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Concerning the nonstationary Navier-Stokes flow with a nonzero constant velocity at infinity, the
temporal stability has been studied by Heywood (1970, 1972) and Masuda (1975) in L2 space and
by Shibata (1999) and Enomoto-Shibata (2005) in Lp spaces for p ≥ 3. However, their results did
not include enough information to find the spatial decay. So, Bae-Roh (2010) improved Enomoto-
Shibata’s results in some sense and estimated the spatial decay even though their results are
limited. In this paper, we will prove temporal decay with a weighted function by using Lr − Lp

decay estimates obtained by Roh (2011). Bae-Roh (2010) proved the temporal rate becomes slower
by (1 + σ)/2 if a weighted function is |x|σ for 0 < σ < 1/2. In this paper, we prove that the
temporal decay becomes slower by σ, where 0 < σ < 3/2 if a weighted function is |x|σ . For the
proof, we deduce an integral representation of the solution and then establish the temporal decay
estimates of weighted Lp-norm of solutions. This method was first initiated by He and Xin (2000)
and developed by Bae and Jin (2006, 2007, 2008).

1. Introduction

When a boat is sailing with a constant velocity u∞, we may think that the water is flowing
around the fixed boat with opposite velocity −u∞ like the water flow around an island. As we
have seen, behind the boat the motion of the water is significantly different from other areas,
which is called the wake. Themotion of nonstationary flow of an incompressible viscous fluid
past an isolated rigid body is formulated by the following initial boundary value problem of
the Navier-Stokes equations:

∂

∂t
u −Δu + (u · ∇)u +∇p = f, ∇ · u = 0 in Ω × (0,∞),

u|t=0 = u0, u|∂Ω = 0, lim
|x|→∞

u(x, t) = u∞,
(1.1)
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where Ω is an exterior domain in R3 with a smooth boundary ∂Ω and u∞ denotes a given
constant vector describing the velocity of the fluid at infinity. For u∞ = 0, the temporal decay
and weighted estimates for solutions of (1.1) have been studied in [1–13].

In this paper, we consider a nonzero constant u∞. We set u = u∞ + v in (1.1) and have

∂

∂t
v −Δv + (u∞ · ∇)v + (v · ∇)v +∇p1 = f,

∇ · v = 0,
in Ω × (0,∞),

v|t=0 = u0 − u∞, v|∂Ω = −u∞, lim
|x|→∞

v(x, t) = 0.

(1.2)

Consider the following linear equations of (1.2):

∂

∂t
u −Δu + (u∞ · ∇)u +∇p = 0, ∇ · u = 0 in Ω × (0,∞),

u|t=0 = u0, u|∂Ω = 0, lim
|x|→∞

u(x, t) = 0,
(1.3)

which is referred to as the Oseen equations; see [14].
In order to formulate the problem (1.3), Enomoto and Shibata [15] used the Helmholtz

decomposition:

Lp(Ω)n = Jp(Ω) ⊕Gp(Ω), (1.4)

where 1 < p < ∞,

Lp(Ω)n =
{
u = (u1, . . . , un) : uj ∈ Lp(Ω), j = 1, . . . , n

}
,

C∞
0,σ =

{
u = (u1, . . . , un) ∈ C∞

0 (Ω)n : ∇ · u = 0 in Ω
}
,

Jp(Ω) = the completion of C∞
0,σ(Ω) in Lp(Ω)n,

Gp(Ω) =
{
∇π ∈ Lp(Ω)n : π ∈ Lp,loc

(
Ω
)}

.

(1.5)

The Helmholtz decomposition of Lp(Ω)n was proved by Fujiwara-Morimoto [16], Miyakawa
[17], and Simader-Sohr [18]. Let P be a continuous projection from Lp(Ω)n onto Jp(Ω)n.

By applying P into (1.3) and setting Ou∞ = P(−Δ + u∞ · ∇), one has

ut +Ou∞u = 0, for t > 0, u(0) = u0, (1.6)

where the domain of Ou∞ is given by

Dp(Ou∞) =
{
u ∈ Jp(Ω) ∩W2

p(Ω)n : u|∂Ω = 0
}
. (1.7)
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Then, Enomoto and Shibata [15] proved that Ou∞ generates an analytic semigroup {T(t)}t≥0
which is called the Oseen semigroup (one can also refer to [17, 19]) and obtained the
following properties.

