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The criteria for nonsquareness in the classical Orlicz function spaces have been given already.
However, because of the complication of Musielak-Orlicz-Bochner function spaces, at present the
criteria for nonsquareness have not been discussed yet. In the paper, the criteria for nonsquareness
of Musielak-Orlicz-Bochner function spaces are given. As a corollary, the criteria for nonsquareness
of Musielak-Orlicz function spaces are given.

1. Introduction

A lot of nonsquareness concepts in Banach spaces are known. Nonsquareness are the
important notion in geometry of Banach space. One of reasons is that the property is strongly
related to the fixed point property (see [1]). The criteria for nonsquareness in the classical
Orlicz function spaces have been given in [2] already. However, because of the complication
of Musielak-Orlicz-Bochner function spaces, at present the criteria for nonsquareness have
not been discussed yet. The aim of this paper is to give criteria nonsquareness of Musielak-
Orlicz-Bochner function spaces. As a corollary, the criteria for nonsquareness of Musielak-
Orlicz function spaces are given. The topic of this paper is related to the topic of [3-8].

Let (X,|| - ||) be a real Banach space. S(X) and B(X) denote the unit sphere and
unit ball, respectively. By X*, denote the dual space of X. Let N, R, and R* denote the set
natural number, reals, and nonnegative reals, respectively. Let us recall some geometrical
notions concerning nonsquareness. A Banach space X is said to be nonsquare space if for
any x,y € S(X) we have min{||(1/2)(x + y)||, [(1/2)(x — y)||} < 1. A Banach space X is
said to be uniformly nonsquare space if for any x,y € S(X), there exists 6 > 0 such that

min{[[(1/2)(x + )l [(1/2)(x - y)Il} <1-6.
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Let (T, >, ) be nonatomic measure space. Suppose that a function M : T x [0, 00) —
[0, o] satisfies the following conditions:

(1) for p-a.e, t €T, M(t,0) =0, lim,,_, xc M (t, u) = 0o and M(t, 1') < oo for some ' > 0,
(2) for p-a.e, t € T, M(t, u) is convex on [0, oo) with respect to u,

(3) for each u € [0, 00), M(t,u) is a p-measurable function of f on T.

Lete(t) = sup{u > 0: M(t,u) = 0}. It is well known that e(t) is y-measurable (see [2]).
Moreover, for a given Banach space (X, || - ||), we denote by X7, the set of all strongly
pu-measurable function from T to X, and for each u € Xr, define the modular of u by

puit) = [ Mt luol)at. (L.1)
T
Put
Lym(X) = {u e Xr: pm(Au) < oo for some A > 0}. (1.2)

It is well known that Musielak-Orlicz-Bochner function space Lp;(X) is Banach spaces
equipped with the Luxemburg norm

. u
[l :lnf{./\>0.PM<X> gl} (1.3)
or Orlicz’s norm
llu|® = infr [1+pa(ku)]. (1.4)
k>0 k
In particular, Ly (R) and L(I)\/I(R) are said to be Musielak-Orlicz function space. Set

suppu = {t €T : |u(t)]|#0}, K(u) = {k>0: %(1 +pm(ku)) = ||u||0}. (1.5)

In particular, the set K(u#) can be nonempty. To show that, we give a proposition.

Proposition 1.1 (see [9]). If limy oo (M(t,u)/u) = oo p-a.e. t € T, then K(u) #¢ for any u €
L% (X).

We define a function
1 1
o(t) :sup{uEO:M<t,§u> = EM(t,u)}. (1.6)

Function o(t) will be used in the further part of the paper. Moreover, o(t) is y-measurable. To
show that, we give a proposition.
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Proposition 1.2. Function o(t) is p-measurable.

Proof. Pick a dense set {r;}2; in [0, o0) and set

By = {t eT: M(t, %rk> = %M(t,rk)}, qr(t) =rexs (t) (ke N). (1.7)

It is easy to see that for all k € N, o(t) > gk(t) p-a.e on T. Hence, sup,,,qk(t) < o(t). For
p-a.e t € T, arbitrarily choose ¢ € (0,0(t)). Then, there exists rx € (o(t) — €, 0(t)) such that
M(t, (1/2)re) = (1/2)M(t,ri), that is, gk (t) > re > o(t) — €. Since ¢ is arbitrary, we find

supy.,gk(t) = o(t). Thus, sup,,,qk(t) = o(t). O
It is easy to prove the following proposition.
Proposition 1.3. Forany a € (0,1), if u(t) < o(t), then M(t, au(t)) = aM(t, u(t)).

