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A class of periodic problems of pseudoparabolic type equations with nonlinear periodic sources
are investigated. A rather complete classification of the exponent p is given, in terms of the
existence and nonexistence of nontrivial and nonnegative periodic solutions.

1. Introduction

The purpose of this paper is to give a complete classification of the exponent p, in terms of
the existence and nonexistence of nontrivial nonnegative classical periodic solutions for the
pseudoparabolic equation with nonlinear periodic sources

∂u

∂t
− k∂Δu

∂t
= Δu + α(x, t)up, (x, t) ∈ Ω × R, (1.1)

subject to the homogeneous boundary value condition and periodic condition

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t +ω), x ∈ Ω, t ∈ R,
(1.2)

whereΩ ⊂ R
N is a bounded domain with smooth boundary, k > 0 and p ≥ 0 are all constants,

and α(x, t) is an appropriately smooth and positive function which is periodic in time with
periodicity ω > 0.

Pseudo-parabolic equations are characterized by the occurrence of a time derivative
appearing in the highest-order term [1] and arise in applications from radiation with time
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delay [2], dynamic capillary pressure in unsaturated flow [3], and heat conduction involving
two temperatures [4], and so forth. They can also be used as a regularization of ill-posed
transport problems, especially as a quasi-continuous approximation to discrete models
for population dynamics [5]. Actually, comparing with another regularized method, the
Cahn-Hilliard equations, pseudo-parabolic equations are more incorporated with the out-of-
equilibrium viscoelastic relaxation effects according to experimental results [6]. Furthermore,
pseudo-parabolic equations are closely related to the well-know, BBM equations [7] which
are advocated as a refinement of KdV equations.

Since the last century, pseudo-parabolic equations have been studied in different
aspects, such as the integral representations of solutions [8], long-time behavior of solutions
[9], Riemann problem and Riemann-Hilbert problem [10], and nonlocal boundary value
problems [11]. However, as far as we know, the researches on periodic problems for pseudo-
parabolic equations are far from those of parabolic equations [12–18]. Among the earliest
works for periodic parabolic equations, Seidman’s work [18] causedmuch attention, in which
one can find the existence of nontrivial periodic solutions, for the case k = 0 and p = 0 of (1.1),
namely,

∂u

∂t
= Δu + α(x, t), (1.3)

where the function α(x, t) is periodic in t. From then on, many authors dealt with semilinear
equations of the form

∂u

∂t
= Δu + α(x, t)up, p > 0. (1.4)

It were Beltramo and Hess [12] who first considered the case p = 1 of (1.4) and showed that
only for some special α(x, t) can the equation have nontrivial periodic solutions. It seems that
the exponent p = 1 of the source is a singular value. Indeed, this interesting phenomenon was
verified by Esteban [13, 14]. Her results imply that, for p in a neighborhood of 1 except for
p = 1, nontrivial periodic solutions exist definitely for any α(x, t) > 0. Her results also imply
the existence of positive periodic solutions when p > 1 withN ≤ 2, or 1 < p < N/(N−2)with
N > 2, for any positive α(x, t). At the same time, she also indicated that if p ≥ (N+2)/(N−2)
with N > 2, then the equation might have no positive periodic solution. In fact, at least
for star-shaped domains, there is definitely no such solution. So, this is another interesting
phenomenon, and it is imaginable that p = (N + 2)/(N − 2) should be a critical value. In
fact, until 2004, this guess was solved by Quittner [17] who proved the existence of positive
periodic solutions for the case 1 < p < (N + 2)/(N − 2) with N > 2, although there are still
some restrictions on the structure of α(x, t).

Looking back to periodic problems of pseudo-parabolic equations, to our knowledge,
most works are devoted to space periodic problems. For instance, the existence and
uniqueness for regular solutions of the well-known BBM equation with ∂Δu/∂twere proved
by the differential-difference method in [19]. The existence and blowup of solutions to
the initial and periodic boundary value problem for the Camassa-Holm equation were
considered in [20]. In [21], Kaikina et al. considered the periodic boundary value problem
for the following pseudo-parabolic equation:

∂u

∂t
− ∂Δu

∂t
= αΔu − λ|u|p−1u, (1.5)
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where α > 0, λ > 0, and p > 1. Their proof revealed that if the initial data is small enough, then
there exists a unique solution. Once removing the assumption that the initial data is small,
then one should addN ≤ 4 with p > 1 orN ≥ 5 with 1 < p ≤N/(N−4) to assure the existence
of a unique solution. Further, from their results, one can also find that the solutions of (1.5)
exhibit power-law decay in time or dichotomous large-time behavior which unlike the usual
exponentially decay in time arose in periodic problems.

For time periodic problems of pseudo-parabolic equations, according to our survey,
expect the early works ofMatahashi and Tsutsumi and the recent research of Li et al., there are
no other investigations. In [22, 23], Matahashi and Tsutsumi have established the existence
theorems of time periodic solutions for the linear case

∂u

∂t
− ∂Δu

∂t
= Δu + f(x, t) (1.6)

and the semilinear case

∂u

∂t
− ∂Δu

∂t
= Δu − |u|p−1u + f(x, t) (1.7)

for 1 < p < 1 + 4/N with N = 2, 3, 4 or 0 < p < 3 with N = 1, respectively. As for one-
dimensional case with p > 1 for (1.1) and (1.2), we refer to the joint work with two authors of
this paper for the existence of nontrivial and nonnegative periodic solutions; see [24].

In this paper, we consider the time periodic problem (1.1) and (1.2) when N ≥ 1 and
p ≥ 0. Certainly, some researches focus on the source which has the general form f(u), but
here we are quite interested in the special source up (whichwas also studied bymany authors,
see [9] e.g.) and the existence and nonexistence of nontrivial nonnegative classical periodic
solutions in different intervals divided by p. It will be shown that, as an important aspect of
good viscosity approximation to the corresponding periodic problem of the semilinear heat
equation, there still exist two critical values p0 = 1 and pc = (N + 2)/(N − 2) for the exponent
p. Precisely speaking, we have the following conclusions

(i) There exist at least one positive classical periodic solution in the case 0 ≤ p < 1

(ii) When 1 < p < (N + 2)/(N − 2) for N > 2, or 1 < p < ∞ for N ≤ 2 with convex
domainΩ, there exist at least one nontrivial nonnegative classical periodic solution

(iii) When p ≥ (N + 2)/(N − 2) for N > 2 with star-shaped domain Ω and α(x, t) is
independent of t, there is no nontrivial and nonnegative periodic solution

(iv) For the singular case p = 1, only for some special α(x, t) can the problem have
positive classical periodic solutions.

From the existing investigations, we can see that, not only for space periodic problem
but also for time periodic problem of pseudo-parabolic equations, the results are still far from
complete. Specially, notice that pseudo-parabolic equations can be used to describe models
which are sensitive to time periodic factors (e.g., seasons), such as aggregating populations
[5, 25], and there are some numerical results and analysis of stabilities of solutions [26–
28] which indicate that time periodic solutions should exist, so it is reasonable to study
the periodic problem (1.1) and (1.2). Our results reveal that the exponents p0 and pc are
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consistent with the corresponding semilinear heat equation [12–14, 17]. This fact exactly
indicates that the viscous effect of the third-order term is not strong enough to change the
exponents. However, due to the existence of the third-order term k(∂Δu/∂t), the proof is
more complicated than the proof for the case k = 0. Actually, the viscous term k(∂Δu/∂t)
seems to have its own effect [29], and our future work will be with a particular focus
on this. Moreover, comparing with the previous works of pseudo-parabolic equations, our
conclusions not only coincide with those of [22] but also contain the results of [24].