Proposition 1.1. Let σ0 > 0 and assume that |u∞| ≤ σ0. Let 1 ≤ r ≤ q ≤ ∞. Then,

‖T(t)a‖Lq(Ω) ≤ Cr,q,σ0t
−3/2(1/r−1/q)‖a‖Lr(Ω), t > 0, (1.8)

where (r, q)/= (1, 1) and (∞,∞),

‖∇T(t)a‖Lq(Ω) ≤ Cr,q,σ0t
−3/2(1/r−1/q)−1/2‖a‖Lr(Ω), t > 0, (1.9)

where 1 ≤ r ≤ q ≤ 3 and (r, q)/= (1, 1).

By using Proposition 1.1, Bae-Jin [20] considered the spatial stability of stationary
solution w of (1.3) and obtained the following: if |x|u0,u0 ∈ Lr(Ω) with ∇ · u0 = 0, then
for any t > 0,

‖|x|u(t)‖p ≤ Ct−3/2(1/r−1/p)‖|x|u0‖Lr(Ω) + C|u∞|t−3/2(1/r−1/p)+1‖u0‖Lr(Ω), (1.10)

where p ≥ 3 and 1 < r < 3.
And, for the nonstationary Navier-Stokes equations, we discuss the stability of sta-

tionary solutionw of the nonlinear Navier-Stokes equation (1.2), andw satisfies the following
equations:

−Δw + (u∞ · ∇)w + (w · ∇)w +∇p2 = f, ∇ ·w = 0,

w|∂Ω = −u∞, lim
|x|→∞

w(x) = 0.
(1.11)

For suitable f, Shibata [21] proved that for any given 0 < δ < 1/4 there exists ε such
that if 0 < |u∞| ≤ ε, then one has

‖w‖L3/(1+δ1)(Ω) + ‖w‖L3/(1−δ2)(Ω) + ‖∇w‖L3/(2+δ1)(Ω) + ‖∇w‖L3/(2−δ2)(Ω) ≤ C|u∞|1/2, (1.12)

for small δ1, δ2, where C is independent of u∞.
By setting u = v − w and p = p1 − p2 for v, p1,w, p2 in (1.2) and (1.11), we have the

following equations in Ω:

∂

∂t
u −Δu + (u∞ · ∇)u + (u · ∇)w + (w · ∇)u + (u · ∇)u +∇p = 0,

∇ · u(t, x) = 0, u(x, 0) = u0(x) for x ∈ Ω,

u(x, t) = 0 for x ∈ ∂Ω, lim
|x|→∞

u(x, t) = 0.

(1.13)
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Here, in fact, the initial data should be u0−u∞−w, but for our convenience we denote by u0 for
u0 − u∞ −w if there is no confusion. Heywood [22, 23], Masuda [24], Shibata [21], Enomoto-
Shibata [15], Bae-Roh [25], and Roh [26] have studied the temporal decay for solutions of
(1.13), and we have the followings in [26].

Proposition 1.2. There exists small ε(p, q, r) such that if 0 < |u∞| ≤ ε, and ‖u0‖L3(Ω) < ε, then a
unique solution u(x, t) of (1.13) has

‖u(t)‖Lp(Ω) ≤ Cεt
−3/2(1/r−1/p)‖u0‖r for 1 < r < p ≤ ∞, t > 0,

‖∇u(t)‖Lq(Ω) ≤ Cεt
−3/2(1/r−1/q)−(1/2)‖u0‖r for 1 < r < q ≤ 3, t > 0,

(1.14)

where u0 ∈ L3(Ω) ∩ Lr(Ω).

Now, we are in the position to introduce our main theorems which are the weighted
stability of stationary solution w.

Theorem 1.3. Let 1 < r < p < ∞ and (1/r − 1/p) > 2/3. Then there exists small ε(p, r) such that if
0 < |u∞| ≤ ε, ‖u0‖L3(Ω) < ε, |x|u0 ∈ L3r/(3−2r)(Ω), and ∇ · u0 = 0, then the solution u(x, t) of (1.13)
satisfies

‖|x|u(t)‖Lp(Ω) ≤ Cεt
−3/2(1/r−1/p)+1‖u0‖r , ∀t > 0, (1.15)

where u0 ∈ L3(Ω) ∩ Lr(Ω).

Remark 1.4. In Theorem 1.3, the assumption |x|u0 ∈ L3r/(3−2r)(Ω) is for simple calculations.
We also can obtain a similar result where |x|u0 ∈ Lr(Ω). For the proof we have to consider
delay solution u(t) = u(t + t0). Then we can follow the method in Bae and Roh [4].