Proposition 1.4. For any a € (0,1), if u(t) < o(t) < v(t), then M(t, au(t) + (1 — a)v(t)) <
aM(t,u(t)) + (1 —a)M(t,v(t)).

Proposition 1.5. Forany a € (0,1), if o(t) < v(t), then M(t, av(t)) < aM(t, v(t)).

Definition 1.6 (see [2]). We say that M(t,u) satisfies condition A(M € A) if there exist
K > 1 and a measureable nonnegative function 6(t) on T such that jT M(t,6(t))dt < oo and
M(t,2u) < KM(t,u) for almost allt € T and all u > 6(t).

First, we give some results that will used in the further part of the paper.
Lemma 1.7 (see [2]). Suppose M € A. Then pp(u) =1 & ||ul| = 1.

Lemma 1.8 (see [9]). Let L(]]VI(X) be Musielak-Orlicz-Bochner function spaces, then, if K(u) = ¢,
one has |Ju° = jT A(t) - [[u(t)||dt, where A(t) = lim,,— o (M (t, 1) /u).

2. Main Results
Theorem 2.1. Ly;(X) is nonsquare space if and only if
(a) M € A,

(b) for any u,v € S(Lpm(X)), one has p{t € suppunsuppo : [|u(t)|| + |lo@)] > 2e(t)} >0
orp(ft €T lu@®| >o@®}ufteT:[o@®)] >o(t)}) >0,

(c) X is nonsquare space.
In order to prove the theorem, we give a lemma.

Lemma 2.2. Let X be nonsquare space, then for any x, y #0, one has

7

x|l + ||y|| = min{||x + ||, ||x - v|} > 0. (2.1)
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Proof. For any x,y #0, without loss of generality, we may assume [x|| < |ly||. Since X is
nonsquare space, we have

x . x
Il + ] = [ + ‘ MyH > mm{ Rl W L H} 2)
[l [P
Therefore, by (2.2), we obtain
Il Il
[x+yll < flx+ = vl + vl
[l vl
(2.3)
< lxll + 1l + [ly[] = llxll
= [lxll + [l
or
Il [l
fs=ol < - 1o (1= )1l
lvll lvll
(2.4)
< Il + llll + [l || = Nl
= llxll + [l |l-
This implies ||x|| + [|y|| — min{||x + y||, [[x — y||} > 0. This completes the proof. O

Proof of Theorem 2.1. Necessity. (a) If La(X) is nonsquare space, then Lp(R) is nonsquare
space, because Ly;(R) is isometrically embedded into Lys(X). Since Lp(R) is nonsquare
space, then M € A which follows from the theorem proved in more general case (see [10, 11]).
Namely, if M € A, then Ly(R) contains isometric copy of [*.

If (b) is not true, then there exist u,v € S(Lp(X)) such that u{t € suppu Nsuppwv :
lu®]l + lo@®)] > 2e(t)} = 0and p({t € T : lu@®)l| > o)} U {t T : lo@)]]) > o(t)}) = 0. Let
G = supp u Nsupp v. We have

3P0 + 5pu(0)
1 1
=5 | M u@nar 3 [ Me loonar

=f %M(t,||u(t)||)+ %M(t, lo(®)|l)dt
T

1 1 1 1
2 [ M(e gl gl )ae [ w5+ Joen)a



Abstract and Applied Analysis 5

> L M(t, %Hu(t) + v(t)||>dt + L\G M(t, %Hu(t) + v(t)||>dt

(22,

(2.5)

By u{t € suppunsuppo : [[u(t)|| + [|[o)|| > 2e(t)} =0and u({t € T : |u(t)|| > o(t)} U {t €
T : |lo(®)|) > o(t)}) = 0, we obtain that two inequalities of (2.5) are equations. This implies
(1/2)pm(u) + (1/2)ppm(v) = pm((u+v)/2). By Lemma 1.7, we have pyp ((u+v)/2) = 1. Thus,
[(1/2)(u + v)|| = 1. Similarly, we have ||(1/2)(u — v)|| = 1, a contradiction!

