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Recently, Kim (2011) has introduced the q-Bernoulli numbers with weight α. In this paper, we
consider the q-Bernoulli numbers and polynomials with weight α = 0 and give p-adic q-integral
representation of Bernstein polynomials associated with q-Bernoulli numbers and polynomials
with weight 0. From these integral representation on Zp, we derive some interesting identities on
the q-Bernoulli numbers and polynomials with weight 0.

1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring
of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic
closure of Qp, respectively. Let N be the set of natural numbers and Z+ = N ∪ {0}.

Let | · |p be a p-adic norm with |x|p = p−r , where x = prs/t and (p, s) = (p, t) = (s, t) = 1,
r ∈ Q. In this paper, we assume that q ∈ Cp with |1 − q|p < p−1/(p−1) so that qx = exp(x log q),
and [x]q = (1 − qx)/(1 − q).

LetUD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),
the p-adic q-integral on Zp is defined by Kim as follows:

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

pN−1∑

x=0

f(x)μq

(
x + pNZp

)

= lim
N→∞

1
[
pN
]
q

pN−1∑

x=0

f(x)qx,

(1.1)

(see [1–5]). For n ∈ N, let fn(x) = f(x + n). From (1.1), we note that

qnIq
(
fn
) − Iq

(
f
)
=
(
q − 1

)n−1∑

l=0

qlf(l) +
q − 1
log q

n−1∑

l=0

qlf ′(l), (1.2)
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where f ′(l) = df(x)/dx|x=l, (see [3, 6, 7]). In the special case, n = 1, we get

q

∫

Zp

f(x + 1)dμq(x) −
∫

Zp

f(x)dμq(x) =
(
q − 1

)
f(0) +

q − 1
log q

f ′(0). (1.3)

Throughout this paper, we assume that α ∈ Q.
The q-Bernoulli numbers with weight α are defined by Kim [8] as follows:

β̃
(α)
0,q = 1, q

(
qαβ̃

(α)
q + 1

)n − β̃
(α)
n,q =

⎧
⎪⎨

⎪⎩

α

[α]q
if n = 1,

0 if n > 1,
(1.4)

with the usual convention about replacing (β̃(α)q )n with β̃
(α)
n,q . From (1.4), we can derive the

following equation:

β̃
(α)
n,q =

1
(
1 − q

)n[α]nq

n∑

l=0

(
n

l

)

(−1)l αl + 1
[αl + 1]q

= − nα

[α]q

∞∑

m=0

qmα+m[m]n−1qα +
(
1 − q

) ∞∑

m=0

qm[m]nqα .

(1.5)

By (1.1), (1.4), and (1.5), we get

β̃
(α)
n,q =

∫

Zp

[x]nqαdμq(x) =
1

(
1 − q

)n[α]nq

n∑

l=0

(
n

l

)

(−1)l αl + 1
[αl + 1]q

. (1.6)

The q-Bernoulli polynomials with weight α are defined by

β̃
(α)
n,q(x) =

∫

Zp

[
x + y

]n
qαdμq

(
y
)
=

n∑

l=0

(
n

l

)

qαlx[x]n−lqα β̃
(α)
l,q

. (1.7)

By (1.6) and (1.7), we easily see that

β̃
(α)
n,q(x) =

1
(
1 − q

)n[α]nq

n∑

l=0

(
n

l

)

(−1)lqαlx αl + 1
[αl + 1]q

. (1.8)

Let C(Zp) be the set of continuous functions on Zp. For f ∈ C(Zp), the p-adic analogue
of Bernstein operator of order n for f is given by

Bn,q

(
f | x) =

n∑

k=0

f

(
k

n

)
Bk,n(x) =

n∑

k=0

f

(
k

n

)(n

k

)

xk(1 − x)n−k, (1.9)
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where n, k ∈ Z+ (see [1, 9, 10]). For n, k ∈ Z+, the p-adic Bernstein polynomials of degree n

are defined by Bk,n(x) = ( n
k )x

k(1 − x)n−k for x ∈ Zp, (see [1, 10, 11]).
In this paper, we consider Bernstein polynomials to express the p-adic q-integral on

Zp and investigate some interesting identities of Bernstein polynomials associated with the
q-Bernoulli numbers and polynomials with weight 0 by using the expression of p-adic q-
integral on Zp of these polynomials.

2. q-Bernoulli Numbers with Weight 0 and Bernstein Polynomials

In the special case, α = 0, the q-Bernoulli numbers with weight 0 will be denoted by β̃
(0)
n,q = β̃n,q.

From (1.4), (1.5), and (1.6), we note that

∞∑

n=0

β̃n,q
tn

n!
=

∞∑

n=0

∫

Zp

xndμq(x)
tn

n!
=
∫

Zp

extdμq(x)

=
(
q − 1
log q

)(
t + log q
qet − 1

)
.