Theorem 1.5. Let 1/r − 1/p > 2σ/3 for 1 < σ < 3/2 and 1 < r < p < ∞. Then there exists small
ε(p, r) such that if 0 < |u∞| ≤ ε, ‖u0‖L3(Ω) < ε, |x|σu0 ∈ L3r/(3−2r)(Ω), and ∇ · u0 = 0, then the
solution u(x, t) of (1.13) satisfies

‖|x|σu(t)‖Lp(Ω) ≤ Cεt
−3/2(1/r−1/p)+σ‖u0‖r , ∀t ≥ 1, (1.16)

where u0 ∈ L3(Ω) ∩ Lr(Ω).

Remark 1.6. For the exterior Navier-Stokes flows with u∞ = 0, temporal decay rate with
weight function |x|σ becomes slower by σ/2; refer to [1–4, 8, 13]. However, for u∞ /= 0, we
found out from Theorems 1.3 and 1.5 that temporal decay rate with weight function |x|σ
becomes slower by σ for 0 ≤ σ < 3/2. In fact, Bae and Roh [25] concluded that it becomes
slower by (1 + σ)/2 for 0 < σ < 1/2. Hence, our decay rate is little faster than the one in Bae
and Roh [25] for 0 < σ < 1/2.

One of the difficulties for the exterior Navier-Stokes equations is dealing with the
boundary ofΩ because a pressure representation in terms of velocity is not a simple problem.
So to remove the pressure term, we adapt an indirect method by taking a weight function φ
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vanishing near the boundary. This astonied method for exterior problem was initiated by He
and Xin [27] and then developed by Bae and Jin [1, 2, 4, 20].

2. Proof of Main Theorems

In this section, we will prove the weighted stability of stationary solutions of the Navier-
Stokes equations with nonzero far-field velocity. We first consider |x| for a weight function
and then |x|σ for σ < 3/2. Our method can be applied to the Oseen equations. As a result, we
note that we can improve the result of Bae-Jin [1] by the same method.

2.1. Proof of Theorem 1.3

We define φR(x) = |x|χ(|x|)(1 − χ(|x|/R)) for large R > 0, where χ is a nonnegative cutoff
function with χ ∈ C∞[0,∞), χ(s) = 0 for s ≤ 1, and χ(s) = 1 for s ≥ 2. When there is no
confusion, we use the same notation φ instead of φR for convenience.

As in [1], we set

v(x) ≡
∫

R3
N
(
x − y

)[
φ
(
y
)
(∇ × u)

(
y
)]
dy, (2.1)

where N is the fundamental function of −Δ, that is, N = N(x − y) = 1/(4π |x − y|). By the
definition of v, we have −Δv = φ∇ × u. Moreover,

∇ × v =
∫

Ω
N
(
x − y

)∇ × [
φ(∇ × u)

](
y
)
dy = φu + R0, (2.2)

where

R0 := ∇N ∗ [(u · ∇)φ
] − ∇ ×N ∗ [(∇φ

) × u
]
. (2.3)

We first estimate ‖∇ × v(t)‖p and then obtain the estimate of ‖φu(t)‖p = ‖|x|u(t)‖p.
Now, we consider the fundamental solutions for the nonstationary Oseen equations,

written as

V i
t (x) = V i(x, t) = Γt(x)ei +∇ ∂

∂xi
(N ∗ Γt)(x), (2.4)

where Γt(x) = Γ(x, t) = (4πt)−3/2e−|x−tu∞|2/4t (refer to [15, 28]). In fact, Γ is a translation in the
direction of x by tu∞ of the heat kernel K(x, t) = (4πt)−3/2e−|x|

2/4t, that is, Γ(x, t) = K(x −
tu∞, t). Set ωi

t(x) = ωi(x, t) = (N ∗ Γt)(x)ei, i = 1, 2, 3, where ei is the standard unit vector of
which the ith term is 1. Then, we have

∇ × ∇ ×ωi = −Δωi +∇divωi = V i. (2.5)
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Hence, we have the identity

∇y ×
[
φ
(
y
)∇y ×ωi(x − y, t − τ

)]
= φ

(
y
)
V i(x − y, t − τ

)
+ Ri

1

(
x, y, t − τ

)
, (2.6)

where

Ri
1

(
x, y, t − τ

)
= ∇φ

(
y
) × ∇y ×ωi(x − y, t − τ

)
. (2.7)