(c) Pick h(t) € S(Lm(X)), then there exists d > 0 such that yE > 0, where E = {t € T :
[[h(t)|| > d}. Put hi(t) = d-xo- xe(t), where xo € S(X). It is easy to see that h; (t) € Ly(X)\ {0}.
Hence, there exists k > 0 such that k - h1(t) € S(Lym(X)). By Lemma 1.7, we have

1=f Mt [k - (8)])dlt = f Mt [k - d - xof))dt. (2.6)
T E

Let a = k - d. Then, [ M(t,a)dt = 1. The necessity of (c) follows from the fact that X is
isometrically embedded into Lys(X). Namely, defining the operator I : X — Ly (X) by

Ix)=a-x-yet), xeX. (2.7)

Hence, for any x € X \ {0}, we have

pM<I”(Tx”)) - LM(t, >dt - LM(t, Tlllc’i"')dt - L M(t, a)dt = 1. (2.8)

By Lemma 1.7, we have [[[(x)/[lx/ll,,,x, = 1, hence [I[(x),,x) = lIx].
Sufficiency. The proof requires the consideration of two cases separately.

I
x|

Case 1. p({t €T : lu@t)|| >c®)}U{t €T : |lo®)| > oc(t)}) > 0. Without loss of generality, we
may assume pf{t € T : ||u(t)|| > o(t)} >0.Let F = {t € T : |[u(t)|| > o(t)}. Put

Fr={te F:u®)ll+[lo®l > [lut) +o®)]l},
Fy={te F:u®)ll+[lo®)l > [lut) =@}, (2.9)
Fs={teF: o] =0}
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Since X is nonsquare space, we have p(F; U F3) > 0 or u(F, U F3) > 0 by Lemma 2.2. Without
loss of generality, we may assume p(F; U F3) > 0. Moreover, we have

%PM(u) + %pM(v) - pM<%(u + v)>
=5 L M, [Ju®)|))dt + 5 L M(t, [lo()]))dt - L M<t, Ellu(t) + v(t)||>dt

= L [%M(t, lu(t)) + %M(t, o)1) - M<t' %””(t) ! U(t”l)] a (2.10)

1 1 1
> Llu& [EM(t, () + 5 M To@)l) - M(t, S lu(t) + v(f)H)] dt

> M(t, %||u(t)|| + %||v(t)||) - M(t, %Ilu(t) + v(t)ll>dt

F1UF;

> 0.

LetE={te F{UF;: |lvo(t)|| > o)}, E1 = {t € E: |lv(t)|| = o(t) = 0}. Then, u((F1 UF3) \ (E\
E1))>00r y(E\E1)>0.By F={teT:|u()||>0c(t)} > (F1UF3) D ((F1UF3)\ (E\E)), we
obtain

LIUFS |3 ol + 3M IO - M (6l + 001 )| a .
> [ Mt sheol+ 5lo1) - M (65l + o] ),

F1UF;

whenever p((F1UF3) \ (E\E1))>0.By F={t €T : ||u(t)|| >o(t)} > (F1UF3;) D (E\ E1), we
obtain

M(b I+ 3l - M (5 5l +o@)de >0, @12)

F1UF;

whenever pu(E \ E;) > 0. This means that one of three inequalities of (2.10) is strict inequality.
By pm(u) = pm(v) =1, we have pap((1/2)(u+v)) < 1. By Lemma 1.7, we have ||(1/2) (u +v)]|
<L

Case2. u({teT: lu@®)||>c@)}u{teT: |ov)|) >oc()}) =0.By (b), we have uft € suppun
supp v : |lu(®)|| + |lo()|| > 2e(t)} > 0. Let G = {t € suppunsuppv : |[u(t)| + ||[v)] > 2e(t)}.
Put

