(t))x + εg(t) + h(x, t), x ∈ Rn, (1.13)
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where A has n different nonzero eigenvalues λi. They proved that under some nonresonance
conditions and some non-degeneracy conditions, there exists a nonempty Cantor subset E ⊂
(0, ε0), such that the system (1.13) is reducible for ε ∈ E.

In [8], the authors found that the non-degeneracy condition is not necessary for the
two-dimensional quasi-periodic system. They considered the two-dimensional nonlinear
quasi-periodic system:

ẋ = Ax + f(x, t, ε), x ∈ R2, (1.14)

where A has a pair of pure imaginary eigenvalues ±√−1ω0 with ω0 /= 0 satisfying the
nonresonance conditions

|〈k,ω〉| ≥ α

|k|τ , |〈k,ω〉 − 2ω0| ≥ α

|k|τ (1.15)

for all k ∈ Zl \ {0}, where α > 0 is a small constant and τ > l − 1. Assume that f(0, t, ε) = O(ε)
and ∂xf(0, t, ε) = O(ε) as ε → 0. They proved that either of the following two results holds:

(1) for ∀ε ∈ (0, ε0), the system (1.14) is reducible to ẏ = By +O(y) as y → 0;

(2) there exists a nonempty Cantor subset E ⊂ (0, ε0), such that for ε ∈ E the system
(1.14) is reducible to ẏ = By +O(y2) as y → 0.

Note that the result (1) happens when the eigenvalue of the perturbed matrix of A in
KAM steps has nonzero real part. But the authors were interested in the equilibrium of the
transformed system and obtained a small quasi-periodic solution for the original system.

Motivated by [8], in this paper we consider the Hamiltonian system and we have a
better result.

2. Main Results

Theorem 2.1. Consider the following real two-dimensional Hamiltonian system

ẋ = J∇xH, x ∈ R2, (2.1)

where H(x, t, ε) = (1/2)β(x2
1 + x

2
2) + F(x, t, ε) with β /= 0, F(x, t, ε) is analytic quasi-periodic with

respect to t with frequencies ω = (ω1, ω2, . . . , ωl) and real analytic with respect to x and ε on
D(r, ρ, ε0), and

J =

(
0 1

−1 0

)
. (2.2)
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Here ε ∈ (0, ε0) is a small parameter. Suppose that ∂xF(0, t, ε) = O(ε) and ∂xxF(0, t, ε) = O(ε) as
ε → 0. Moreover, assume that β and ω satisfy

|〈k,ω〉| ≥ α0
|k|τ , (2.3)

∣∣〈k,ω〉 − 2β
∣∣ ≥ α0

|k|τ (2.4)

for all k ∈ Zl \ {0}, where α0 > 0 is a small constant and τ > l − 1.
Then there exist a sufficiently small ε∗ ∈ (0, ε0] and a nonempty Cantor subset E∗ ⊂ (0, ε∗),

such that for ε ∈ E∗, there exists an analytic quasi-periodic symplectic transformation x = φ∗(t)y +
ψ∗(t) on Dρ/2 with the frequencies ω, which changes (2.1) into the Hamiltonian system ẏ = J∇yH∗,
whereH∗(y, t, ε) = 1/2β∗(ε)(y2

1 + y
2
2) + F∗(y, t, ε), where F∗(y, t, ε) = O(y3) as y → 0. Moreover,

meas((0, ε∗) \E∗) = o(ε∗) as ε∗ → 0. Furthermore, β∗(ε) = β +O(ε) and ‖φ∗ − Id‖ρ/2 + ‖ψ∗‖ρ/2 =
O(ε), where Id is the 2-order unit matrix.

3. The Lemmas

The proof of Theorem 2.1 is based on KAM-iteration. The idea is the same as [7, 8]. When
the non-degeneracy conditions do not happen, the small parameter ε is not involved in the
nonresonance conditions. So without deleting any parameter, the KAM step will be valid.
Once the non-degeneracy conditions occur at some step, they will be kept for ever and we
can apply the results with the non-degeneracy conditions. Thus, after infinite KAM steps, the
transformed system is convergent to a desired form.