From straightforward calculations we have that for 1 ≤ s ≤ ∞,

∥
∥
∥∂βΓt−τ

∥
∥
∥
s
≤ c(t − τ)−3/2(1−1/s)−(|β|/2). (2.8)

One might note that we may sometimes use ‖V i‖s ≤ ‖Γt‖3s/(3+s) < ct−1+3/2s instead
of ‖V i‖s ≤ ‖Γt‖s < ct−3/2(1−1/s) because of technical reason. By the definition of V i, both
inequalities hold for any s ≥ 3/2. We multiply (1.13) by ∇y × [φ(y)∇y × ωi(x − y, t − τ)]
and integrate over Ω × (0, t − ε), and then we have

∫ t−ε

0

∫

Ω

(
∂u
∂τ

−Δyu +
(
u∞ · ∇y

)
u + (w · ∇)u + (u · ∇)w + (u · ∇)u

)

· ∇y ×
[
φ
(
y
)∇y ×ωi(x − y, t − τ

)]
dy dτ

= −
∫ t−ε

0

∫

Ω
∇p

(
y
) · ∇y ×

[
φ
(
y
)∇y ×ωi(x − y, t − τ

)]
dy dτ = 0.

(2.9)

We finally get the following integral representation for ∇ × v (refer to [2, 3] for the
detail):

(∇x × v)i = (∇x × v0) ∗ Γt

−
∫ t

0

∫

Ω
u · [∂τ + Δy +

(
u∞ · ∇y

)]
R1

(
x, y, t − τ

)
dy dτ

−
∫ t

0

∫

Ω
u ·

[
Ri

2

(
x, y, t − τ

)]
dy dτ

−
∫ t

0

∫

Ω
u · V i(x − y, t − τ

)(
u∞ · ∇y

)
φ
(
y
)
dy dτ

−
∫ t

0

∫

Ω
(wku + ukw) ·

[
∂yk

(
φ
(
y
)
V i(x − y, t − τ

))
+ ∂ykR

i
1

(
x, y, t − τ

)]
dy dτ

−
∫ t−ε

0

∫

Ω
uku ·

[
∂yk

(
φ
(
y
)
V i(x − y, t − τ

))
+ ∂ykR

i
1

(
x, y, t − τ

)]
dy dτ

= I + II + III + IV + V + V I,

(2.10)
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where

Ri
2

(
x, y, t − τ

)
= 2

(∇yφ
(
y
) · ∇y

)
V i(x − y, t − τ

)
+ Δyφ

(
y
)
V i(x − y, t − τ

)
. (2.11)

Applying Young’s convolution and the Calderon-Zygmund inequalities, we obtain

‖I‖p =
∥
∥(∇ × v0) ∗ Γt‖p ≤ ‖u0φ ∗ Γt‖p + ‖∇N ∗ [u0∇φ] ∗ Γt

∥
∥
p

≤ ‖u0φ‖3r/(3−2r)‖Γt‖3pr/(5pr+3r−3p) + ‖∇N ∗ u0∇φ‖3r/(3−2r)‖Γt‖3pr/(5pr+3r−3p)
≤ Ct−3/2(1/r−1/p)+1‖φu0‖3r/3−2r + Ct−3/2(1/r−1/p)+1‖u0‖r , ∀t > 0,

(2.12)

if φu0 ∈ L3r/(3−2r) and u0 ∈ Lr .
And II is bounded by as follows:

‖II‖p ≤ c

∫ t

0
‖u‖s1

∥∥∥∇2φ
∥∥∥
∞

∥∥∥∂k∇ ×ωi
t−τ

∥∥∥
s2
+ ‖u‖s3

∥∥∇Δφ
∥∥
3

∥∥∥∇ ×ωi
t−τ

∥∥∥
s4

+ |u∞|
∥∥∥|x|−1u

∥∥∥
s5

∥∥∥∇ ×ωi
t−τ

∥∥∥
s6
dτ

= II1 + II2 + II3,

(2.13)

where 1/s1 + 1/s2 = 1 + 1/p, 1/s3 + 1/s4 = 1 + 1/p − 1/3 and 1/s5 + 1/s6 = 1 + 1/p.
We have