Gi={teG:lu®)| +llo@®l > llut) + o]}, 213)
Gy ={teG: u®)| +llo@)] > [[u(t) - v(D)]}. .
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Since X is nonsquare space, we have uG; > 0 or uG, > 0 by Lemma 2.2. Without loss of
generality, we may assume pG; > 0. Hence,

fcl M(t, %Ilu(t)ll ¥ %||v(t)||>dt > IG

Therefore, by (2.14), we have

M(t, %Hu(t) +v(t)||>dt. (2.14)

1

3P0 + 3o (0)

- f %M(t, lut)]]) + %M(t, [lo()[])dt
T

1 1 1 1
2 (e gluengloon)ars [ (s guolgloon)d @

T\G

> fcl M(t, %Hu(t) + v(t)||>dt + M(t, % llu(t) + v(t)||>dt

T\Gi

:pM<u;v>

By pm (1) = pm(v) =1, we have pp((u+v)/2) < 1. By Lemma 1.7, we have ||(1/2) (u+v)]|| < 1.
This completes the proof. O

Corollary 2.3. Lp;(R) is nonsquare space if and only if

(a) M € A,

(b) for any u,v € S(Lm(R)), one has pft € suppunsupp o : [u(t)| +|v(t)| > 2e(t)} > 0or
u({teT Juit)>ct)yui{teT : |v(t)]>o(t)}) >0.

Theorem 2.4. Let e(t) = 0 p-a.e on T. Then, Ly (X) is nonsquare space if and only if
(a) M € A,
(b) pm(o) <2,

(c) X is nonsquare space.

Proof. Necessity. By Theorem 2.1, (a) and (c) are obvious. Suppose that pp(c) > 2. Then, there
exists E € X such that yuE >0, pm(o - yr\r) =1 and pm(o - yp) =1, where D C T \ E. Set

u(ty=x-ot) xne®), o)) =x-0(t)- yo(t), (2.16)

where x € S(X). It is easy to see that ||u|| = ||v|| = 1, u{t € suppunsuppo : |u(t)| +|o@)] >
2e(t)} = Oand pu({t € T : |lu@®)|| > c®)}u{t € T : |lo®)| > o)}) = 0. Contradicting
Theorem 2.1.
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Sufficiency. We only need to prove that for any u, v € S(Lm (X)), if p(supp u Nsupp v) =
0, then u({t € T : |[u(®)|| > o)} U {t € T : [[v(t)]| > o(t)}) > 0. Suppose that there exist
u,v € S(Lm(X)) such that y(suppunsuppo) =0, u({t € T : lu(t)|| > o)} U{teT: |lo@)| >
o(t)}) =0. By u(suppunsuppv) =0, we have pp(u) + pm(v) = pm(u+v) < ppm(o) < 2. This
implies pp(u) < 1 or pm(v) < 1. Hence, ||ul| < 1 or ||v|| < 1, a contradiction! This completes
the proof. O

Theorem 2.5. LY, (X) is nonsquare space if and only if
(a) for any u € LS Mm(X) \ {0}, one has K(u) # ¢,

(b) at least one of the conditions

(bl) kl/(k+1) ¢ K(u+v)NK(u-v),

b2) p({t €T : kllut)||-o(t) >0} u{teT o) -o(t) >0}) >0,
(b3) p{t € suppunsuppo : kl/(k+D)(|lu@®)| +|v@)|) >e(t)} >0
is true, where k € K(u),l € K(v) and u,v € S(L (X)),

(c) X is nonsquare space.

Proof Necessity. (a) Suppose that there exists u € LS MmX) \ {0} such that K(u) = ¢, then

[lue]|° = [; A(t) - |lu(t)||dt by Lemma 1.8. Decompose T into disjoint sets T; and T such that
Jr, A Il = . A@)- u(®)|d. Put

w () =2u(t)yr,  ua(t) = 2u(t)yr. (217)

Obviously, u = (1/2)(u1 + uz). Pick sequence {k,},-; C R* such that k, — oo asn — oo. Let
Ty = supp u1. By Levi theorem, we have

HmH<hm——1+fAﬂthﬂmwﬁ
n—oo
MG ka0l
= lim — P |luq (t)]|dE
B e T G
M kO]
= Iim ———— 22|y (8)||dt 2.18
fnnew e Ol (219)

=fAmwmmﬂ
T

o REGILRIGIS

Therefore,
|MWsLAmwmmwt

~[ a®-woldcs [ A6 - quedes [ A0 luold- [ A6 - Jut
T, T, T> T>
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=f A(t>-||u(t>||dt+f AGH) - )

T T,

_ LA“) et it = Jue”.