We first give some lemmas. Let R = (rij)1≤i, j≤2 be a Hamiltonian matrix. Then we have
r11 + r22 = 0. Define a matrix RA = (1/2)dJ with d = r12 − r21. Let

B =
1√
2

(
1 1

√−1 −√−1

)
. (3.1)

It is easy to verify

B−1RAB =
1
2
diag

(√
−1d,−

√
−1d

)
,

B−1(R − RA)B =
1
2

(
0 σ ′ − √−1κ′

σ ′ +
√−1κ′ 0

)
,

(3.2)

where σ ′ = 2r11 and κ′ = r21 + r12.
In the same way as in [7, 8], in KAM steps we need to solve linear homological

equations. For this purpose we need the following lemma.

Lemma 3.1. Consider the following equation of the matrix:

Ṗ = AP − PA + R(t), (3.3)
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where A = β(ε)J with |β(ε)| > μ, μ > 0 is a constant, and R(t) = (rij(t))1≤i, j≤2 is a real analytic
quasi-periodic Hamiltonian matrix on Dρ with frequencies ω. Suppose β(ε) and R are smooth with
respect to ε and |εβ′(ε)| ≤ c0 for ε ∈ E ⊂ (0, ε∗), where c0 is a constant. Note that here and below
the dependence of ε is usually implied and one does not write it explicitly for simplicity. Assume
[R]A = 0, where [R] is the average of R. Suppose that for ε ∈ E, the small divisors conditions (2.3)
and the following small divisors conditions hold:

∣∣〈k,ω〉 − 2β(ε)
∣∣ ≥ α

|k|τ ′
, (3.4)

where τ ′ > 2τ + l. Let 0 < s < ρ and ρ1 = ρ− s. Then there exists a unique real analytic quasi-periodic
Hamiltonian matrix P(t) with frequencies ω, which solves the homological linear equation (3.3) and
satisfies

‖P‖ρ1 ≤
c

αsv
‖R‖ρ, ‖ε∂εP‖ρ1 ≤

c

α2sv′

(
‖R‖ρ + ‖ε∂εR‖ρ

)
, (3.5)

where v = τ ′ + l, v′ = 2τ ′ + l and c > 0 is a constant.

Remark 3.2. The subset E of (0, ε∗) is usually a Cantor set and so the derivative with respect
to ε should be understood in the sense of Whitney [9].

Proof. Let P = B−1PB, where B is defined by (3.1). Similarly, define A, R, RA. Then (3.3)
becomes

Ṗ = AP − P A + R(t), (3.6)

where

A = diag
(√

−1β,−
√
−1β

)
. (3.7)

Moreover, RA and R − RA have the same forms as (3.2) and (3.2), respectively
Noting that [R]A = 0, we have [R]A = 0. Write P = (pij)i,j and R = (rij)i,j . Obviously,

we have r11 = −r22 with [rii] = 0.

Insert the Fourier series of P and R into (3.6). Then it follows that p0ii = 0, pkii =
rkii/(〈k,ω〉

√−1) for k /= 0, and

pkij =
rkij√−1(〈k,ω〉 ± 2β

) for i /= j. (3.8)

Since R is analytic on Dρ, we have |Rk| ≤ ‖R‖ρe−|k|ρ. So it follows

∥∥∥P
∥∥∥
ρ−s

≤
∑

k∈Zl

∣∣∣Pk
∣∣∣e|k| (ρ−s) ≤ c

αsv
‖R‖ρ. (3.9)
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Note that here and below we always use c to indicate constants, which are independent of
KAM steps.

Since A and R(t) are real matrices, it is easy to obtain that P(t) is also a real matrix.
Obviously, it follows that p11 = −p22 and the trace of the matrix P is zero. So is the trace of P .
Thus, P is a Hamiltonian matrix.

Now we estimate ‖ε∂P/∂ε‖ρ1 . We only consider p12 and p21 since p11 and p22 are easy.

For i /= j we have

dpkij(ε)

dε
=

±2β′(ε)rkij −
(〈k,ω〉 ± 2β

)
rkij

’(ε)

−√−1(〈k,ω〉 ± 2β
)2 . (3.10)

Then, in the same way as above we obtain the estimate for ‖ε(∂P/∂ε)‖ρ1 .

The following lemma will be used for the zero order term in KAM steps.