The content of this paper is as follows. We describe, in Section 2, some preliminary
notations and results for our problem. Section 3 concerns with the case 0 ≤ p < 1, and the
existence of positive classical periodic solutions is established. Subsequently, in Section 4,
we discuss the case p > 1, in which we will investigate the existence and nonexistence of
nontrivial nonnegative classical periodic solutions. The singular case p = 1 will be discussed
in Section 5.

2. Preliminaries

In this section, we will recall some standard definitions and notations needed in our
investigation. Specially, we will prove that if the weak solution under consideration belongs
to L∞, then it is just the classical solution.

Let τ ∈ R be fixed, and set

Q = Ω × (0, T), Qω = Ω × (τ, τ +ω),

S = inf
Q
α(x, t), L = sup

Q

α(x, t).
(2.1)

In order to prove the existence of periodic solutions, we only need to consider the following
problem:

∂u

∂t
− k∂Δu

∂t
= Δu + α(x, t)|u|p, (x, t) ∈ Qω, (2.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, τ +ω), (2.3)

u(x, τ) = u(x, τ +ω), x ∈ Ω. (2.4)

Though the final existence results in this paper are established for the classical
solutions, but due to the proof procedure, we first need to consider solutions in the
distribution sense. Denote by E, E0 the reasonable weak solutions space, namely,

E =
{
u ∈ Lp+1(Ω);

∂u

∂t
∈ L2(Qω),

∂∇u
∂t

∈ L2(Qω),∇u ∈ L2(Qω)
}
,

E0 =
{
u ∈ E;u(x, t) = 0 for any x ∈ ∂Ω}.

(2.5)
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Definition 2.1. A function u ∈ E is called to be a weak ω-periodic upper solution of the
problem (2.2)–(2.4) provided that for, any nonnegative function ϕ ∈ C1

0(Qω), there holds

∫∫
Qω

∂u

∂t
ϕdxdt +

∫∫
Qω

k
∂∇u
∂t

∇ϕdxdt ≥ −
∫∫

Qω

∇u∇ϕdx dt

+
∫∫

Qω

α(x, t)|u|pϕdxdt, (x, t) ∈ Qω,

u(x, t) ≥ 0, x ∈ ∂Ω, t ∈ (τ, τ +ω),

u(x, τ) ≥ u(x, τ +ω), x ∈ Ω.

(2.6)

Replacing “≥” by “≤” in the above inequalities, it follows the definition of a weak lower
solution. Furthermore, if u is a weak upper solution as well as a weak lower solution, then
we call it a weak solution of (2.2)–(2.4).

In what follows, we show that the weak solution defined above is classical if it belongs
to L∞(Qω). Meanwhile, the classical solution u is nonnegative which implies that we can
throw off the symbol of absolute value of |u|.

Theorem 2.2. If the weak solution u in Definition 2.1 also belongs to L∞(Qω), then there holds
u ∈ C2+α,1+α/2(Qω) and ∂u/∂t ∈ C2+α,α/2(Qω), namely, u is just the classical solution. Furthermore,
u is nonnegative.

Proof. We lift the regularity of the weak solution u step by step, via using the following
abstract setting of pseudo-parabolic equation:

∂u

∂t
+
1
k
u = (I − kΔ)−1

(
1
k
u + α(x, t)up

)
, (2.7)

which can be derived by Fourier transform [9] or by reducing the pseudo-parabolic equation
to a system of second-order equations [30], namely,

v = (I − kΔ)u,

∂v

∂t
+
1
k
v =

1
k
u + α(x, t)up.

(2.8)

Since the regularity of the weak solution u is not sufficient at the beginning, we start
our proof from the abstract form in a weaker sense. From Definition 2.1, if u in E0 is a weak
solution, then, after a small deformation, it also satisfies

∫∫
Qω

(
∂u

∂t
ϕ + k

∂∇u
∂t

∇ϕ
)
dxdt = − 1

k

∫∫
Qω

(
uϕ + k∇u∇ϕ)dxdt

+
∫ ∫

Qω

(
1
k
u + α(x, t)|u|p

)
ϕdxdt.

(2.9)
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As what Showalter et al. have done in [1, 31], by using the Lax-Milgram theorem on bounded
positive-definite bilinear forms in Hilbert space, we obtain the corresponding Friedrichs

extensions of I − kΔ, denoted by M0, with domain D(M0) dense in
◦
W

1,0

2 (Qω), satisfying
the identity

∫∫
Qω

(
φϕ + k∇φ∇ϕ)dxdt= (M0φ, ϕ

)
L2(Qω)

, (2.10)

whenever φ ∈ D(M0) and ϕ ∈
◦
W

1,0

2 (Qω). The range of M0 is all of L2(Qω), and M0 has an

inverse which is a bounded mapping of L2(Qω) into
◦
W

1,0

2 (Qω). Then the weak solution u in
E0 is just the weak solution of the following equation:

∂u

∂t
= − 1

k
u +M−1

0

(
1
k
u + α(x, t)|u|p

)
. (2.11)

We can also relate the extended operatorM0 to the operatorM1 which are just the extension

of I − kΔ to the domain
◦
W

1,0

2 (Qω) ∩W2,0
2 (Qω) in the sense of generalized derivatives.M1 has

a continuous inverse operator from L2(Qω) to
◦
W

1,0

2 (Qω) ∩W2,0
2 (Qω). Thus, from

∂u

∂t
= − 1

k
u +M−1

1

(
1
k
u + α(x, t)|u|p

)
(2.12)

and u ∈ L∞(Qω), there hold

∂u

∂t
∈ L2(Qω),

∂u

∂t
+
1
k
u ∈

◦
W

1,0

2 (Qω) ∩W2,0
2 (Qω). (2.13)

Multiplying et/k on both sides of (2.12), we get

∂

∂t

(
et/ku

)
= et/kM−1

1

(
1
k
u + α(x, t)|u|p

)
. (2.14)

For any t ∈ [0, ω], integrating the above equation in [t, t + ω] and using the periodicity of u
yield

u(x, t) =
(
e(t+ω)/k − et/k

)−1 ∫ t+ω
t

es/kM−1
1

(
1
k
u(x, s) + α(x, t)|u|p(x, s)

)
ds, (2.15)

which with (2.13) imply that

u ∈
◦
W

1,0

2 (Qω) ∩W2,1
2 (Qω),

∂u

∂t
∈

◦
W

1,0

2 (Qω) ∩W2,0
2 (Qω). (2.16)
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Thus, the weak solution u is just the strong solution which satisfies (2.2) almost everywhere
in Qω. Furthermore, following the discussion in [32, 33], we can introduce a linear operator
Mr :W

2,0
r (Qω) ∩ {φ(x, t) = 0 for any x ∈ Ω} → Lr(Qω) byMrφ := (I − kΔ)φ, whose inverse

M−1
r : Lr(Qω) → W2,0

r (Qω) ∩ {φ(x, t) = 0 for any x ∈ Ω} is continuous. Then, we have

∂u

∂t
= − 1

k
u +M−1

r

(
1
k
u + α(x, t)|u|p

)
. (2.17)

Similar to the above discussion, we can deduce that

u ∈W2,1
r (Qω),

∂u

∂t
∈W2,0

r (Qω), for any 1 ≤ r <∞. (2.18)

From the Isotropic Embedding Theorem [34], we know that

u ∈ Cα,α/2
(
Qω

)
, 0 < α < 2 − N + 2

r
with r >

N + 2
2

. (2.19)