II1 ≤ C‖u0‖r
∫ t

0
τ−3/2(1/r−1/s1)(t − τ)−3/2(1−1/s2)dτ ≤ C‖u0‖rt−3/2(1/r−1/p)+1, ∀t > 0, (2.14)

where 1/r − 1/s1 < 2/3 and s2 < 3. Also, we obtain

II2 ≤ C‖u0‖r
∫ t

0
τ−3/2(1/r−1/s3)(t − τ)−1+3/2s4dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0, (2.15)

where 1/r − 1/s3 < 2/3. Finally, we get

II3 ≤ C

∫ t

0
‖∇u‖s5

∥∥∥∇ ×ωi
t−τ

∥∥∥
s6
dτ ≤ C‖u0‖r

∫ t

0
τ−3/2(1/r−1/s5)−1/2(t − τ)−1+3/2s6dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0,

(2.16)

where 1/r − 1/s5 < 1/3. Hence, for any t > 0, we have

‖I‖p + ‖II‖p ≤ Ct−3/2(1/r−1/p)+1
∥∥φu0

∥∥
3r/(3−2r) + C‖u0‖r t−3/2(1/r−1/p)+1. (2.17)
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Also, we obtain

‖III‖p ≤
∫ t

0
‖(u∂jφ

) ∗ ∂jV i‖p + ‖(uΔφ
) ∗ V i‖pdτ

≤
∫ t

0
‖u‖s‖∂jV i‖ps/(ps+s−p) + ‖u‖s1‖∇2φ‖∞‖∂k∇ ×ωi

t−τ‖s2dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0,

(2.18)

where 1/s1 + 1/s2 = 1 + 1/p, 1/r − 1/s1 < 2/3 and s2 < 3. In the above calculation, we
used ‖∂V i(t)‖q ≤ t−(3/2)(1−1/q) instead of ‖∂V i(t)‖q ≤ t−3/2(1−1/q)−1/2 because of simplicity of
calculations.

And we have

‖IV ‖p ≤ c|u∞|
∫ t

0
‖u‖s7

∥∥∇φ
∥∥
∞
∥∥∥V i

∥∥∥
s8
dτ ≤ C‖u0‖r t−(3/2)(1/r−1/p)+1, ∀t > 0, (2.19)

where 1/s7 + 1/s8 = 1 + 1/p, 1/r − 1/s7 < 2/3 and s8 < 3.
Next, for V , we have

V = −
∫ t

0

∫

Ω
(wku + ukw) ·

[(
∂ykφ

(
y
))
V i(x − y, t − τ

)

+φ
(
y
)
∂ykV

i(x − y, t − τ
)
+ ∂ykR

i
1

(
x − y, t − τ

)]
dy dτ

≤ V1 + V2 + V3.

(2.20)

We get

‖V1‖p ≤ c

∫ t

0
‖u‖r1‖w‖3

∥∥∇φ
∥∥
∞
∥∥∥V i

∥∥∥
r2
dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0, (2.21)

where 1/r1 + 1/r2 = 2/3 + 1/p, 1/r − 1/r1 < 2/3 and r2 < 3. In the above calculation, we used
‖V i(t)‖q ≤ t−3/2(1−1/q)+1/2 instead of ‖V i(t)‖q ≤ t−3/2(1−1/q) because of simplicity of calculations.

Since ‖|x|w‖∞ < C (see [21]), we have

‖V2‖p ≤ c

∫ t

0
‖u‖r3

∥∥φw
∥∥
∞
∥∥∥∇V i

∥∥∥
r4
dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0, (2.22)

where 1/r3 + 1/r4 = 1 + 1/p, 1/r − 1/r3 < 2/3 and r4 < 3. In the above calculation, we
used ‖∂V i(t)‖q ≤ t−3/2(1−1/q)instead of ‖∂V i(t)‖q ≤ t−3/2(1−1/q)−1/2 because of simplicity of
calculations.
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Next, for any t > 0, we have

‖V3‖p ≤
∫ t

0
‖u‖r5‖w‖3

∥
∥
∥∇2φ

∥
∥
∥
∞

∥
∥
∥∇ ×ωi

∥
∥
∥
r6
+ ‖u‖r7‖w‖∞

∥
∥∇φ

∥
∥
∞
∥
∥
∥∂k∇ ×ωi

∥
∥
∥
r8
dτ

≤ ‖u0‖r t−3/2(1/r−1/p)+1,
(2.23)

where 1/r5 + 1/r6 = 1/r7 + 1/r8 = 2/3 + 1/p, 1/r − 1/r5 < 2/3, 1/r − 1/r7 < 2/3 and r8 < 3.
Hence, we have

‖V ‖p ≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0. (2.24)

Consider V Ias follows:

V I = −
∫ t

0

∫

Ω
uku ·

[(
∂ykφ

(
y
))
V i(x − y, t − τ

)

+φ
(
y
)
∂ykV

i(x − y, t − τ
)
+ ∂ykR

i
1

(
x − y, t − τ

)]
dy dτ

≤ V I1 + V I2 + V I3.