(2.1)

It is easy to show that

t + log q
qet − 1

=
t

q − 1

(
1 − q−1

et − q−1

)

+
log q
q − 1

(
1 − q−1

et − q−1

)

=
t

q − 1

∞∑

n=0

Hn

(
q−1
) tn

n!
+
log q
q − 1

∞∑

n=0

Hn

(
q−1
) tn

n!

=
1

q − 1

∞∑

n=1

nHn−1
(
q−1
) tn

n!
+
log q
q − 1

∞∑

n=0

Hn

(
q−1
) tn

n!
,

(2.2)

where Hn(q−1) are the nth Frobenius-Euler numbers.
By (2.1) and (2.2), we get

β̃n,q =

⎧
⎪⎨

⎪⎩

1 if n = 0,

n

log q
Hn−1

(
q−1
)
+Hn

(
q−1
)

if n > 0.
(2.3)

Therefore, we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, we have

β̃n,q =

⎧
⎪⎨

⎪⎩

1 if n = 0,

n

log q
Hn−1

(
q−1
)
+Hn

(
q−1
)

if n > 0,
(2.4)

whereHn(q−1) are the nth Frobenius-Euler numbers.
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From (1.5), (1.6), and (1.7), we have

β̃0,q = 1, q
(
β̃q + 1

)n − β̃n,q =

⎧
⎪⎨

⎪⎩

q − 1
log q

if n = 1,

0 if n > 1,
(2.5)

with the usual convention about replacing (β̃q)
n with β̃n,q. By (1.7), the nth q-Bernoulli

polynomials with weight 0 are given by

β̃n,q(x) =
∫

Zp

(
x + y

)n
dμq

(
y
)
=

n∑

l=0

(
n

l

)

xn−lβ̃l,q. (2.6)

From (2.6), we can derive the following function equation:

(
q − 1
log q

)(
t + log q
qet − 1

)
ext =

∞∑

n=0

β̃n,q(x)
tn

n!
. (2.7)

Thus, by (2.7), we get that

β̃n,q−1(1 − x) = (−1)nβ̃n,q(x), for n ∈ Z+. (2.8)

By the definition of p-adic q-integral on Zp, we see that

∫

Zp

(1 − x)ndμq(x) = (−1)n
∫

Zp

(x − 1)ndμq(x) = (−1)nβ̃n,q(−1). (2.9)

Therefore, by (2.8) and (2.9), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, we have

(−1)nβ̃n,q(x) = β̃n,q−1(1 − x). (2.10)

In particular, x = −1, we get
∫

Zp

(
1 − y

)n
dμq

(
y
)
= (−1)nβ̃n,q(−1) = β̃n,q−1(2). (2.11)

From (2.5), we can derive the following equation:

q2β̃n,q(2) = q2 + nq
q − 1
log q

− q + β̃n,q, if n > 1. (2.12)

Therefore, by (2.12), we obtain the following theorem.
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Theorem 2.3. For n ∈ N with n > 1, we have

β̃n,q(2) = 1 +
n

q

(
q − 1
log q

)
− 1
q
+

1
q2

β̃n,q. (2.13)

Taking the p-adic q-integral on Zp for one Bernstein polynomials in (1.9), we get

∫

Zp

Bk,n(x)dμq(x) =

(
n

k

)∫

Zp

xk(1 − x)n−kdμq(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)

(−1)l
∫

Zp

xk+ldμq(x)

=

(
n

k

)
n−k∑

l=0

(
n − k

l

)

(−1)lβ̃k+l,q.

(2.14)

From the symmetry of Bernstein polynomials, we note that

∫

Zp

Bk,n(x)dμq(x) =
∫

Zp

Bn−k,n(1 − x)dμq(x)

=

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
∫

Zp

(1 − x)n−ldμq(x).

(2.15)

Let n > k + 1. Then, by Theorem 2.3 and (2.15), we get

∫

Zp

Bk,n(x)dμq(x) =

(
n

k

)
k∑

l=0

(
k

l

)

(−1)k+l
(

1 − n − l

q−1

(
q−1 − 1
log q

)

− q + q2β̃n−l,q−1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + n

(
q − 1
log q

)
− q + q2β̃n,q−1 if k = 0,

n

(
1 − q

log q

)
+ nq2β̃n,q−1 + nq2β̃n−1,q−1 if k = 1,

⎛

⎝
n

k

⎞

⎠q2
k∑

l=0

⎛

⎝
k

l

⎞

⎠(−1)k+lβ̃n−l,q−1 if k > 1.