As in [35, 36], (I − kΔ)−1 is bounded from Cα,α/2(Qω) to C
2+α,α/2(Qω), then u satisfies

∂u

∂t
= − 1

k
u + (I − kΔ)−1

(
1
k
u + α(x, t)|u|p

)
. (2.20)

In the same way, we have

u ∈ C2+α,1+α/2
(
Qω

)
,

∂u

∂t
∈ C2+α,α/2

(
Qω

)
, (2.21)

which implies that u is the classical solution.
Once u is the classical solution, we conclude that u ≥ 0. Inspired by the method in

[24, 37], we suppose, to the contrary, that there exists a pair of points (x0, t0) ∈ Ω× (0, ω) such
that

u(x0, t0) < 0. (2.22)

Since u is continuous, then there exists a domain Ω0 such that u(x, t0) < 0 in Ω0 and
u(x, t0) = 0 on ∂Ω0. Multiplying (2.2) by ϕ, which is the principle eigenfunction of −Δ in
Ω0 with homogeneous Dirichlet boundary condition, and integrating on Ω0, we get

(1 + kλ0)
∫
Ω0

∂u

∂t
ϕdx + λ0

∫
Ω0

uϕ dx =
∫
Ω0

α(x, t)|u|pϕdx, (2.23)

where λ0 is the first eigenvalue. Integrating the above inequality from 0 to ω and using the
periodicity of u, we have

λ0

∫ω
0

∫
Ω0

uϕdxdt > 0. (2.24)
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By the mean value theorem, there exists a point t∗ ∈ (0, ω) such that

∫
Ω0

u(x, t∗)ϕdx > 0. (2.25)

Actually (2.23) is equivalent to

∫
Ω0

∂etλ0/(1+kλ0)u

∂t
ϕdx =

1
1 + kλ0

∫
Ω0

etλ0/(1+kλ0)α(x, t)|u|pϕdx. (2.26)

Integrating the above inequality from t∗ to ω implies that

∫
Ω0

eωλ0/(1+kλ0)u(x,ω)ϕdx > 0. (2.27)

Recalling the periodicity of u, we see that

∫
Ω0

u(x, 0)ϕdx > 0. (2.28)

Then integrating (2.26) over (0, t) implies that

∫
Ω0

etλ0/(1+kλ0)u(x, t)ϕdx > 0, t ∈ (0, ω) (2.29)

which contradicts with u(x, t0) < 0 in Ω0.

3. The Case 0 ≤ p < 1

In this section, we consider the case 0 ≤ p < 1, in which we will show that there exists at least
one positive periodic solution.

Theorem 3.1. Assume that 0 ≤ p < 1. Then the problem (1.1) and (1.2) admits at least one positive
periodic classical solution u.

Proof. We prove the theorem by constructing monotone sequence. Just as what we have done
in Section 2, we may as well consider the problem (2.2)–(2.4). First, we construct a coupled
upper and lower classical solution of (2.2)–(2.4). Choose R̃ to be appropriately large such
that Ω ⊂ BR̃/2. Let λ1, λ̃1 be the first principle eigenvalues of −Δwith homogeneous Dirichlet
boundary value conditions on Ω and BR̃ of R

n, respectively. Furthermore, we let φ and ψ be
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the corresponding principle eigenfunctions normalized by ‖φ‖L∞(Ω) = 1 and ‖ψ‖L∞(BR̃) = 1.
Precisely speaking, φ and ψ satisfy

−Δφ(x) = λ1φ, x ∈ Ω,

φ(x)
∣∣
∂Ω = 0,

−Δψ(x) = λ̃1ψ, x ∈ BR̃,
φ(x)

∣∣
∂BR̃

= 0.

(3.1)

It is well known (see e.g., [38]) that φ(x) > 0 for x ∈ Ω and ψ > 0 for x ∈ BR̃. Therefore, there
exists a constant γ > 0 such that ψ(x) > γ for x ∈ Ω. Set

Φ = κ1φ(x), Ψ = κ2ψ(x), (3.2)

where κ1 and κ2 are constants which are to be determined later.
Actually, if we choose κ1 = (S/λ1)

1/(1−p), then a simple calculation yields that

−ΔΦ(x) = −κ1Δφ = κ1λ1φ ≤
(
S

λ1

)1/(1−p)
λ1φ = S

(
S

λ1

)p/(1−p)
φp ≤ α(x, t)Φp. (3.3)

Then Φ is a lower positive classical periodic solution of (2.2)–(2.4). Moreover, Ψ is an upper
positive classical periodic solution of (2.2)–(2.4) if and only if

λ̃1Ψ1−p ≥ α(x, t), (3.4)

which is ensured by

κ2 ≥ max

⎧⎨
⎩

1
γ

(
L

λ̃1

)1/(1−p)
,
κ1
γ

⎫⎬
⎭. (3.5)

Clearly we also have Ψ(x) ≥ Φ(x).
Set û = Φ and ũ = Ψ be the coupled bounded lower and upper classical periodic

solutions of (2.2)–(2.4). We get a function sequences {um}∞m=0 via the following iteration
process

∂um
∂t

− k∂Δum
∂t

= Δum + α(x, t)|um−1|p, (x, t) ∈ Qω, (3.6)

um(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, τ +ω), (3.7)

um(x, τ) = um−1(x, τ +ω), x ∈ Ω (3.8)
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for m = 1, 2, . . ., where u0 = û. The existence and uniqueness of classical solutions for the
above problem can be proved by the method in [36] and Theorem 2.2, so um is well defined.
Then we have that the above sequence is monotone and bounded, that is,

û = u0 ≤ u1 ≤ · · · ≤ um ≤ um+1 ≤ · · · ≤ ũ. (3.9)

Since u0 = û is the lower solution, we get

∂(u1 − u0)
∂t

− k∂Δ(u1 − u0)
∂t

≥ Δ(u1 − u0), (x, t) ∈ Qω,

(u1 − u0)(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, τ +ω),

(u1 − u0)(x, τ) ≥ 0, x ∈ Ω.

(3.10)

By using the comparison principle of pseudo-parabolic equation [35, 39], we have that u1 ≥
u0, and

∂u1
∂t

− k∂Δu1
∂t

= Δu1 + α|u0|p ≤ Δu1 + α|u1|p, (x, t) ∈ Qω,

u1(x, t) = 0, x ∈ ∂Ω, t ∈ (τ, τ +ω),

u1(x, τ) = u0(x, τ +ω) ≤ u1(x, τ +ω), x ∈ Ω,

(3.11)

which means that u1 is a lower periodic solution. Furthermore, for ũ − u1, there also holds

∂(ũ − u1)
∂t

− k∂Δ(ũ − u1)
∂t

≥ Δ(ũ − u1), (x, t) ∈ Qω,

(ũ − u1)(x, t) ≥ 0, x ∈ ∂Ω, t ∈ (τ, τ +ω),

(ũ − u1)(x, τ) ≥ ũ(x, τ +ω) − û(x, τ +ω) ≥ 0, x ∈ Ω,

(3.12)

which indicates that ũ ≥ u1 by the comparison principle. Repeating the above procedures,
there holds (3.9). Due to that um is monotone of m, then there exists a function u such that
um → u in Qω, and u(x, t) = u(x, t +ω).