Lemma 3.3. Consider the equation

ẋ = Ax + g(t), (3.11)

whereA is the same as in Lemma 3.1, and g is real analytic quasi-periodic in t onDρ with frequencies
ω and smooth with respect to ε. Suppose that the small divisors conditions (3.4) hold. Then there exists
a unique real analytic quasi-periodic solution x(t) with frequencies ω, which satisfies

‖x‖ρ1 ≤
c

αsv
‖g‖ρ,

∥∥∥∥ε
∂x

∂ε

∥∥∥∥
ρ1

≤ c

α2sv′

(
∥∥g

∥∥
ρ +

∥∥∥∥ε
∂g

∂ε

∥∥∥∥
ρ

)
, (3.12)

where s,ρ1,v, v′ are defined in Lemma 3.1.

Proof. Similarly, let x = B−1x,A = B−1AB and g(t) = B−1g(t). Then (3.11) becomes

ẋ = Ax + g(t), (3.13)

where A = diag(
√−1β,−√−1β). Expanding x = (x1, x2) and g = (g1, g2) into Fourier series

and using (3.13), we have

xki =
gki√−1

(
〈k,ω〉 + (−1)iβ

) . (3.14)
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Using 2k in place of k in (3.4), we have

∣∣〈k,ω〉 − β(ε)∣∣ ≥ α

2|k|τ ′
. (3.15)

Thus, in the same way as the proof of Lemma 3.1, we can estimate ‖x‖ρ1 and ‖ε∂εx‖ρ1 . We
omit the details.

The following lemma is used in the estimate of Lebesgue measure for the parameter ε
in the case of non-degeneracy.

Lemma 3.4. Let ψ(ε) = σεN + εNf(ε), whereN is a positive integer and f satisfies that f(ε) → 0
as ε → 0 and |f ′(ε)| ≤ c for ε ∈ (0, ε∗). Let φ(ε) = 〈k,ω〉 − 2β − ψ(ε). Let

O =

{
ε ∈ (0, ε∗) |

∣∣φ(ε)
∣∣ ≥ α

|k|τ ′
, ∀k /= 0

}
, (3.16)

where τ ′ ≥ 2τ + l, α ≤ (1/2)α0,σ /= 0. Suppose that the small condition (2.4) holds. Then when ε∗ is
sufficiently small, one has

meas(0, ε∗) \O ≤ c α
α20
εN+1
∗ , (3.17)

where c is a constant independent of α0, α, ε∗

Proof. Let

Ok =

{
ε ∈ (0, ε∗) |

∣∣φ(ε)
∣∣ <

α

|k|τ ′
}
. (3.18)

By assumption, if ε∗ is sufficient small, we have that |ψ(ε)| ≤ 2σεN and |ψ ′(ε)| ≥ (σ/2)εN−1

for ε ∈ (0, ε∗). If εN ≤ α0/(4σ|k|τ), by (2.4) we have

∣∣φ(ε)
∣∣ ≥ ∣∣〈k,ω〉 − 2β

∣∣ − ∣∣ψ(ε)
∣∣ ≥ α

|k|τ ′
. (3.19)

Thus, we only consider the case that εN∗ ≥ εN ≥ (α0/(4σ|k|τ)). We have |k| ≥
(α0/(4σεN∗ ))1/τ = K. Since

∣∣φ′(ε)
∣∣ =

∣∣ψ ′(ε)
∣∣ ≥ σ

2
εN−1 ≥ α0

8|k|τε∗
, (3.20)
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we have meas(Ok) ≤ ((2α)/|k|τ ′) × ((8|k|τε∗)/α0) = (16αε∗)/(|k|τ
′−τα0). So

meas((0, ε∗) \ 0) ≤
∑

|k|≥K
meas(Ok) ≤ 16α

α0
ε∗

∑

|k|≥K

1

|k|τ ′−τ

≤ cα

α0
ε∗Kl−τ ′+τ ≤ cα

α20
εN+1
∗ ,

(3.21)

where c is a constant independent of α0, α, and ε∗.

Below we give a lemma with the non-degeneracy conditions.