(2.19)

Similarly, we have |Ju||° < |[u]®. By u = (1/2)(u1 + uz), we obtain |lul|’ = [ju|° = ||luz]” =
1(1/2) (1 + w2)[°. By wa (£) = ua () = 2u(t) xr, + (-2u(t)) xr,, we have [Ju]l® = [[(1/2) (ur = u2)|°.
Therefore,

0
= ||u||0_ (2.20)

0
1
- Hi(ul—w

1
ol = ol = | 51+ )

This implies
a1 + luzl® = min{ ey + 2], ey = 2]}, (2.21)

a contradiction!

If (b) is not true, then there exist u,v € S(L(])VI(X)) such that kl/(k +1) € K(u+v) N
Ku-v), u({t € T : kllu@t)|| —o(t) > 0}u{t € T : l|jv@)|| - o) > 0}) = 0 and u{t €
suppu Nsuppo : kI/(k + D)(Jlu®)|| + |lo®)|]) > e(t)} = 0, where k € K(u), | € K(v). Let
E =T\ (suppunsuppv). It is easy to see that if t € E, then ||u(t)| - [|[v(t)]| = 0 on E. This
implies

kl kl kl
M(b Lol + o) = M(b ol +o0l) teE @22)

Therefore, by (2.22), we have

kl kl kl
fE M(t, 2l + k—nv(t)n)dt - fE M(t, L) + v(t)ll)dt- (2.23)

+1
By pu{t € suppunsuppo : (kl/(k+1))(|lu(t)| + [[v(t)]]) > e(t)} =0, we have
kl kl
0= L\E M (t' PEeLaClig mllv(f)ll)dt

_ L\E M(t, %Hu(t) ‘ v(t)||>dt.

By (2.23) and (2.24), we have

(2.24)

ki ki ki
fTM<t, m”u(t)” + m”v(t)”)dt = J‘TM<t, m”u(t) + v(t)||>dt. (2.25)
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By u({t € T : kllu(t)|| - o(t) >0} U {t € T : [|lo(t)|| - o (t) > 0}) = 0, we have

[ (MK + Ml )di
T

kl ki
- [ M(e o+ oo e

Therefore, by (2.25) and (2.26), we have

(2.26)

1 1
]l® + 1o))° = L+ pmk)] + 7 [1+pum(io)]

k+1] k
- S [ et + puio)|

k+1] l k
-5 [ e | Mekmona L [ M teoa

k+1] ! £
-5 [ (MR + oM oD )

2 Lm( ol + gl )
= % :l + J; M(t, %”u(t) + U(t)||>dt]

k+1] Kkl
= W -1+pM<m(u+U)>:|

= ||lu+|°

(2.27)

Similarly, we have [|u|” + ||v]|° = ||u - |°. This implies [|u|” + |o]° = |u+2|° = |lu-2|° a
contradiction!

(c) Pick h(t) € S(L (X)), then there exists d > 0 such that uE > 0, where E = {t € T :
|h(t)|| > d}. Put hy(t) = d-xo- xe(t), where xo € S(X). It is easy to see that hy (t) € L M X))\ {0}.
Hence, there exists [ > 0 such that!l- h(t) € S (L (X)). The necessity of (c) follows from the
fact that X is isometrically embedded into L}, (X). Namely, defining the operator I : X —
L%, (X) by

I(x)=1d-x-ye(t), xeX. (2.28)
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It is easy to see that I(xg) € S(L (X)). Hence, for any x € X \ {0}, we have
TGN = inf 2 [1+ paa(k - 1(x))]
k>0k pM

= inf- [1+f M(t k- ld||x||)dt]

k>0k

inf [1 +f Mt k- ||x||ld||xo||>dt]

. (2.29)
= inf [1+pm(k - [lx][1(x0))]
= [lllcll - (o) I°
= [Ix[l - 11 (x0) I°
= [lx].
Suﬁﬁczency Suppose that there exists u,v € S(L (X)) such that [lu]® = ||o|° =

11/2)(u+0)]° = |(1/2)(u-0)|” = 1. Let k € K(u), | € K(v). We will derive a contradiction
for each of the following two cases.