Multiplying both sides of (3.6) by um, integrating the result over Qω, and recalling
(3.7), (3.8) yields

∫∫
Qω

|∇um|2 dxdt =
∫∫

Qω

α(x, t)um|um−1|p dxdt ≤ ω|Ω|L‖ũ‖p+1∞ . (3.13)

Next, multiplying both sides of (3.7) by ∂um/∂t, we have

∫∫
Qω

∣∣∣∣∂um∂t
∣∣∣∣
2

dxdt+k
∫∫

Qω

∣∣∣∣∂∇um∂t

∣∣∣∣
2

dxdt =
∫∫

Qω

α(x, t)
∂um
∂t

|um−1|pdxdt. (3.14)
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Using the Young inequality to the above equality yields

∫∫
Qω

∣∣∣∣∂um∂t
∣∣∣∣
2

dxdt +
∫∫

Qω

∣∣∣∣∂∇um∂t

∣∣∣∣
2

dxdt ≤ ω|Ω|L2‖ũ‖2p∞ . (3.15)

Hence, when n → ∞, it follows that, for any r > 0,

um −→ u, in Lr(Qω),

∇um ⇀ ∇u, in L2(Qω),

∂um
∂t

⇀
∂u

∂t
, in L2(Qω),

∂∇um
∂t

⇀
∂∇u
∂t

, in L2(Qω),

(3.16)

which imply that u ∈ E0 is the periodic solution of (2.2)–(2.4).
Furthermore, the above weak periodic solution u we find is just the positive classical

periodic solution of the problem (1.1) and (1.2). From (3.9) and the convergent procedures,
we have that

0 < Φ(x) ≤ u ≤ Ψ(x) ≤ κ2, x ∈ Ω, (3.17)

namely, that u ∈ L∞(Qω). Thus, from Theorem 2.2, u is the positive classical periodic solution
of (1.1) and (1.2).

4. The Case p > 1

In what follows, we pay our attention to the case p > 1, in which we will determine an
exponent pc, such that 1 < p < pc and p ≥ pc are corresponding to the existence and
nonexistence of nontrivial and nonnegative periodic solutions, respectively. To prove the
existence of periodic solutions, we need the following lemma, which can be found in [40].

Lemma 4.1. Let R
+ := [0,+∞), and let (E, ‖ · ‖) be a real Banach-space. Let G : R

+ × E → E be
continuous and map-bounded subsets on relatively compact subsets. Suppose moreover thatG satisfies

(a) G(0, 0) = 0,

(b) there exist R > 0 such that

(i) u ∈ E, ‖u‖ ≤ R and u = G(0, u) implies u = 0,
(ii) deg(id −G(0, ·), B(0, R), 0) = 0.

Let J denote the set of solutions to the problem

u = G(l, u) (4.1)
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in R
+ × E. Let E denote the component (closed connected subset maximal with respect to inclusion) of

J to which (0, 0) belongs. Then if

E ∩ ({0} × E) = {(0, 0)}, (4.2)

then E is unbounded in R
+ × E.

Define an operator G by

G
(
R

+, L∞
ω

(
(τ, τ +ω), Lp̃(Ω)

))
−→ L∞

ω

(
(τ, τ +ω), Lp̃(Ω)

)
,

G(l, v) = u,
(4.3)

where (2N/(N + 2))p < 1 + p ≤ p̃ < 2N/(N − 2) is a constant. Let u be a solution of the
following problem

∂u

∂t
− k∂Δu

∂t
= Δu + α(x, t)(|v| + l)p, (x, t) ∈ Qω, (4.4)

u(x, t) = 0, (x, t) ∈ ∂Ω × (τ, τ +ω), (4.5)

u(x, τ) = u(x, τ +ω), x ∈ Ω. (4.6)

We aim to apply Lemma 4.1 to get the existence of nontrivial weak periodic solutions
and then by lifting the regularity of the weak solutions (Theorem 2.2) to get the existence
of classical solutions. For these purposes, firstly, we need to verify the compactness and
continuity of the operator G.

Lemma 4.2. When 1 < p < (N + 2)/(N − 2) withN > 2 or 1 < p <∞ withN ≤ 2, the operator G
is completely continuous.

Proof. To verify the compactness of the operator G, we first need to make some a priori
estimates. Multiplying (4.4) by u and integrating over Ω yield

1
2

d
dt

∫
Ω
|u|2dx +

k

2
d
dt

∫
Ω
|∇u|2dx +

∫
Ω
|∇u|2dx ≤ L

∫
Ω
u(|v| + l)pdx. (4.7)

Integrating the above inequality from τ to τ + ω and combining with the Hölder inequality
and the Isotropic Embedding Theorem [34], we conclude that

∫∫
Qω

|∇u|2dxdt ≤ L
(∫∫

Qω

|u|p̃/(p̃−p)dxdt
)(p̃−p)/p̃(∫∫

Qω

(|v| + l)p̃dxdt
)p/p̃

≤ C
(∫∫

Qω

|∇u|2dxdt
)1/2(∫∫

Qω

(|v| + l)p̃dxdt
)p/p̃

.

(4.8)
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Thus, we have

∫∫
Qω

|u|2dxdt ≤ C1,

∫∫
Qω

|∇u|2dxdt ≤ C1, (4.9)

where C1 depends only on l, p, p̃, ‖α‖L∞(Qω), Qω, and supt∈(τ,τ+ω)‖v‖Lp̃(Ω). By the mean value
theorem, we see that there exists a point t̂ ∈ (τ, τ +ω) such that

∫
Ω

(∣∣∣u(x, t̂)∣∣∣2 + k
∣∣∣∇u(x, t̂)∣∣∣2

)
dx ≤ C1ω. (4.10)

Integrating (4.7) from t̂ to t gives

∫
Ω

(
|u|2 + k|∇u|2

)
dx ≤ C2, t ∈

[
t̂, τ +ω

]
. (4.11)

Noticing the periodicity of u, we arrive at

∫
Ω

(
|u(x, τ)|2 + k|∇u(x, τ)|2

)
dx ≤ C2, (4.12)

from which it is easy to obtain that

sup
t∈[τ,τ+ω]

∫
Ω

(
|u|2 + k|∇u|2

)
(x, t)dx ≤ C2, (4.13)

where C2 depends only on l, p, p̃, k, ‖α‖L∞(Qω),Qω, and supt∈(τ,τ+ω)‖v‖Lp̃(Ω) . Using the Isotropic
Embedding Theorem [34] yields

∫
Ω
|u|rdx ≤ C3, (4.14)

where

r =

⎧⎨
⎩
1 ≤ r ≤ 2N

N − 2
, N > 2,

1 ≤ r < +∞, N ≤ 2,
(4.15)

and C3 depends on l, p, p̃, k, N, ‖α‖L∞(Qω), Qω, and supt∈(τ,τ+ω)‖v‖Lp̃(Ω) . Multiplying (4.4) by
∂u/∂t and integrating over Ω yield

∫
Ω

∣∣∣∣∂u∂t
∣∣∣∣
2

dx + k
∫
Ω

∣∣∣∣∂∇u∂t
∣∣∣∣
2

dx +
1
2

d
dt

∫
Ω
|∇u|2dx =

∫
Ω

∂u

∂t
α(x, t)(|v| + l)pdx. (4.16)
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Integrating the above equality from τ to τ + ω and using the Hölder inequality and the
Isotropic Embedding Theorem [34], we get

∫∫
Qω

(∣∣∣∣∂u∂t
∣∣∣∣
2

+ k
∣∣∣∣∂∇u∂t

∣∣∣∣
2
)
dxdt

≤ L
(∫∫

Qω

∣∣∣∣∂u∂t
∣∣∣∣
p̃/(p̃−p)

dxdt

)(p̃−p)/p̃(∫∫
Qω

(|v| + l)p̃dxdt
)p/p̃

≤ C
(∫∫

Qω

∣∣∣∣∂∇u∂t
∣∣∣∣
2

dxdt

)1/2(∫∫
Qω

(|v| + l)p̃dxdt
)p/p̃

.

