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We improve the viscosity approximation process for approximation of a fixed point of a quasi-
nonexpansive mapping in a Hilbert space proposed by Maingé (2010). An example beyond the
scope of the previously known result is given.

1. Introduction

LetH be a real Hilbert space with inner product 〈·, ·〉 and the induced norm ‖·‖. In this paper,
we denote the strong and weak convergence by → and ⇀, respectively. For a subset C of H,
a mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C; and it
is quasinonexpansive if its fixed-point set Fix(T) := {x ∈ C : x = Tx} is nonempty and ‖Tx−p‖ ≤
‖x − p‖ for all x ∈ C and p ∈ Fix(T). It is clear that every nonexpansive mapping with a
nonempty fixed-point set is quasinonexpansive, but the converse is not true. The process
for approximation of a fixed point of a nonexpansive or quasinonexpansive mapping is one
of interesting problems in mathematics and it has been investigated by many researchers.
One of the effective processes for this problem is given by Moudafi [1]. Let C be a closed
convex subset ofH, and T : C → C is a nonexpansive mapping with a nonempty fixed-point
set Fix(T). Moudafi proposed the following scheme which is known as Moudafi’s viscosity
approximation process:

x1 = x ∈ C arbitrarily chosen,

xn+1 =
εn

1 + εn
f(xn) +

1
1 + εn

Txn,
(1.1)
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where f : C → C is a contraction; that is, there exists an α ∈ [0, 1) such that ‖f(x) − f(y)‖ ≤
α‖x − y‖ for all x, y ∈ C and {εn} is a sequence in (0, 1) satisfying

(M1) limn→∞εn = 0,

(M2)
∑∞

n=1 εn = ∞,

(M3) limn→∞(1/εn − 1/εn+1) = 0.

It was also proved that {xn} converges to an element z ∈ Fix(T) satisfying the following
inequality:

〈
f(z) − z, q − z

〉 ≤ 0 (1.2)

for all q ∈ Fix(T).
In the literature, Moudafi’s scheme has been widely studied and extended (see [2–

5] and references therein). For example, Xu [6] improved this result to a Banach space. The
interesting improvement of this result given by Maingé [7] is our starting point. His result is
given below.

Theorem 1.1. Let C be a closed convex subset of a Hilbert space H, and T : C → C is a
quasinonexpansive mapping such that I − T is demiclosed at zero, that is, z ∈ Fix(T) whenever {zn}
is a sequence in C such that zn ⇀ z and zn − Tzn → 0. Suppose that f : C → C is a contraction.
Let {xn} be a sequence in C defined by

x1 = x ∈ C arbitrarily chosen,

xn+1 = αnf(xn) + (1 − αn)((1 −ω)I +ωT)xn,
(1.3)

where ω ∈ (0, 1), I is an identity mapping, and {αn} is a sequence in (0, 1) satisfying

(C1) limn→∞αn = 0,

(C2)
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges to an element z ∈ Fix(T) and the following inequality holds

〈
f(z) − z, q − z

〉 ≤ 0 (1.4)

for all q ∈ Fix(T).

It should be noted that Maingé’s result is more widely applicable than Moudafi’s.
However, after a careful reading, we find that there is a small mistake in Maingé’s proof.
The following fact (see [7, Remark 2.1(i3)]) is used: if T : C → C is quasinonexpansive and
Tω := (1 −ω)I +ωT where ω ∈ (0, 1], then

〈
x − Tωx, x − q

〉 ≥ ω‖x − Tx‖2 (1.5)

for all x ∈ C and q ∈ Fix(T). Note that the inequality above is equivalent to

〈x − Tx, x − q〉 ≥ ‖x − Tx‖2. (1.6)
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But this fails; for example, let us consider the nonexpansive mapping T : R → R defined by
Tx = −x for all x ∈ R. It is clear that Fix(T) = {0} and 〈x − Tx, x − q〉 = 2x2 /≥ 4x2 = ‖x − Tx‖2.

Recall the following identities in a Hilbert space H: for x, y ∈ H, ω ∈ [0, 1]

(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2;
(ii) ‖(1 −ω)x +ωy‖2 = (1 −ω)‖x‖2 +ω‖y‖2 − (1 −ω)ω‖x − y‖2.

The correction of Maingé’s result is as follows.