(2.16)

By comparing the coefficients on the both sides of (2.14) and (2.16), we obtain the
following theorem.
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Theorem 2.4. For n, k ∈ Z+ with n > k + 1, we have

n−1∑

l=0

(
n − 1

l

)

(−1)lβ̃1+l,q =
1 − q

log q
+ q2β̃n,q−1 + q2β̃n−1,q−1 ,

n−k∑

l=0

(
n − k

l

)

(−1)lβ̃k+l,q = q2
k∑

l=0

(
k

l

)

(−1)k+lβ̃n−l,q−1 , if k > 1.

(2.17)

In particular, when k = 0, we have

n∑

l=0

(
n

l

)

(−1)lβ̃l,q = 1 + n
q − 1
log q

− q + q2β̃n,q−1 . (2.18)

Let m,n, k ∈ Z+ withm + n > 2k + 1. Then we see that

∫

Zp

Bk,n(x)Bk,m(x)dμq(x)

=

(
n

k

)(
m

k

)∫

Zp

x2k(1 − x)n+m−2kdμq(x)

=

(
n

k

)(
m

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
∫

Zp

(1 − x)n+m−ldμq(x)

=

(
n

k

)(
m

k

)
2k∑

l=0

(
2k

l

)

(−1)l+2k
(
1 − (n +m − l)

(
1 − q

log q

)
− q + q2β̃n+m−l,q−1

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 + (n +m)
(
q − 1
log q

)
− q + q2β̃n+m,q−1 if k = 0,

⎛

⎝
n

k

⎞

⎠

⎛

⎝
m

k

⎞

⎠q2
2k∑

l=0

⎛

⎝
2k

l

⎞

⎠(−1)l+2kβ̃n+m−l,q−1 if k > 0.

(2.19)

For m,n, k ∈ Z+, we have

∫

Zp

Bk,n(x)Bk,m(x)dμq(x) =

(
n

k

)(
m

k

)∫

Zp

x2k(1 − x)n+m−2kdμq(x)

=

(
n

k

)(
m

k

)
n+m−2k∑

l=0

(
n +m − 2k

l

)

(−1)l
∫

Zp

x2k+ldμq(x)

=

(
n

k

)(
m

k

)
n+m−2k∑

l=0

(
n +m − 2k

l

)

(−1)lβ̃l+2k,q.

(2.20)
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By comparing the coefficients on the both sides of (2.19) and (2.20), we obtain the
following theorem.

Theorem 2.5. For m,n, k ∈ Z+ withm + n > 2k + 1, we have

n+m∑

l=0

(
n +m

l

)

(−1)lβ̃l,q = 1 + (n +m)
(
q − 1
log q

)
− q + q2β̃n+m,q−1 . (2.21)

In particular, when k /= 0, we have

n+m−2k∑

l=0

(
n +m − 2k

l

)

(−1)lβ̃l+2k,q = q2
2k∑

l=0

(
2k

l

)

(−1)l+2kβ̃n+m−l,q−1 . (2.22)

For s ∈ N, let k, n1, . . . , ns ∈ Z+ with n1 + n2 + · · · + ns > sk + 1. By the same method
above, we get

∫

Zp

(
s∏

i=1

Bk,ni(x)

)

dμq(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 +

(
s∑

i=1

ni

)(
q − 1
log q

)
− q + q2β̃n1+n2+···+ns,q−1 if k = 0,

⎛

⎝
s∏

i=1

⎛

⎝
ni

k

⎞

⎠

⎞

⎠q2
sk∑

l=0

⎛

⎝
sk

l

⎞

⎠(−1)l+skβ̃n1+n2+···+ns−l,q−1 if k > 0.

(2.23)

From the binomial theorem, we note that

∫

Zp

(
s∏

i=1

Bk,ni(x)

)

dμq(x) =

(
s∏

i=1

(
ni

k

))
n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)

(−1)lβ̃l+sk,q. (2.24)

By comparing the coefficients on the both sides of (2.23) and (2.24), we obtain the
following theorem.

Theorem 2.6. For s ∈ N, let k, n1, . . . , ns ∈ Z+ with n1 + n2 + · · · + ns > sk + 1. Then, we have

n1+···+ns∑

l=0

(
n1 + · · · + ns

l

)

(−1)lβ̃l,q = 1 +

(
s∑

i=1

ni

)(
q − 1
log q

)
− q + q2β̃n1+···+ns,q−1 . (2.25)

In particular, when k /= 0, we have

n1+···+ns−sk∑

l=0

(
n1 + · · · + ns − sk

l

)

(−1)lβ̃l+sk,q = q2
sk∑

l=0

(
sk

l

)

(−1)l+skβ̃n1+···+ns−l,q−1 . (2.26)
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