Case 1. u[({t € T : lut)||#£0} U {t €T : |lv()||#0})\ {t € T : o(t) > 0}] = 0. By Lemma 2.2,
we have ||u(t)|| + [lot)]| > min{||u(t) + o@)||, |u(t) — v(t)||}t € supp uNsupp v. Put

Ti = {t e suppunsupp v : [[u(t)|| + o) > [[ut) + ()},
(2.30)

T = {t e suppunsupp v : [[u(t)|| + [o@®)|| > [lu(t) - v(t)]l}.
Moreover, we have

1 1
]l® + o])° = L+ pmk)] + 7 [1+pum(io)]

- kk;l T+ —f Mt Kllu(®)l)dt + —f M(t, l||v(t)||)dt]
k+1[ 1 k
SR L(mM(f/kllu(ﬂll) + mM(t,lllv(t)H))dt]

v

%:an( Ol + el )i
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k+1 kl

k+1 Kl
e [1 o M(t, ol + v(t)||)dt]

_k+l + (i(u + U)>]
k| TP K+
> [|u +o]°.
(2.31)
By |lu|” + ||v]|° = ||u + ©||°, three inequalities of (2.31) are equation. This implies
k+1 l k
[ [ (e ki@ + £ Me o )a
(2.32)

_k+l1
-kl

1+LM( Ol + o ).

Next, we will prove u({t € T : k|lu(t)|| -c() > 0} u{t € T : l|lo®)|| - o) > 0}) = 0.
Suppose that u({t € T : k|lu(t)|| —o(t) >0} U {t € T : I||v(t)|| - o(t) > 0}) > 0. Without loss
of generality, we may assume p{t € T : k||u(t)|| — o(t) > 0} > 0. Therefore, by (2.32), we have
o) —o(t) 2 0 py-a.e.on {t € T : k|lu(t)|| - o(t) > 0}. Hence, u({t € T : kl|lu®)|| - o(t) >
0)yn{teT:I||lo(t)||-o(t) >0}) > 0. Since three inequalities of (2.31) are equation, we deduce

[ Mt g+ ggloon)ae = | M(sZglu sool)de @3

Moreover, it is easy to see

@+ Lo > o) 2 et (234)

on {teT:kllu(t)|-o()>0}n{teT:I|v(t)|-o(t) >0}. Therefore, by (2.33) and (2.34), we
have

—|| O+ 7 IIU(t)II = —Ilu(f) +o(t)]| (2.35)
p-ae.on{teT k|lut)|-o(t)>0}n{teT: o) -o(t)>0}. Since X is nonsquare space,
we have

ki

Ol + o> mind Eou(t) +o)l, flu o0} @36
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on{teT:k|u®)]|-c®)>0}n{teT:lo®)| -oc(t) >0}. Thus,
L@+ Lol > L) - o) 2.37)

p-ae.on {t € T : kllut)|| —o(t) >0}n{t €T :I|v(t)|| - o) > 0}. Therefore, by (2.34) and
(2.37), we have

1 1
] + |lo]° = % [1+pm(ku)] + I [1+pm(Iv)]
[ ki ki
2 Kl _1 + LM<t/ m””(t)” + m”v(f)ﬂ)dt]
| kil
> _1 + L M<t/ g - U(f)||)dt] (2.38)

k+1] kil
' _“PM(m(”‘”))]

0
2 [lu—o|".