Proposition 1.2. Let C be a subset of a Hilbert space and T : C → C be a mapping with a
nonempty fixed-point set Fix(T). Suppose that Tω := (1 − ω)I + ωT where ω ∈ (0, 1]. Then T is
quasinonexpansive if and only if

〈
x − Tωx, x − q

〉 ≥ ω

2
‖x − Tx‖2 (1.7)

for all x ∈ C and q ∈ Fix(T).

Proof. Notice that x − Tωx = ω(x − Tx) and

∥
∥Tωx − q

∥
∥2 =

∥
∥(Tωx − x) + (x − q)

∥
∥2

= ‖Tωx − x‖2 + 2
〈
Tωx − x, x − q

〉
+
∥
∥x − q

∥
∥2

= ω2‖x − Tx‖2 + 2
〈
Tωx − x, x − q

〉
+
∥
∥x − q

∥
∥2
.

(1.8)

On the other hand,

∥
∥Tωx − q

∥
∥2 =

∥
∥(1 −ω)(x − q) +ω(Tx − q)

∥
∥2

= (1 −ω)
∥
∥x − q

∥
∥2 +ω

∥
∥Tx − q

∥
∥2 − (1 −ω)ω‖x − Tx‖2.

(1.9)

Hence

2
〈
x − Tωx, x − q

〉
= ω

(∥
∥x − q

∥
∥2 − ∥

∥Tx − q
∥
∥2

)
+ω‖x − Tx‖2. (1.10)

Remark 1.3. Unfortunately, this effects the main result (see [7, Theorem 3.1]) in Maingé’s
paper. More precisely, inequality (32) of its proof (page 78, line 22) should read

1
2
‖xn+1 − z‖2 − 1

2
‖xn − z‖2 +

(
1
2
−ω

)

ω(1 − αn)‖xn − Txn‖2

≤ αn

(
αn

∥
∥f(xn) − xn

∥
∥2 − 〈

xn − f(xn), xn − z
〉)

(1.11)
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rather than

1
2
‖xn+1 − z‖2 − 1

2
‖xn − z‖2 + (1 −ω)ω(1 − αn)‖xn − Txn‖2

≤ αn

(
αn

∥
∥f(xn) − xn

∥
∥2 − 〈

xn − f(xn), xn − z
〉)

.

(1.12)

Therefore, Theorem 1.1 above is valid for only ω ∈ (0, 1/2) under the same technique.

The purpose of this paper is to simultaneously present a correction of the proof of
Theorem 1.1 which is valid for all ω ∈ (0, 1), and extend his scheme to a wider class of
mappings including average mappings, that is, mappings of the form (1 − ω)I + ωT . Our
result is more general than Maingé’s theorem. An example of a quasinonexpansive mapping
which is not applied by Maingé’s theorem but applied by our result is given.

2. Result

First, let us recall some lemmas which are needed for proving the main result.

Lemma 2.1 (see [8, Lemma 2.3]). Let {sn} be a sequence of nonnegative real numbers, {αn} a
sequence of (0, 1)with

∑∞
n=1 αn = ∞, {βn} a sequence of nonnegative real numbers with

∑∞
n=1 βn < ∞,

and {γn} a sequence of real numbers with lim supn→∞γn ≤ 0. Suppose that

sn+1 ≤ (1 − αn)sn + αnγn + βn (2.1)

for all n ∈ N. Then limn→∞sn = 0.

The following nice result was proved by Maingé (see [7, Lemma 2.1]).

Lemma 2.2. Let {sn} be a sequence of nonnegative real numbers. If there exists a subsequence {snj}
of {sn} such that snj < snj+1 for all j ∈ N, then there exists a subsequence {smk} of {sn} such that

smk ≤ smk+1, sk ≤ smk+1 (2.2)

for all k ∈ N.

For a closed convex subset C of a Hilbert space H, the metric projection PC : H → C is
defined for each x ∈ H as the unique element PCx ∈ C such that

‖x − PCx‖ = inf{‖x − z‖ : z ∈ C}. (2.3)

It is well known that (see, e.g., [9]) for x ∈ H and y ∈ C

y = PCx ⇐⇒ 〈
x − y, y − z

〉 ≥ 0, ∀z ∈ C. (2.4)

For x, y ∈ H, the following inequality is known as the subdifferential inequality:

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, x + y

〉
. (2.5)
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A mapping T : C → C is said to be strongly quasinonexpansive [10] if it is
quasinonexpansive and zn − Tzn → 0 whenever {zn} is a bounded sequence in C such that
limn→∞(‖zn −p‖−‖Tzn−p‖) = 0 for some p ∈ Fix(T). It is known that every metric projection
is strongly quasinonexpansive.