Lemma 3.5. Consider the real nonlinear Hamiltonian system ẋ = J∇xH, where

H(x, t, ε) =
1
2
β
(
x2
1 + x

2
2

)
+ F(x, t, ε) with β /= 0. (3.22)

Suppose that F(x, t, ε) is analytic quasi-periodic with respect to t with frequencies ω and real analytic
with respect to x and ε onD(r, ρ, ε0). Let f(x, t, ε) = J∇xF(x, t, ε). Assume that f(0, t, ε) = O(ε2m0)
and ∂xf(0, t, ε) = O(εm0) as ε → 0, where m0 is a positive integer. Let Q(t, ε) = ∂xf(0, t, ε) =∑

k≥m0
Qk(t)εk. Suppose there exists m0 ≤ k ≤ 2m0 − 1 such that [Qk]A /= 0 and the nonresonance

conditions (2.3) and (2.4) hold. Then, for sufficiently small ε∗ > 0, there exists a nonempty Cantor
subset E∗ ⊂ (0, ε∗), such that for ε ∈ E∗, there exists a quasi-periodic symplectic transformation
x = φ∗(t)y + ψ∗(t) with the frequencies ω, which changes the Hamiltonian system to ẏ = J∇yH∗,
where

H∗
(
y, t, ε

)
=

1
2
β∗(ε)

(
y2
1 + y

2
2

)
+ F∗

(
y, t, ε

)
, (3.23)

where F∗(y, t, ε) = O(y3) as y → 0. Moreover, meas((0, ε∗) \ E∗) = O(εm0+1∗ ) as ε∗ → 0.
Furthermore, β∗(ε) = β +O(εm0) and ‖φ∗ − Id‖ρ/2 + ‖ψ∗‖ρ/2 = O(εm0).

Proof

KAM Step

The proof is based on a modified KAM iteration. In spirit, it is very similar to [7, 8]. The
important thing is to make symplectic transformations so that the Hamiltonian structure can
be preserved. Note that [Qk]A /= 0 for somem0 ≤ k ≤ 2m0 − 1 is a non-degeneracy condition.

Consider the following Hamiltonian system

ẋ = Ax + f(x, t, ε), (3.24)

where A = β(ε)J and f is analytic quasi-periodic with respect to t with frequencies ω and
real analytic with respect to x and ε on D = D(r, ρ, ε∗).
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Let ‖f‖D ≤ αrε̃ and ‖ε∂εf‖D ≤ αrε̃. Let Q(t, ε) = ∂xf(0, t, ε), g(t, ε) = f(0, t, ε) and

h(x, t, ε) = f(x, t, ε) − g(t, ε) −Q(t, ε)x. (3.25)

Then h is the higher-order term of f . Moreover, the matrix Q(t, ε) is Hamiltonian. Let [Q]A =
β̂(ε)J .

The system (3.24) is written as

ẋ = (A+ + R(t, ε))x + g(t, ε) + h(x, t, ε), (3.26)

where A+ = A + [Q]A = β+(ε)J and R = Q − [Q]A. By assumption we have

∥∥g
∥∥
ρ ≤ αrε̃, ‖Q‖ρ ≤ αε̃, ‖h‖D ≤ 3αrε̃. (3.27)

Moreover, we have

∥∥ε∂εg
∥∥
ρ ≤ αrε̃, ‖ε∂εQ‖ρ ≤ αε̃, ‖ε∂εh‖D ≤ 3αrε̃. (3.28)

Nowwewant to construct the symplectic change of variables x = T ′y = eP(t)y to (3.26),
where P is a Hamiltonian matrix to be defined later. Then we have

ẏ =
(
e−P

(
A+ + R − Ṗ)eP + e−P

(
ṖeP − d

dt
eP(t)

))
y

+ e−Pg(t, ε) + e−Ph
(
ePy, t, ε

)
.

(3.29)

LetW = eP − I − P and W̃ = e−P − I − P . Then the system (3.29) becomes

ẏ =
(
A+ + R − Ṗ +A+P − PA+

)
y +Q′y + e−Pg(t, ε) + e−Ph

(
ePy, t, ε

)
, (3.30)

where

Q′ = − P(R − Ṗ) + (
R − Ṗ)P − P(A+ + R − Ṗ)P

− P(A+ + R − Ṗ)W +
(
A+ + R − Ṗ)W

+ W̃
(
A+ + R − Ṗ)eP + e−P

(
ṖeP − d

dt
eP

)
.