(4.17)

Then one has

∫∫
Qω

(∣∣∣∣∂u∂t
∣∣∣∣
2

+ k
∣∣∣∣∂∇u∂t

∣∣∣∣
2
)
dxdt ≤ C4, (4.18)

where C4 depends on l, p, p̃, ‖α‖L∞(Qω), Qω, and supt∈(τ,τ+ω)‖v‖Lp̃(Ω). Moreover, by means
of (4.13), (4.14), and (4.18), we obtain the compactness of the operator G, while, for the
continuity of G, it is easy to obtain just by a simple and cumbersome real analysis process, so
we omit it. The proof is complete.

By using the above lemmas, we obtain the following results.

Theorem 4.3. Assume α(x, t) ∈ C1(RN,R). If Ω is a convex domain and

1 < p

⎧⎨
⎩
<
N + 2
N − 2

, for N > 2,

< +∞, for N ≤ 2,
(4.19)

then the problem (1.1) and (1.2) admits at least one nontrivial nonnegative classical periodic solution.

Proof. Wewill complete the proof by using Lemma 4.1. Recalling the definition of the operator
G and Lemma 4.2, we see that the operator G is completely continuous. In what follows, we
first need to check the condition (a) in Lemma 4.1. Let u = G(0, 0) that is, u is a solution of the
following problem:

∂u

∂t
− k∂Δu

∂t
= Δu, (x, t) ∈ Qω, (4.20)

u(x, t) = 0, (x, t) ∈ ∂Ω × (τ, τ +ω), (4.21)

u(x, τ) = u(x, τ +ω), x ∈ Ω. (4.22)
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Clearly, the above problem admits only zero solution. In fact, multiplying the first equation
of (4.20) by u and integrating over Qω yield

∫∫
Qω

|∇u|2dxdt = 0. (4.23)

Recalling the Poincaré inequality, we see that

∫∫
Qω

u2dxdt ≤ C
∫ ∫

Qω

|∇u|2dxdt = 0, (4.24)

which implies that u = 0 a.e. in Qω.
Secondly, we will show that there exists an R > 0 such that if u = G(0, u) and

sup
t

‖u(·, t)‖Lp̃(Ω) < R, (4.25)

then u ≡ 0. Taking l = 0, replacing v by u in (4.4), and then multiplying the equation by u on
both sides and integrating over Ω yield

1
2

d
dt

∫
Ω
|u|2dx +

k

2
d
dt

∫
Ω
|∇u|2dx +

∫
Ω
|∇u|2dx

≤ L
∫
Ω
|u|p+1dx ≤ L|Ω|(p̃−p−1)/p̃

(∫
Ω
|u|p̃dx

)(p+1)/p̃

.

(4.26)

By virtue of the Isotropic Embedding Theorem, we get

1
2

d
dt

∫
Ω
|u|2dx +

k

2
d
dt

∫
Ω
|∇u|2dx + μ

(∫
Ω
|u|p̃dx

)2/p̃

≤ L|Ω|(p̃−p−1)/p̃
(∫

Ω
|u|p̃dx

)(p+1)/p̃

,

(4.27)

where μ is the constant in the Isotropic Embedding Theorem; that is,

1
2
d

dt

∫
Ω
|u|2dx +

k

2
d
dt

∫
Ω
|∇u|2dx

≤
(
L|Ω|(p̃−p−1)/p̃ − μ

(∫
Ω
|u|p̃dx

)(1−p)/p̃)(∫
Ω
|u|p̃dx

)(p+1)/p̃

.

(4.28)

Thus, if

sup
t

∫
Ω
|u|p̃ ≤ R0, (4.29)
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where

R0 =
( μ
2L

)p̃/(p−1)
|Ω|−(p̃−p−1)/(p−1), (4.30)

then we have

1
2

d
dt

∫
Ω
|u|2dx +

k

2
d
dt

∫
Ω
|∇u|2dx ≤ −L|Ω|(p̃−p−1)/p̃

∫
Ω
|u|p+1dx, (4.31)

which means u = 0 a.e. in Qω.
Next, we check the condition (b) in Lemma 4.1, namely, there exists an R < R0, such

that

deg(id −G(0, ·), B(0, R), 0) = 1. (4.32)

Consider the following problem:

∂u

∂t
− k∂Δu

∂t
= Δu + σα(x, t)|v|p, (x, t) ∈ Qω,

u(x, t) = 0, (x, t) ∈ ∂Ω × (τ, τ +ω),

u(x, τ) = u(x, τ +ω), x ∈ Ω,

(4.33)

where σ ∈ [0, 1]. Construct a homotopic mapping

T : [0, 1] × L∞
ω

(
(τ, τ +ω), Lp̃(Ω)

)
−→ L∞

ω

(
(τ, τ +ω), Lp̃(Ω)

)
,

T(σ, v) = u.
(4.34)

Similar to Lemma 4.2, we see that T is completely continuous. Assume that

sup
t∈(τ,τ+ω)

‖v(·, t)‖p̃
Lp̃(Ω)

≤ R, (4.35)
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where R ≤ R0 is to be determined. Multiplying the first equation of the above problem by u
and integrating over Ω yield

1
2

d
dt

∫
Ω
|u|2dx +

k

2
d
dt

∫
Ω
|∇u|2dx +

∫
Ω
|∇u|2dx

≤ L
(∫

Ω
|u|p̃/(p̃−p)dx

)(p̃−p)/p̃(∫
Ω
|v|p̃dx

)p/p̃

≤ L
(∫

Ω
|∇u|2dx

)1/2(∫
Ω
|v|p̃dx

)p/p̃

≤ C
(∫

Ω
|∇u|2dx

)1/2

Rp/p̃.

(4.36)

Integrating from τ to τ +ω gives

∫∫
Qω

|∇u|2dx ≤ CR2p/p̃. (4.37)

Then, we further have

∫∫
Qω

|u|2dx ≤ CR2p/p̃. (4.38)

By means of the integral mean value theorem, we see that there exists a tσ ∈ [τ, τ + ω] such
that

∫
Ω

(
|u(x, tσ)|2 + |∇u(x, tσ)|2

)
dx ≤ CR2p/p̃. (4.39)

By the periodicity of u and a similar process as Lemma 4.2, we obtain that

sup
∈(τ,τ+ω)

∫
Ω

(
|u|2 + k|∇u|2

)
dx ≤ CR2p/p̃. (4.40)

Using the Isotropic Embedding Theorem gives

sup
t∈(τ,τ+ω)

∫
Ω
|u(x, t)|p̃dx ≤ CRp < R. (4.41)

If Rwith R ≤ R0 is appropriately small, such that p > 1, therefore,

deg(id − T(1, ·), B(0, R), 0) = deg(id − T(0, ·), B(0, R), 0) = 1, (4.42)
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which means that

deg(id −G(0, ·), B(0, R), 0) = 1. (4.43)

To show that the problem (1.1) and (1.2) admits at least one nontrivial periodic
solution, it remains to check the boundedness of the set E in Lemma 4.1. Otherwise, the set
of solutions to the problem u = G(l, u) is unbounded. Therefore, there exist ln, un such that
un = G(ln, un) and

ln + sup
t∈(τ,τ+ω)

‖un(·, t)‖L∞(Ω) −→ ∞, (4.44)

which implies that

ln + ‖un‖L∞(Qω) −→ ∞. (4.45)

If this were true, then we would have

ln
‖un‖L∞(Qω)

−→ 0. (4.46)

Suppose the contrary, and note that if ln is bounded, then ‖un‖L∞(Qω) → ∞, which means
(4.46). Thus, without loss of generality, we may assume that 0 < ln → +∞. Making change of
variable

v =
un
ln
, (4.47)

we have

∂vn
∂t

− k∂Δvn
∂t

−Δvn = α(x, t)lp−1n (|vn| + 1)p. (4.48)

If ‖vn‖L∞(Qω) are bounded uniformly, that is, there is a constantC > 0 such that ‖vn‖L∞(Qω) < C,
then, for any ϕ ∈ C1

T (Qω)with ϕ|∂Ω = 0, we have

∫∫
Qω

∂vn
∂t

ϕdxdt +
∫∫

Qω

k
∂∇vn
∂t

∇ϕdxdt +
∫∫

Qω

∇vn∇ϕdxdt

=
∫∫

Qω

α(x, t)lp−1n (|vn| + 1)pϕdxdt.