(2.25)

We have, for any t > 0,

‖V I1‖p ≤
∫ t

0
‖u‖s1‖u‖s2

∥∥∇φ
∥∥
∞
∥∥∥V i

∥∥∥
s3
dτ ≤ C2‖u0‖r t−3/2(1/r−1/p)+1, (2.26)

where 1/s1 + 1/s2 + 1/s3 = 1 + 1/p, 1/r − 1/s1 + 1/s2 < 1/3, and ‖u(t)‖s2 ≤ ct−1/2+3/2s2 . In
the above calculation, we used ‖V i(t)‖q ≤ t−3/2(1−1/q)+1/2 instead of ‖V i(t)‖q ≤ t−3/2(1−1/q)

because of technical reason.
Similar to V I1, we get

‖V I3‖p ≤
∫ t

0
‖u‖r1‖u‖r2

∥∥∥∇2φ
∥∥∥
∞

∥∥∥∇ ×ωi
∥∥∥
r3
+ ‖u‖s1‖u‖s2

∥∥∇φ
∥∥
∞
∥∥∥∂k∇ ×ωi

∥∥∥
s3
dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0,

(2.27)

where 1/r1 + 1/r2 + 1/r3 = 1 + 1/p = 1/s1 + 1/s2 + 1/s3, 1/r − 1/r1 + 1/r2 < 1/3, ‖u(t)‖r2 ≤
ct−1/2+3/2r2 , and 1/r − (1/s1 + 1/s2) < 1/3, ‖u(t)‖s2 ≤ ct−1/2+3/2s2 .

Note that

∥∥φu(t)
∥∥
p ≤ ‖∇ × v(t)‖p +

∥∥∇N ∗ u(t)∇φ
∥∥
p ≤ ‖∇ × v(t)‖p + ‖u(t)‖3p/(3+2p)

≤ ‖∇ × v(t)‖p + C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0.
(2.28)
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Since for t > 0, ‖u(t)‖9 ≤
√
εt−1/3, from Shibata [21], we have

‖V I2‖p ≤
∫ t

0

∥
∥φu(τ)

∥
∥
p‖u(τ)‖9

∥∥
∥∇V i(t − τ)

∥∥
∥
9/8

dτ

≤ ε

∫ t

0
‖∇ × v(τ)‖pτ−1/3(t − τ)−2/3dτ + C‖u0‖r t−3/2(1/r−1/p)+1.

(2.29)

Hence, we have

‖V I‖p ≤ ε

∫ t

0
‖∇ × v(τ)‖pτ−1/3(t − τ)−2/3dτ + C‖u0‖r t−3/2(1/r−1/p)+1. (2.30)

Thus, by (2.17)–(2.19), (2.24), (2.28), and (2.30), for all t > 0, we obtain

‖∇ × v(t)‖p ≤ ε

∫ t

0
‖∇ × v(τ)‖pτ−1/3(t − τ)−2/3dτ + C‖u0‖r t−3/2(1/r−1/p)+1. (2.31)

Now, we use the following lemma (refer to [25]).

Lemma 2.1. Let a function S(t) satisfy the inequality, for some α < 2/3,

S(t) ≤ ct−α + ε

∫ t

0
S(τ)τ−1/3(t − τ)−2/3dτ ∀t > 0. (2.32)

One also assumes that

lim
t→ 0+

t−ε
∫ t

0
τ−1/3S(τ)dτ = 0. (2.33)

Then, there is ε0 so that if ε ≤ ε0, then one has

S(t) ≤ ct−α (2.34)

for some c independent of t.