(3.31)

We would like to have

Ṗ −A+P + PA+ = R, (3.32)
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where R = Q − [Q]A. Suppose the small divisors conditions (2.3) hold. Let E+ ⊂ (0, ε∗) be a
subset such that for ε ∈ E+ the small divisors conditions hold:

∣∣〈k,ω〉 − 2β+(ε)
∣∣ ≥ α+

|k|τ ′
, ∀k ∈ Zl \ {0}, (3.33)

where τ ′ > 2τ + l. By Lemma 3.1, we have a quasi-periodic Hamiltonian matrix P(t) with
frequencies ω to solve the above equation with the following estimates:

‖P‖ρ−s ≤
c‖Q‖ρ
α+sv

≤ cε̃

sv
,

∥∥∥∥ε
∂P

∂ε

∥∥∥∥
ρ−s

≤ c

α2+sv
′

(
‖Q‖ρ +

∥∥∥∥ε
∂Q

∂ε

∥∥∥∥
ρ

)
≤ cε̃

α+sv
′ ,

(3.34)

where v = τ ′ + l, v′ = 2τ ′ + l and c > 0 is a constant. Then the system (3.30) becomes

ẏ = A+y + f ′(y, t, ε
)
, (3.35)

where f ′ = Q′y + e−Pg(t, ε) + e−Ph(ePy, t, ε).

By Lemma 3.3, let us denote by x the solution of ẋ = A+x + g ′(t, ε) on Dρ−2s, where
g ′ = e−Pg(t, ε). Then, by Lemma 3.3 we have

∥∥x
∥∥
ρ−2s ≤

c
∥∥g

∥∥
ρ−s

α+sv
≤ crε̃

sv
,

∥∥∥∥ε
∂x

∂ε

∥∥∥∥
ρ−2s

≤ c

α2+sv
′

(
∥∥g

∥∥
ρ−s +

∥∥∥∥ε
∂g

∂ε

∥∥∥∥
ρ−s

)
≤ crε̃

α+sv
′ .

(3.36)

Under the symplectic change of variables y = T ′′x+ = x + x+, the Hamiltonian system
(3.35) is changed to

ẋ+ = A+x+ + f+(x+, t, ε), (3.37)

where A+ = β+J and

f+ = Q′ · T ′′ + e−Ph ◦ T ′ ◦ T ′′. (3.38)
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Let the symplectic transformation T = T ′ ◦ T ′′. Then x = Tx+ = φ(t)x+ + ψ(t), where
φ(t) = eP(t) and ψ(t) = eP(t)x(t). It is easy to obtain that if ‖P‖ρ−2s ≤ 1/2, then

∥∥φ − I∥∥ρ−2s ≤
cε̃

sv
,

∥∥ε∂εφ
∥∥
ρ−2s ≤

cε̃

α+sv
′ ,

∥∥ψ
∥∥
ρ−2s ≤

crε̃

sv
,

∥∥ε∂εψ
∥∥
ρ−2s ≤

crε̃

α+sv
′ .

(3.39)

Under the symplectic change of variables x = Tx+, the Hamiltonian system (3.24) becomes
(3.37).

Below we give the estimates for A+ and f+. Obviously, it follows that A+(ε) − A =
[Q]A = β̂(ε)J and

∣∣β+(ε) − β(ε)
∣∣ =

∣∣∣β̂(ε)
∣∣∣ ≤ cαε̃,

∣∣ε
(
β′+(ε) − β′(ε)

)∣∣ =
∣∣∣εβ̂′(ε)

∣∣∣ ≤ cαε̃. (3.40)

By (3.38) we have

f+(x+, t, ε) = Q′(t)
(
x+ + x(t)

)
+ e−P(t)h

(
eP(t)

(
x+ + x(t)

)
, t, ε

)
. (3.41)

Let ρ+ = ρ−2s, and r+ = ηr with η ≤ 1/8. If cε̃/α+sv+v
′ ≤ η, it follows that ‖x‖ρ−2s ≤ (1/8)r. Let

D+ = D(r+, s+, ε∗). Note thatQ′ and h only consist of high-order terms of P and x, respectively.
It is easy to see |eP(t)(x+ +x(t))| ≤ 4ηr ≤ r. By all the estimates (3.27), (3.28), (3.34), and (3.36),
and using usual technique of KAM estimate, we have

∥∥f+
∥∥
D+

≤ cε̃2

s2v
ηr + cαrε̃η2 ≤

(
cε̃

s2v
+ cαη

)
r+ε̃,

∥∥ε∂εf+
∥∥
D+

≤ cε̃2

α+sv+v
′ ηr + cαrε̃η

2 ≤
(

cε̃

αsv+v′
+ cαη

)
r+ε̃.