(4.49)

Noticing the density of C1
T (Qω) in L2

T ((τ, τ +ω),W
1,2(Ω)), then it is sound to take ϕ = vn thus,

we have
∫∫

Qω

|∇vn|2dxdt ≤ CLlp−1n . (4.50)
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In addition, for any 0 ≤ ϕ(x) ∈ C1
0(Ω), we also have

l
p−1
n

∫∫
Qω

α(x, t)ϕdxdt ≤ lp−1n

∫∫
Qω

α(x, t)(|vn| + 1)pϕdxdt

≤
(∫∫

Qω

|∇vn|2dxdt
)1/2(∫∫

Qω

∣∣∇ϕ∣∣2dxdt
)1/2

≤
(∫ ∫

Qω

∣∣∇ϕ∣∣2dxdt
)1/2(

CLl
p−1
n

)1/2
,

(4.51)

that is,

l
(p−1)/2
n

∫∫
Qω

α(x, t)ϕdxdt ≤
(∫∫

Qω

∣∣∇ϕ∣∣2dxdt
)1/2

. (4.52)

Clearly, it is a contradiction since ln → ∞. Therefore, (4.46) holds, which also implies that
‖un‖L∞(Qω) → ∞. Let ρn = ‖un‖L∞(Qω) = un(xn, tn) → ∞. By the convexity of Ω, we see that
there exists a δ0 > 0 such that dist(xn, ∂Ω) ≥ δ0; see, for example, [41, 42]. Then, there exists
a subsequence, and for simplicity, we still denote it by xn such that xn → x0, tn → t0 with
dis(xn, ∂Ω) ≥ δ0. Let

ωnj

(
y, s
)
= ρ−1n un

(
ρ
−(p−1)/2
n y + x0, tj + js

)
, α̃nj = α

(
ρ
−(p−1)/2
n y + x0, tj + js

)
, (4.53)

and let

Ωn =
{
y;y = ρ(p−1)/2n (x − x0) for x ∈ Ω

}
, Qnj = Ωn ×

(
τ − tj
j

,
τ +ω − tj

j

)
. (4.54)

Then, ωnj with ‖ωnj‖L∞(Qnω) = 1 on Qnj satisfies

ρ
1−p
n

∂ωnj

∂s
− k∂Δωnj

∂s
− jΔωnj = jα̃

(
y, s
)(∣∣ωnj

∣∣ + lnρ−1n
)p
. (4.55)

Similar to the proof of Theorem 2.2, we can deduce that ωnj ≥ 0 which admits throwing off
the symbol of absolute value of |ωnj |. Therefore, for any φ(y, s) ∈ C1

T (Qnj)with φ = 0 on ∂Ωn,
we have

∫∫
Qnj

ρ
1−p
n

∂ωnj

∂s
φdy ds +

∫∫
Qnj

k
∂∇ωnj

∂s
∇φdy ds + j

∫∫
Qnj

∇ωnj∇φdy ds

= j
∫∫

Qnj

α̃
(
y, s
)(
ωnj + lnρ−1n

)p
φdy ds.

(4.56)
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Taking φ = ωnj , we have

j

∫∫
Qnj

∣∣∇ωnj

∣∣2dy ds = j
∫∫

Qnj

α̃
(
y, s
)(
ωnj + lnρ−1n

)p
ωnjdy ds ≤ C|Ωn|, (4.57)

which means that there exists σj ∈ [(τ − tj)/j, (τ +ω − tj)/j) such that

∫
Ω

∣∣∇ωnj

(
y, σj

)∣∣2dy ≤ C|Ωn|. (4.58)

For any s > σj , taking φ = χ(σj , s)(∂ωnj/∂s) in (4.56) yields

1
2

∫
Ωn

∣∣∇ωnj

(
y, s
)∣∣2dy ≤ 1

2

∫
Ωn

∣∣∇ωnj

(
y, σj

)∣∣2dy

+
1

p + 1

∫
Ωn

α̃nj
(
y, σj

)(
ωnj

(
y, σj

)
+ lnρ−1n

)p+1
dy

− 1
p + 1

∫
Ωn

α̃nj
(
y, s
)(
ωnj

(
y, s
)
+ lnρ−1n

)p+1
dy

− j

p + 1

∫s
σj

∫
Ωn

∂α̃nj

∂s

(
y, s
)(
ωnj + lnρ−1n

)p+1
dy ds

≤ C5|Ωn|,

(4.59)

where C5 is a constant independent of j, n, Ωn. By the periodicity of ωnj , we further have

∫
Ωn

∣∣∣∣∇ωnj

(
y,
τ − tj
j

)∣∣∣∣
2

dy ≤ C5|Ωn|. (4.60)

Repeating the process above, we finally obtain that for any s ∈ ((τ − tj)/j, σj),
∫
Ωn

∣∣∇ωnj

(
y, s
)∣∣2dy ≤ C6|Ωn|. (4.61)

Summing up, we finally obtain that

sup
s

∫
Ωn

∣∣∇ωnj

(
y, s
)∣∣2dy ≤ Ĉ|Ωn|. (4.62)

In addition, we note that, for any ϕ ∈ C1
0(Ωn), we have

j

∫∫
Qnj

∇ωnj∇ϕdy ds = j
∫∫

Qnj

α̃nj
(
y, s
)(
ωnj + lnρ−1n

)p
ϕdy ds. (4.63)
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By Lebesgue differential theorem, there exists sj ∈ ((τ − tj)/j, (τ +ω − tj)/j) such that

∫
Ωn

∇ωnj

(
y, sj

)∇ϕdy =
∫
Ωn

α̃nj
(
y, sj

)(
ωnj

(
y, sj

)
+ lnρ−1n

)p
ϕdy. (4.64)

Then, there exists a function ωn ∈ W1,2(Ωn) with ‖ωn‖L∞ = 1 such that as j → ∞ (passing to
a subsequence if necessary)

∇ωnj ⇀ ∇ωn in L2(Ωn); ωnj −→ ωn in Lr(Ωn) for 1 ≤ r ≤ 2N
N − 2

,

α̃nj
(
y, sj

) −→ α̃n
(
y
)

uniformly, α̃n
(
y
) ∈ Cβ(Ωn) for some 0 < β < 1,

(4.65)

we obtain that
∫
Ωn

∇ωn∇ϕdy =
∫
Ωn

α̃
(
y
)(
ωn + lnρ−1n

)p
dy. (4.66)

Take ϕ = ωnη
4(x), where

η =

⎧⎨
⎩
1, x ∈ BR(0),
0, x ∈ B2R(0),

(4.67)

with 0 ≤ η ≤ 1 is sufficiently smooth and |∇η| ≤ C/R. Then, for sufficiently large n, we have
B2R ⊂ Ωn and

∫
B2R

η4|∇ωn|2dy = −
∫
B2R

4η3ωn∇ωn∇ηdy +
∫
B2R

α̃n
(
y
)(
ωn + lnρ−1n

)p
ωη4dy

≤ 1
2

∫
B2R

η4|∇ωn|2dy +
C

R2

∫
B2R

η2ω2
ndy + L

∫
B2R

(
ωn + lnρ−1n

)p
ωη4dy

≤ 1
2

∫
B2R

η4|∇ωn|2dy + CRN−2 + CRN.