We are now ready to present our main result.

Theorem 2.3. Let C be a closed convex subset of a Hilbert space H and T : C → C is a strongly
quasinonexpansive mapping such that I − T is demiclosed at zero. Suppose that f : C → C is a
contraction. Let {xn} be a sequence in C defined by

x1 = x ∈ C arbitrarily chosen,

xn+1 = αnf(xn) + (1 − αn)Txn,
(2.6)

where {αn} is a sequence in (0, 1) satisfying

(C1) limn→∞αn = 0,

(C2)
∑∞

n=1 αn = ∞.

Then the sequence {xn} converges to an element z ∈ Fix(T) and the following inequality holds

〈
f(z) − z, q − z

〉 ≤ 0 (2.7)

for all q ∈ Fix(T).

Before we give the proof, we note that Fix(T) is closed and convex (see [11] for more
general setting). Hence the mapping PFix(T) ◦ f : C → C is a contraction. Then it follows from
the well-known Banach’s contraction principle that there exists a unique element z ∈ C such
that z = PFix(T) ◦ f(z). In particular, z ∈ Fix(T) and 〈f(z) − z, q − z〉 ≤ 0 for all q ∈ Fix(T).

Let us assume that ‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ C where α is a real number
in [0, 1).

Lemma 2.4. The sequence {xn} is bounded.

Proof. We consider the following inequality:

‖xn+1 − z‖ ≤ αn

∥
∥f(xn) − z

∥
∥ + (1 − αn)‖Txn − z‖

≤ αn

∥
∥f(xn) − f(z)

∥
∥ + αn

∥
∥f(z) − z

∥
∥ + (1 − αn)‖Txn − z‖

≤ (αnα + 1 − αn)‖xn − z‖ + αn

∥
∥f(z) − z

∥
∥

= (1 − αn(1 − α))‖xn − z‖ + αn(1 − α)

∥
∥f(z) − z

∥
∥

1 − α

≤ max

{

‖xn − z‖,
∥
∥f(z) − z

∥
∥

1 − α

}

.

(2.8)

By induction, we conclude that the sequence {‖xn − z‖} is bounded and hence so is the
sequence {xn}.
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Lemma 2.5. The following inequality holds for all n ∈ N:

‖xn+1 − z‖2 ≤ (1 − αn)2‖xn − z‖2 + 2αnα‖xn − z‖‖xn+1 − z‖ + 2αn

〈
f(z) − z, xn+1 − z

〉
. (2.9)

Proof. It follows from the subdifferential inequality that

‖xn+1 − z‖2 = ∥
∥αn(f(xn) − z) + (1 − αn)(Txn − z)

∥
∥2

≤ (1 − αn)2‖Txn − z‖2 + 2αn

〈
f(xn) − z, xn+1 − z

〉

≤ (1 − αn)2‖xn − z‖2 + 2αn

〈
f(xn) − f(z), xn+1 − z

〉

+ 2αn

〈
f(z) − z, xn+1 − z

〉

≤ (1 − αn)2‖xn − z‖2 + 2αnα‖xn − z‖‖xn+1 − z‖
+ 2αn

〈
f(z) − z, xn+1 − z

〉
.

(2.10)

Lemma 2.6. If there exists a subsequence {xnk} of {xn} such that lim infk→∞(‖xnk+1 − z‖ − ‖xnk −
z‖) ≥ 0, then lim supk→∞〈f(z) − z, xnk+1 − z〉 ≤ 0.

Proof. First, we note that αnk → 0 and let us consider the following inequality:

0 ≤ lim inf
k→∞

(‖xnk+1 − z‖ − ‖xnk − z‖)

≤ lim inf
k→∞

(
αnk

∥
∥f(xnk) − z

∥
∥ + (1 − αnk)‖Txnk − z‖ − ‖xnk − z‖)

= lim inf
k→∞

(‖Txnk − z‖ − ‖xnk − z‖)

≤ lim sup
k→∞

(‖Txnk − z‖ − ‖xnk − z‖ )

≤ 0.