Since

‖∇ × v(t)‖p ≤ ∥∥φu(t)
∥∥
p +

∥∥∇N ∗ u(t)∇φ
∥∥
p ≤ R‖u(t)‖p + ‖u(t)‖3p/(3+p)

≤ CR‖u0‖3t−1/2+3/2p + C2‖u0‖3t−3/2(1/3−1/p)+1/2, ∀t > 0,
(2.35)
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condition (2.33) satisfies

lim
t→ 0+

t−ε
∫ t

0
τ−1/3‖∇ × v(τ)‖pdτ = lim

t→ 0+
t−ε

∫ t

0
τ−1/3

(
CR‖u0‖3τ−1/2+3/2p + C2‖u0‖3τ3/2p

)
dτ

= lim
t→ 0+

(
CR‖u0‖3τ−ε+1/3+3/2p + C2‖u0‖3τ−ε+1+3/2p

)
= 0,

(2.36)

for ε < (1/3 + 3/2p).
So, by Lemma 2.1, we have

‖∇ × v(t)‖p ≤ C‖u0‖r t−3/2(1/r−1/p)+1. (2.37)

Hence, by (2.28), for any t > 0, we have

∥∥φu(t)
∥∥
p ≤ C‖u0‖r t−3/2(1/r−1/p)+1, (2.38)

and by taking R → ∞, we complete the proof of Theorem 1.3.

2.2. Proof of Theorem 1.5

By using the results in previous section, for any 0 < α < 1, we have small β > 0 such that

∥∥|x|αu(t)∥∥s ≤ ‖|x|αuα‖3/(α−3β)
∥∥∥u1−α

∥∥∥
1/(1−α−β)

≤
[
Ct−3/2(1/r−(α−3β)/3α)+1

]α[
Ct−3/2(1/r−(1−α−β)/(1−α))

]1−α ≤ Ct−3/2(1/r−1/s)+α,

(2.39)

where 1 − 2α/3 − 2β = 1/s.
Now, in this section, we consider φ(x) = |x|σχ(|x|), where 1 < σ < 3/2.
Similar to previous section, for ‖I‖p, II1, and II2, we obtain the same decay rate with

previous section. And for any t > 0, we have

II3 ≤ C

∫ t

0

∥∥∥|x|σ−2
∥∥∥
3/(2−σ)2

‖u‖s1
∥∥∥∇ ×ωi

t−τ
∥∥∥
s2
dτ

≤ C‖u0‖r
∫ t

0
τ−3/2(1/r−1/s1)(t − τ)−1+3/2s2dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+3/2−(2−σ)

2/2,

(2.40)
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where 1/s1 + 1/s2 = 1 + 1/p and 1/r − 1/s1 < 2/3. Also, for ‖III‖p, we obtain

‖III‖p ≤
∫ t

0

∥
∥
∥
(
u∂jφ

) ∗ ∂jV i
∥
∥
∥
p
+
∥
∥
∥
(
uΔφ

) ∗ V i
∥
∥
∥
p
dτ

≤
∫ t

0

∥
∥
∥|x|σ−1u

∥
∥
∥
s

∥
∥
∥∂jV i

∥
∥
∥
ps/(ps+s−p)

+ ‖u‖s1
∥
∥
∥∇2φ

∥
∥
∥
∞

∥
∥
∥∂k∇ ×ωi

t−τ
∥
∥
∥
s2
dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+σ−1/2 + C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0,

(2.41)

where 1/s1 + 1/s2 = 1 + 1/p, 1/r − 1/s1 < 2/3 and s2 < 3.
Next, we have

‖IV ‖p ≤ c|u∞|
∫ t

0

∥∥∥|x|σ−1u
∥∥∥
s1

∥∥∥V i
∥∥∥
s2
dτ ≤ C|u∞|‖u0‖r t−3/2(1/r−1/p)+σ, ∀t > 0, (2.42)

where 1/s1 + 1/s2 = 1 + 1/p, s2 < 3, and 1/r − 1/s1 < 2σ/3. Also, since ‖|x|w‖∞ < C, we get

‖V1‖p ≤ c

∫ t

0
‖u‖r1

∥∥∥|x|σ−1w
∥∥∥
∞

∥∥∥V i
∥∥∥
r2
dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+1, ∀t > 0, (2.43)

where 1/r1 + 1/r2 = 1 + 1/p, 1/r − 1/r1 < 2/3, and r2 < 3.
And we obtain

‖V2‖p ≤ c

∫ t

0

∥∥∥|x|σ−1u
∥∥∥
r3
‖|x|w‖∞

∥∥∥∇V i
∥∥∥
r4
dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+σ−1/2, ∀t > 0, (2.44)

where 1/r3 + 1/r4 = 1 + 1/p, 1/r − 1/r3 < 2σ/3, and r4 < 3/2.
Next, for any t > 0, we have