(4.68)

Then, for sufficiently large R > 0, we have

∫
BR

|∇ωn|2dy ≤ CRN, (4.69)

where C is independent of n and R. Then, there exists a function ω̂ ∈ W1,2
loc(R

N) such that,
passing to a subsequence if necessary, as n → ∞

α̃n
(
y
) −→ α̃

(
y
)

uniformly, ∇ωn ⇀ ∇ω̂ in L2(BR), ωn −→ ω̂ in Lr(BR)

for 1 ≤ r ≤ 2N
N − 2

.
(4.70)
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Then, we have

∫
BR

∇ω̂∇ϕdy =
∫
BR

α̃
(
y
)
ω̂pϕdy, for any ϕ ∈ C1

0(BR),

‖ω̂‖L∞(BR) = 1, ω̂ ≥ 0, for x ∈ Ωn.

(4.71)

Moreover, since ω̂ /≡ 0, we have ω̂(x) > 0 for all x ∈ BR by the strong maximum principle [43].
Taking balls larger and larger and repeating the argument for the subsequence ω̂k obtained at
the previous step, we get a Cantor diagonal subsequence, and for simplicity, we still denote
it by ω̂k which converges inW1,2

loc(R
N) to a function ω ∈W1,2

loc(R
N); namely,

∫
RN

∇ω∇ϕdy =
∫

RN

α̃
(
y
)
ωpϕdy, for any ϕ ∈ C1

0

(
R
N
)
,

‖ω‖L∞(RN) = 1, ω > 0, for x ∈ R
N,

(4.72)

which means that (4.72), is a contradiction. Indeed, for the case 1 < p < (N + 2)/(N − 2)with
N > 2 and the case p > 1 withN ≤ 2, thanks to a Liouville-type theorem, Theorem II in [44],
and [45, Lemma 3.6], we see that the problem (4.72), has no solution, which is a contradiction
and implies that ln + ‖un‖∞ is bounded uniformly. By means of Lemma 4.1, we conclude that
the problem (1.1) and (1.2) admits at least one nontrivial periodic solution.

Since we have prove, the boundedness of the solution, then, from Theorem 2.2, u is the
nontrivial nonnegative classical periodic solution.

In what follows, we consider the nonexistence of periodic solutions.

Theorem 4.4. Assume α(x) ∈ C1(Rn) and N > 2. If p ≥ (N + 2)/(N − 2) and Ω is star shaped,
then there is no nontrivial and nonnegative periodic solution.

Proof. If α(x, t) is independent of t, then we deduce that the periodic solution of the problem
(1.1) and (1.2) must be a steady state. In fact, multiplying (1.1) by ut on both sides and
integrating over Qω yield

1
2

∫∫
Qω

|ut|2dx +
k

2

∫∫
Qω

|∇ut|2dx = 0, (4.73)

which means that u is a steady state and satisfies the steady-state equation

−Δu = α(x)up. (4.74)

However, by [46, 47], if N > 2, p ≥ (N + 2)/(N − 2), and Ω is star shaped, then the above
equation subject to the homogeneous Dirichlet boundary condition has no nontrivial and
nonnegative solution. It is a contradiction, whence (1.1) and (1.2) has no nontrivial and
nonnegative periodic solution.

Remark 4.5. Here, it is worthmentioning that, for the case p ≥ (N+2)/(N−2), if the domainΩ
is an annulus domain, then there may exist nontrivial and nonnegative periodic solution. In
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fact, if α(x, t) ≡ α(|x|), then the periodic solution is a steady state; namely, it is a solution of the
corresponding elliptic equation, while, from the results in [48], there exists radial solutions
for this case in an annulus domain.

5. The Singular Case p = 1

In this section, we consider the case p = 1, in which the problem is written as

∂u

∂t
− k∂Δu

∂t
= Δu + α(x, t)u, x ∈ Ω × R, (5.1)

subject to

u(x, t)|∂Ω = 0. (5.2)

We are going to show the specialty of this case. It is quite different from other cases,
in which positive periodic solutions definitely exist or definitely not exist. It will be shown
that, for small α(x, t), any solution of the initial boundary value problem decays to zero as
time goes to infinity, while, for large α(x, t), all positive solutions blow up at finite time. These
imply that there is no positive periodic solution. However, when α(x, t) is independent of t,
there may exist positive periodic solution. Here we consider the problem (5.1), (5.2)with the
initial value condition

u(x, 0) = u0(x), (5.3)

where u0(x) ≥ 0 for x ∈ Ω and satisfies some compatibility conditions.
We have the following theorem.

Theorem 5.1. Assume that p = 1. Let λ1 be the first eigenvalue of −Δ with homogeneous boundary
condition on Ω.

(1) If L = supα(x, t) < λ1, then all the solutions of the problem (5.1)–(5.3) go to 0 as t → ∞,
which means that (1.1) and (1.2) admits no nontrivial nonnegative periodic solutions.

(2) If S = inf α(x, t) > λ1, then all the positive solutions of the problem (5.1)–(5.3) go to ∞ as
t → ∞; that is, (1.1) and (1.2) admits no positive periodic solutions.

(3) If α(x, t) is independent of t and α(x) ≥ λ1, then there exists a nontrivial and nonnegative
periodic solution for (1.1) and (1.2). Moreover, if α ≡ λ1, then there is a positive periodic
solution for (1.1) and (1.2).

Proof. Firstly, we consider the case L < λ1. We note that there exist λ̃ with L < λ̃ < λ1 and
domain Ω̃ with Ω ⊂ Ω̃ such that λ̃ is the first eigenvalue of −Δ with homogeneous boundary
condition on Ω̃. Correspondingly, ψ̃ is the first eigenfunction with ‖ψ̃‖∞ = 1. A simple
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calculation yields that Kψ̃ is an upper solution of the problem (5.1)–(5.3) for appropriately
large K > 0. Then, we have u ≤ Kψ̃. Let w(x, t) be the solution of the following problem:

∂u

∂t
− k∂Δu

∂t
= Δu + α(x, t)u, (x, t) ∈ Ω × R

+,

u(x, t) =
(
Kψ̃
)
e−t, x ∈ ∂Ω,

u(x, 0) = Kψ̃(x), x ∈ Ω.

(5.4)

We conclude thatw(x, t) is decreasing on t, and u(x, t) ≤ w(x, t). Thus, there exists a function
w such that

w(x) = lim
t→∞

w(x, t). (5.5)

It follows thatw(x) is a steady state of the first equation of (5.4)with homogeneous Dirichlet
boundary condition. Clearly, we have w(x) = 0 since α(x, t) < λ1, which means that u(x, t)
goes to 0 uniformly as t → ∞.

Next, let us consider the case S > λ1. Take Ω̂ ⊂ Ω such that the first eigenvalue λ̂
of −Δ with homogeneous boundary condition on Ω̂ satisfies λ1 < λ̂ < S. Let φ̂ be the first
eigenfunction of Ω̂. Set

w = g(t)φ̂, (5.6)

where g(t) satisfies

g ′(t) =
S − λ̂
1 + kλ̂

g(t), t > 0,

g(t) > 0, t > 0,

g(0) = 0.