This implies [|u|” + |[o]|° > |lu-v|° a contradiction! Hence, u({t € T : kllu(t)|| - o(t) > 0}
UfteT:I|loit)||—o(t) >0}) = 0. Since three inequalities of (2.31) are equation, we deduce
kl/(k+1) € K(u+wv)and p{t € Tr : (kI/(k + 1) ([u()|l + lo®)]) > e(t)} = 0. By (b), we have

kl/(k+l) ¢ K(u—v)or pu{t € Tp : (kI/(k+D))([[u(®)[+[[o®)|]) > e(t)} > 0.1f kl/ (k+]) & K(u-v),
then

Jul + ol = 2 [1+ prako)] + +[1+ pra(io)]

k+1T ki ki
. K
> S [+ [ M o+ o )

% :1 + LM(t, %Hu(t) - v(t)||)dt] (2.39)

k+1] kil
= H _“PM(m(”‘”))]

0
> ||lu-o|".

v
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This implies ||u]° + ||v||° > ||u - v||°, a contradiction! If u{t € T, : (kI/ (k +1))(|[u(t)|| +|o®)]]) >
e(t)} >0, then

Jul + ol = 21+ pra(kio)] + 1+ pra(io)]

k+1 Kkl Kkl
K+l KL KL
> B [ (s Bt + o)

k+1 ki
Sl [1 . LZ M(t,mllu(f) —v(t)n)dt]

k+1 kl
+ W [1 + - M(t, m”u(t) - (t)”)dt]

_k+lr (ﬂ( _ )>
T PM\ W@
> [lu - o]’

(2.40)

This implies lu]® + [|lo]|° > ||u - v||°, a contradiction!

Case 2. u[({t € T : [u(®)||#0} U{t € T : o) #01) \ {t €T : o() >0}] > 0. Let E= ({t € T :
lu(®)||#0} U {t € T : lo()]|£0}) \ {t € T : o(t) > 0}. Put

Ey={teE:[lu®|-llo@®l =0},  Ex={teE:|u@]-[o®)]>0} (2.41)

Then, pE; > 0 or uE; > 0. If uE; > 0, then

Ll (ﬁM(t,kHu(t)”)dt N %M(t,lllv(f)ﬂ))d‘f

; y (2.42)
> M g+ o) ae

Therefore, by (2.42), we have
0 o_ 1 1
l[ull”+lloll™ = = [1+pm(ku)] + T [1+pm(lv)]

_k+1
Tkl

i k
1+ L(mM(t,kHu(t)H) + k—M(t,lllv(t)ll)>df]

+1
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k+1 kl kl
>i}F+Lﬁ4}?ﬁwqu;ﬂww}ﬂ
k+1
+77F+n&M( )+ o |mm0]
k+1 kl
s L M(t, ) + v(t)||)dt]

Tkl
1 +pM<%(u+v))]

> ||+ v]||°

2

k1
kKl

(2.43)

This implies lull® + [l2]° > |ju +v|°, a contradiction! If HE> > 0, then uE; > 0 or uE3> > 0 by
Lemma 2.2, where

E} = {t € Ex: lu()|l + o) > [u(t) + v (B},
(2.44)
E3 = {t€Ex: lu(®)|l + o)l > [lu(t) - v(®)]l}.

Without loss of generality, we may assume pE) > 0. Hence,
ki ki ki
J‘E% M(t, ] lu(®)| + ] ||v(t)||>dt > J‘E; M(t, m”u(t) + v(t)||>dt. (2.45)
Therefore, by (2.45), we have

1+ pm(ku)] + %[1 +pm(lv)]

1+LM( )+ |mm04
> % [1 + L% M(t, % ua(t) + v(t)||>dt]
k+1 kl
+ W [1 + T\E; M(t, m”u(t) + 'U(t)”)dt]

_kelhy PM(%(”+0)>]

K
> [|u+ ||

1

0 0o_ 1
lull” + llol” = k[
k+1

I

(2.46)

This implies lul® + ||lo]|° > ||u + 2||°, a contradiction! This completes the proof. O
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Corollary 2.6. L8 (R) is nonsquare space if and only if
(a) for any u € LY, (R), one has K (u) # §,

(b) at least one of the conditions

(b1) kl/(k +1) ¢ K(u+v) NK(u~-0v),
02) u({t € T : klu(t)] - o(t) >0} U {t € T : I[o(t)| - o(t) > 0}) > 0,
(b3) u{t € suppunsuppo : (kI/(k + ) (u(®)] + [o(H)]) > e(t)} > 0

is true, where k € K (u), | € K(v) and u,v € S(L,(R)).
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