(3.42)

Let α+ = α/2 and η = cε̃/(α2sv+v
′
). Then we have

∥∥f+
∥∥
D+

≤ cα+r+ηε̃ = α+r+ε̃+, ε̃+ = cηε̃. (3.43)

Similarly, we have

∥∥ε∂εf+
∥∥
D+

≤ α+r+ε̃+. (3.44)

Note that KAM steps only make sense for the small parameter ε satisfying small
divisors conditions. However, by Whitney’s extension theorem, for convenience all the
functions are supposed to be defined for ε on [0, ε∗].
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KAM Iteration

Nowwe can give the iteration procedure in the same way as in [7] and prove its convergence.
At the initial step, let f0 = f . Let f(x, t, ε) = f(0, t, ε) + ∂xf(0, t, ε)x + h(x, t, ε). By

assumption, if ε∗ is sufficiently small, we have that for all ε ∈ [0, ε∗]

∣∣f(0, t, ε)
∣∣ ≤ cε2m0 ,

∣∣∂xf(0, t, ε)
∣∣ ≤ cεm0 ,

∣∣ε∂εf(0, t, ε)
∣∣ ≤ cε2m0 ,

∣∣ε∂ε∂xf(0, t, ε)
∣∣ ≤ cεm0 .

(3.45)

Moreover,

|h(x, t, ε)| ≤ c|x|2, |ε∂εh(x, t, ε)| ≤ c|x|2, ∀|x| ≤ εm0 , ∀ε ∈ [0, ε∗]. (3.46)

Let r0 = εm0 , ρ0 = ρ, s0 = ρ0/8, D0 = D(r0, ρ0, ε∗), and ε̃0 = cεm0/α0. Then we have

∣∣f0
∣∣
D0

≤ α0r0ε̃0,
∣∣ε∂εf0

∣∣
D0

≤ α0r0ε̃0. (3.47)

For n ≥ 1, let

αn =
αn−1
2

, sn =
sn−1
2
, ρn = ρn−1 − 2sn−1,

ηn−1 =
cε̃n−1

α2n−1s
v+v′
n−1

, rn = ηn−1rn−1, ε̃n = cηn−1ε̃n−1.
(3.48)

Then we have a sequence of quasi-periodic symplectic transformations {Tn} satisfying
Tnx = φn(t)x + ψn(t)with

∥∥φn − I
∥∥
ρn+1

≤ cε̃n
svn

,
∥∥ψn

∥∥
ρn+1

≤ crnε̃n
svn

. (3.49)

Let Tn = T0 ◦ T1 · · · ◦ Tn−1. Then under the transformation x = Tny the Hamiltonian system
ẋ = A0x + f0(x, t, ε) is changed to ẏ = Any + fn(y, t, ε).

Moreover, An(ε) = βn(ε)J satisfies An+1 −An = [Qn]A and

∣∣βn+1(ε) − βn(ε)
∣∣ ≤ cαnε̃n,

∣∣ε
(
β′n+1(ε) − β′n(ε)

)∣∣ ≤ cαnε̃n, (3.50)

∥∥fn
∥∥
Dn

≤ αnrnε̃n. (3.51)

Convergence

By the above definitions we have ηn/ηn−1 = cε̃n/ε̃n−1 = cηn−1. Thus, we have ηn ≤ cη2n−1
and so cηn ≤ (cηn−1)

2 ≤ (cη0)
2n . Note that η0 = cε̃0/(α20s

v+v′
0 ) ≤ cεm0/(α20ρ

v+v′
0 ). Suppose that

ε∗ is sufficiently small such that for 0 < ε < ε∗ we have cη0 ≤ 1/2. Tn are affine, so are Tn
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with Tnx = φn(t)x + ψn(t). By the estimates (3.49) it is easy to prove that φn(t) and ψn(t) are
convergent and so Tn is actually convergent on the domain D(r/2, ρ/2). Let Tn → T∗ and
T∗x = φ∗(t)x + ψ∗(t). It is easy to see that the estimates for φ∗ and ψ∗ in Theorem 2.1 hold.