(5.7)

After a direct calculation, we see that w is a lower solution of (5.1)–(5.3) for any nontrivial
and nonnegative initial value on Ω̂. Furthermore,

u =

⎧⎨
⎩
w, x ∈ Ω̂,

0, x ∈ Ω/Ω̂
(5.8)

is a lower solution of (5.1)–(5.3) for any nontrivial and nonnegative initial value on Ω, while
by comparison we see that u(x, t) ≥ u on Ω. Thus, we have that ‖u‖∞ goes to infinity as
t → ∞ since g(t) → ∞ as t → ∞.



Abstract and Applied Analysis 25

However if α(x, t) is independent of t and α(x) ≥ λ1, then there exists a domainΩ′ ⊂ Ω,
such that one can find a function φ > 0 on Ω′ which satisfies

−Δφ = α(x)φ, x ∈ Ω,

φ
∣∣
∂Ω′ = 0.

(5.9)

Then, φ is the periodic solution. Specially, when α(x) = λ1, then clearly the first eigenfunction
is a periodic solution of (1.1) and (1.2).

Remark 5.2. For p = 1 and spatially constant α(t) with α(t) = α(t + ω), as a fairly obvious
observation, which is with no-flux boundary conditions, a spatially constant solution of the
following ODE:

u′(t) = α(t)u(t),

u(t) = u(t +ω),
(5.10)

is a periodic solution to our problem. However, a simple calculation indicates that the above
problem has periodic solutions provided that

∫ω
0 α(s)ds = 0, which does not coincide with

our assumption α(x, t) > 0.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China,
partially supported by China Postdoctoral Science Foundation, partially supported by the
Specialized Research Fund for the Doctoral Program of High Education of China, and
partially supported by the Fundamental Research Funds for the Central Universities. The
authors would also like to express their sincere thanks to the referees for their value
suggestions for the revision of the paper which contributed greatly to this work.

References

[1] R. E. Showalter and T. W. Ting, “Pseudoparabolic partial differential equations,” SIAM Journal on
Mathematical Analysis, vol. 1, pp. 1–26, 1970.

[2] E. Milne, “The diffusion of imprisoned radiation through a gas,” Journal London Mathematical Society,
vol. 1, pp. 40–51, 1926.

[3] A. Mikelic, “A global existence result for the equations describing unsaturated flow in porous media
with dynamic capillary pressure,” Journal of Differential Equations, vol. 248, no. 6, pp. 1561–1577, 2010.

[4] P. J. Chen and M. E. Gurtin, “On a theory of heat conduction involving two temperatures,” Zeitschrift
für Angewandte Mathematik und Physik, vol. 19, no. 4, pp. 614–627, 1968.

[5] V. Padrón, “Effect of aggregation on population revovery modeled by a forward-backward
pseudoparabolic equation,” Transactions of the American Mathematical Society, vol. 356, no. 7, pp. 2739–
2756, 2004.

[6] A. Novick-Cohen and R. L. Pego, “Stable patterns in a viscous diffusion equation,” Transactions of the
American Mathematical Society, vol. 324, no. 1, pp. 331–351, 1991.

[7] T. B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations for long waves in nonlinear dispersive
systems,” Philosophical Transactions of the Royal Society A, vol. 272, no. 1220, pp. 47–78, 1972.

[8] R. P. Gilbert, “A Lewy-type reflection principle for pseudoparabolic equations,” Journal of Differential
Equations, vol. 37, no. 2, pp. 261–284, 1980.



26 Abstract and Applied Analysis

[9] E. I. Kaikina, P. I. Naumkin, and I. A. Shishmarev, “The Cauchy problem for a Sobolev type equation
with a power nonlinearity,” Izvestiya. Seriya Matematicheskaya, vol. 69, no. 1, pp. 59–111, 2005.

[10] D. Q. Dai, “The Riemann-Hilbert boundary value problem for semilinear pseudoparabolic
equations,” Nonlinear Analysis, vol. 23, no. 6, pp. 785–796, 1994.

[11] A. Bouziani, “Initial-boundary value problems for a class of pseudoparabolic equations with integral
boundary conditions,” Journal of Mathematical Analysis and Applications, vol. 291, no. 2, pp. 371–386,
2004.

[12] A. Beltramo and P. Hess, “On the principal eigenvalue of a periodic-parabolic operator,”
Communications in Partial Differential Equations, vol. 9, no. 9, pp. 919–941, 1984.

[13] M. J. Esteban, “On periodic solutions of superlinear parabolic problems,” Transactions of the American
Mathematical Society, vol. 293, no. 1, pp. 171–189, 1986.

[14] M. J. Esteban, “A remark on the existence of positive periodic solutions of superlinear parabolic
problems,” Proceedings of the American Mathematical Society, vol. 102, no. 1, pp. 131–136, 1988.

[15] Y. Giga and N. Mizoguchi, “On time periodic solutions of the Dirichlet problem for degenerate
parabolic equations of nondivergence type,” Journal of Mathematical Analysis and Applications, vol. 201,
no. 2, pp. 396–416, 1996.

[16] N. Hirano and N. Mizoguchi, “Positive unstable periodic solutions for superlinear parabolic
equations,” Proceedings of the American Mathematical Society, vol. 123, no. 5, pp. 1487–1495, 1995.

[17] P. Quittner, “Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear
parabolic problems,” Nonlinear Differential Equations and Applications, vol. 11, no. 2, pp. 237–258, 2004.

[18] T. I. Seidman, “Periodic solutions of a non-linear parabolic equation,” Journal of Differential Equations,
vol. 19, no. 2, pp. 242–257, 1975.

[19] L. A. Medeiros and G. P. Menzala, “Existence and uniqueness for periodic solutions of the Benjamin-
Bona-Mahony equation,” SIAM Journal on Mathematical Analysis, vol. 8, no. 5, pp. 792–799, 1977.

[20] A. Constantin and J. Escher, “Well-posedness, global existence, and blowup phenomena for a periodic
quasi-linear hyperbolic equation,” Communications on Pure and Applied Mathematics, vol. 51, no. 5, pp.
475–504, 1998.

[21] E. I. Kaikina, P. I. Naumkin, and I. A. Shishmarev, “Periodic boundary value problem for nonlinear
Sobolev-type equations,” Functional Analysis and Its Applications, vol. 44, no. 3, pp. 171–181, 2010.

[22] T. Matahashi and M. Tsutsumi, “On a periodic problem for pseudo-parabolic equations of Sobolev-
Galpern type,”Mathematica Japonica, vol. 22, no. 5, pp. 535–553, 1978.

[23] T.Matahashi andM. Tsutsumi, “Periodic solutions of semilinear pseudoparabolic equations inHilbert
space,” Funkcialaj Ekvacioj, vol. 22, no. 1, pp. 51–66, 1979.

[24] Y. Li, Y. Cao, J. Yin, and Y. Wang, “Time periodic solutions for a viscous diffusion equation with
nonlinear periodic sources,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 10, pp.
1–19, 2011.

[25] V. Padrón, “Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for
aggregating populations,” Communications in Partial Differential Equations, vol. 23, no. 3-4, pp. 457–
486, 1998.

[26] A. Quarteroni, “Fourier spectral methods for pseudoparabolic equations,” SIAM Journal on Numerical
Analysis, vol. 24, no. 2, pp. 323–335, 1987.
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