‖V3‖p ≤
∫ t

0
‖u‖r5‖w‖3

∥∥∥∇2φ
∥∥∥
∞

∥∥∥∇ ×ωi
∥∥∥
r6
+
∥∥∥|x|σ−1u

∥∥∥
r7
‖w‖3

∥∥∥∂k∇ ×ωi
∥∥∥
r8
dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+1 + C‖u0‖r t−3/2(1/r−1/p)+σ−1/2,
(2.45)

where 1/r5 + 1/r6 = 1/r7 + 1/r8 = 2/3 + 1/p, 1/r − 1/r5 < 2/3, 1/r − 1/r7 < 2σ/3, and r8 < 3.
Hence, we have

‖V ‖p ≤ C‖u0‖r t−3/2(1/r−1/p)+1 + C‖u0‖r t−3/2(1/r−1/p)+σ−1/2, ∀t > 0. (2.46)
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Consider V I as follows:

V I = −
∫ t

0

∫

Ω
uku ·

[(
∂ykφ

(
y
))
V i(x − y, t − τ

)

+φ
(
y
)
∂ykV

i(x − y, t − τ
)
+ ∂ykR

i
1

(
x − y, t − τ

)]
dy dτ

≤ V I1 + V I2 + V I3.

(2.47)

We have, for any t > 0,

‖V I1‖p ≤
∫ t

0

∥
∥
∥|x|σ−1u

∥
∥
∥
s1
‖u‖s2

∥
∥
∥V i

∥
∥
∥
s3
dτ ≤ C‖u0‖r t−3/2(1/r−1/p)+σ−1/2, (2.48)

where 1/s1 + 1/s2 + 1/s3 = 1 + 1/p, s3 < 3, 1/r − 1/s1 < 2σ/3, and ‖u(t)‖s2 ≤ ct−1/2+3/2s2 .
Similar to V I1, we get

‖V I3‖p ≤
∫ t

0
‖u‖r1‖u‖r2

∥∥∥∇2φ
∥∥∥
∞

∥∥∥∇ ×ωi
∥∥∥
r3
+
∥∥∥|x|σ−1u

∥∥∥
s1
‖u‖s2

∥∥∥∂k∇ ×ωi
∥∥∥
s3
dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+1/2 + C‖u0‖r t−3/2(1/r−1/p)+σ, ∀t > 0,

(2.49)

where 1/r1+1/r2+1/r3 = 1+1/p = 1/s1+1/s2+1/s3, 1/r−1/r1 < 2/3, 1/r−(1/r1+1/r2) < 1/3,
1/r − 1/s1 < 2σ/3, 1/r − 1/s2 < 2/3, 1/r − (1/s1 + 1/s2) < (2σ − 1)/3, ‖u(t)‖s2 ≤ ct−1/2+3/2s2 ,
and ‖u(t)‖r2 ≤ ct−1/2+3/2r2 . In the above calculation, we used ‖V i(t)‖q ≤ t−3/2(1−1/q) +1/2 instead
of ‖V i(t)‖q ≤ t−3/2(1−1/q) because of technical reason. Now, we have

‖V I2‖p ≤
∫ t

0
‖|x|u(τ)‖s1

∥∥∥|x|σ−1u(τ)
∥∥∥
s2

∥∥∥∇V i(t − τ)
∥∥∥
s3
dτ

≤ C‖u0‖r t−3/2(1/r−1/p)+σ+1/2−3/2r1 ,
(2.50)

where 1/s1 + 1/s2 + 1/s3 = 1 + 1/p, s2 < 3/2, ‖|x|σ−1 u(τ)‖s2 < Ct−3/2(1/r1−1/s2)+σ−1, and r1 <
3 (≈ 3).

So, we obtain

∥∥φu(t)
∥∥
p ≤ ‖∇ × v(t)‖p +

∥∥∇N ∗ u(t)∇φ
∥∥
p ≤ ‖∇ × v(t)‖p +

∥∥∥|x|σ−1u(t)
∥∥∥
3p/(3+p)

≤ ‖∇ × v(t)‖p + C‖u0‖r t−3/2(1/r−1/p)+σ−1/2, ∀t > 0

≤ C‖u0‖r t−3/2(1/r−1/p)+σ, ∀t ≥ 1,

(2.51)

which completes the proof.
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