Using the estimate for fn and Cauchy’s estimate, we have |fn(0, t, ε)| ≤ αnrnε̃n → 0
and |∂xfn(0, t, ε)| ≤ αnε̃n → 0 as n → ∞. Let fn → f∗. Then it follows that f∗(x, t, ε) = O(x2).

By the estimates (3.50) for βn we have βn → β∗. Thus, by the quasi-periodic symplectic
transformation x = T∗y, the original system is changed to ẏ = A∗y + f∗(y, t, ε) with A∗ = β∗J .

Estimate of Measure

Let

En =

{
ε ∈ (0, ε∗) |

∣∣〈ω, k〉 − 2βn(ε)
∣∣ ≥ αn

|k|τ ′
}
. (3.52)

Note that βn = β1 + ψ, where ψ =
∑n−1

j=1 βj+1 − βj , β1 = β + β̂, and β̂J = [Q]A. Note that
ε̃1 = cε̃20/(α

2
0s

v+v′
0 ) and ε̃0 = cεm0/α0. By the estimates (3.50), we have ψ(ε) = O(ε2m0) and

εψ ′(ε) = O(ε2m0). By assumption, [Q]A is analytic with respect to ε and there existsm0 ≤N ≤
2m0 − 1 such that [Q]A = δεN + O(εN+1) with δ /= 0. Thus, β1(ε) = β + δεN + O(εN+1). By
Lemma 3.4, we have meas((0, ε∗) − En) ≤ c(αn/α

2
0)ε

N+1
∗ . Let E∗ =

⋂
n≥1 En. By αn = α0/2n, it

follows that meas((0, ε∗) − E∗) ≤ cεN+1
∗ /α0. Thus Lemma 3.5 is proved.

4. Proof of Theorem 2.1

As we pointed previously, once the non-degeneracy conditions are satisfied in some KAM
step, the proof is complete by Lemma 3.5. If the non-degeneracy conditions never happen,
the small parameter ε does not involve into the small divisors and so the systems are analytic
in ε. To prepare for KAM iteration, we need a preliminary step to change the original system
to a suitable form.

Preliminary Step

We first give the preliminary KAM step. Let

ẋ = Ax + f(x, t, ε), (4.1)

whereA = βJ and f = J∇xF. By Lemma 3.3, denote by x the solution of ẋ = Ax + f(0, t, ε) on
D3ρ/4. Under the change of variables x = T0x+ = x+x+, the Hamiltonian system (2.1) becomes

ẋ+ = Ax+ + f1(x+, t, ε), (4.2)

where f1(x+, t, ε) = f(x + x+, t, ε) − f(0, t, ε) satisfying f1(0, t, ε) = O(ε2) and ∂x+f1(0, t, ε) =
O(ε).
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KAM Step

The next step is almost the same as the proof of Lemma 3.5 and evenmore simple. In the KAM
iteration, we only need consider the case that the non-degeneracy condition never happens.
In this case, the normal frequency has no shift, which is equivalent to An = A for all n ≥ 1 in
the KAM steps in the above nondegenerate case. Moreover, the small divisors conditions are
always the initial ones as (2.3) and (2.4) and are independent of the small parameter ε. Thus,
we need not delete any parameter. Moreover, the analyticity in ε remains in the KAM steps,
which makes the estimate easier. At the first step, we consider ẋ = Ax+f1(x, t, ε). In the same
way as the case of nondegenerate case, let r1 = ε, ρ1 = 3ρ/4, ε1 = ε0, D1 = D(r1, ρ1, ε1), and
ε̃1 = cε/α0. Then we have ‖f1‖D1 ≤ α0r1ε̃1.

At nth step, we consider the Hamiltonian system

ẋ = Ax + fn(x, t, ε), (4.3)

where fn is analytic quasi-periodic with respect to twith frequenciesω and real analytic with
respect to x and ε on Dn = D(rn, ρn, εn). Moreover, ‖fn‖Dn ≤ α0rnε̃n. Suppose

Qn(t, ε) = ∂xfn(0, t, ε) = O
(
ε2

n−1)
, fn(0, t, ε) = O

(
ε2

n
)
. (4.4)

Since Qn is analytic with respect to ε, it follows that

Qn =
∞∑

k=2n−1
Qk
nε

k. (4.5)

Truncating the above power series of ε, we let

Rn(t, ε) =
2n−1∑

k=2n−1
Qk
nε

k, Q̃n = Qn − Rn. (4.6)

Because the non-degeneracy conditions do not happen in KAM steps, we must have
[Rn]A = 0. In the same way as the proof of Lemma 3.5, we have a quasi-periodic symplectic
transformation Tn with Tnx = φn(t)x + ψn(t) satisfying (3.49). Let Tn = T1 ◦ T2 · · · ◦ Tn−1.

By the transformation x = Tny, the system (4.3) is changed to

ẏ = Ay + fn+1
(
y, t, ε

)
, (4.7)

where fn+1 = Q̃n · T ′′
n +Q

′
n · T ′′

n + e
−Pn · hn ◦ Tn = Q̃n(xn + y) +Q

′
n(xn + y) + e

−Pnhn(ePn(xn + y)).

The last two terms can be estimated similarly as those of (3.41). Note that

Q̃n = Qn − Rn =
∑

k≥2n
Qk
nε

k (4.8)
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only consists of the higher order terms of ε. So, in the same way as [8, 10], we use the
technique of shriek of the domain interval of ε to estimate the first term.

Let r1 = ε, ρ1 = 3ρ/4, ε1 = ε0 and s1 = ρ/16.

Define sn+1 = sn/2, ρn+1 = ρn − 2sn, ηn = (1/8)e−(4/3)
n

, rn+1 = ηnrn, δn = 1 − (2/3)n and
εn+1 = δnεn. Let Dn+1 = D(rn+1, ρn+1, εn+1).

If cε̃n/s2vn ≤ ηn < (1/8), it follows that

∥∥fn+1
∥∥
Dn+1

≤
(
α0ε̃ne

−(4/3)n +
(
cε̃n
svn

)2
)
ηnrn + cα0rnε̃nη2n ≤ α0rn+1ε̃n+1, (4.9)

where ε̃n+1 = cηnε̃n. Moreover, it is easy to see

∂xfn+1(0, t, ε) = O
(
ε2

n
)
, fn+1(0, t, ε) = O

(
ε2

n+1
)
. (4.10)

Now we verify cε̃n/s2vn ≤ ηn < 1/8. Let Gn = cε̃n/s
2v
n . By Gn = ce−(4/3)

n−1
16vGn−1, it follows

that

Gn = (c16v)n−1e−[(4/3)
n−1+(4/3)n−2+···+(4/3)1] G1 = (c16v)n−1e4e−4(4/3)

n−1
G1. (4.11)

Note that G1 = cε̃1/s2v1 . If ε̃1 is sufficiently small, we have cε̃n/s2vn = Gn ≤ ηn.

Note that (crnε̃n/svn) → 0 and (cε̃n/(ηnsvn)) → 0 as n → ∞, and ε̃n ≤ cs2vn Gn. Let
ε∗ =

∏
n≥1(1− (2/3)n)ε0. Thus, in the same way as before we can prove the convergence of the

KAM iteration for all ε ∈ (0, ε∗) and obtain the result of Theorem 2.1. We omit the details.

Remark 4.1. As suggested by the referee, we can also introduce an outer parameter to consider
the Hamiltonian functionH(x, t, ε) = 〈ω, I〉+(1/2)(β∗+σ(ε))(x2

1 +x
2
2)+F(x, t, ε), where (θ, I)

are the angle variable and the action variable and x = (x1, x2) are a pair of normal variables.
In the same way as in [11], σ(ε) is the modified term of the normal frequency. Then by some
technique as in [11–13], we can also prove Theorem 2.1.

Acknowledgments

The authors would like to thank the reviewers’s suggestions about this revised version. This
work was supported by the National Natural Science Foundation of China (11071038) and
the Natural Science Foundation of Jiangsu Province (BK2010420).

References

[1] N. N. Bogoljubov, J. A. Mitropoliski, and A. M. Samoilenko, Methods of Accelerated Convergence in
Nonlinear Mechanics, Springer, New York, NY, USA, 1976.

[2] R. A. Johnson and G. R. Sell, “Smoothness of spectral subbundles and reducibility of quasiperiodic
linear differential systems,” Journal of Differential Equations, vol. 41, no. 2, pp. 262–288, 1981.



Abstract and Applied Analysis 17
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