(2.11)

This implies that limk→∞(‖xnk − z‖ − ‖Txnk − z‖) = 0. Since T is a strongly quasinonexpansive
mapping, xnk − Txnk → 0. In particular, xnk − xnk+1 → 0. Because {xnk} is bounded, so there
exists a subsequence {xnkl

} of {xnk} such that xnkl
⇀ q and

lim
l→∞

〈
f(z) − z, xnkl

− z
〉
= lim sup

k→∞

〈
f(z) − z, xnk − z

〉
. (2.12)

It follows from the demiclosedness of I − T at zero that q ∈ Fix(T). Then

lim
l→∞

〈
f(z) − z, xnkl

− z
〉
=
〈
f(z) − z, q − z

〉 ≤ 0. (2.13)

Hence lim supk→∞〈f(z) − z, xnk+1 − z〉 = lim supk→∞〈f(z) − z, xnk − z〉 ≤ 0, as desired.
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Proof of Theorem 2.3. Let us consider the following two cases.

Case 1. There exists an N ∈ N such that ‖xn+1 − z‖ ≤ ‖xn − z‖ for all n ≥ N. It follows then
that limn→∞‖xn − z‖ exists and hence lim infn→∞(‖xn+1 − z‖ − ‖xn − z‖) = 0. This implies that
lim supn→∞〈f(z) − z, xn+1 − z〉 ≤ 0. By Lemma 2.5, for all n ≥ N,

‖xn+1 − z‖2 ≤ (1 − αn)2‖xn − z‖2 + 2αnα‖xn − z‖‖xn+1 − z‖
+ 2αn

〈
f(z) − z, xn+1 − z

〉

≤ (1 − 2αn + 2αnα)‖xn − z‖2 + α2
n‖xn − z‖2

+ 2αn

〈
f(z) − z, xn+1 − z

〉

= (1 − 2αn(1 − α))‖xn − z‖2

+ 2αn(1 − α)

(
αn‖xn − z‖2
2(1 − α)

+

〈
f(z) − z, xn+1 − z

〉

1 − α

)

.

(2.14)

Notice that
∑∞

n=N 2αn(1 − α) = ∞ and

lim sup
n→∞

(
αn‖xn − z‖2
2(1 − α)

+

〈
f(z) − z, xn+1 − z

〉

1 − α

)

≤ 0. (2.15)

By Lemma 2.1, we have limn→∞‖xn − z‖2 = 0.

Case 2. There exists a subsequence {‖xnj −z‖} of {‖xn−z‖} such that ‖xnj −z‖ < ‖xnj+1−z‖ for
all j ∈ N. In this case, it follows from Lemma 2.2 that there exists a subsequence {‖xmk − z‖}
of {‖xn − z‖} such that

‖xmk − z‖ ≤ ‖xmk+1 − z‖, ‖xk − z‖ ≤ ‖xmk+1 − z‖ (2.16)

for all k ∈ N. It follows from lim infk→∞(‖xmk+1 − z‖ − ‖xmk − z‖) ≥ 0 that lim supk→∞〈f(z) −
z, xmk+1 − z〉 ≤ 0. Moreover, by Lemma 2.5, we have

‖xmk+1 − z‖2 ≤ (1 − αmk)
2‖xmk − z‖2 + 2αmkα‖xmk − z‖‖xmk+1 − z‖

+ 2αmk

〈
f(z) − z, xmk+1 − z

〉

≤ (1 − αmk)
2‖xmk+1 − z‖2 + 2αmkα‖xmk+1 − z‖2

+ 2αmk

〈
f(z) − z, xmk+1 − z

〉
.

(2.17)

In particular, it follows that

(2 − αmk − 2α)‖xmk+1 − z‖2 ≤ 2
〈
f(z) − z, xmk+1 − z

〉
. (2.18)



8 Abstract and Applied Analysis

This implies that

(2 − 2α)lim sup
k→∞

‖xmk+1 − z‖2 ≤ lim sup
k→∞

2
〈
f(z) − z, xmk+1 − z

〉 ≤ 0. (2.19)

Hence

lim sup
k→∞

‖xk − z‖2 ≤ lim sup
k→∞

‖xmk+1 − z‖2 = 0. (2.20)

Then limk→∞‖xk − z‖2 = 0. This completes the proof.

Remark 2.7. If C is a convex subset of a Hilbert space and T : C → C is a quasinonexpansive
mapping, then the mapping Tω := (1 − ω)I + ωT is strongly quasinonexpansive whenever
ω ∈ (0, 1) (see [10]). This means that Maingé’s result is included in ours as a special case.

Remark 2.8. There is a strongly quasinonexpansive mapping S such that S is not of the form
(1 − ω)I + ωT where α ∈ (0, 1/2) and T is a quasinonexpansive mapping. This means
that there is an example which is beyond the scope of Maingé’s result (see Remark 1.3,
Theorem 1.1 with his old proof is valid for only α ∈ (0, 1/2)).

Example 2.9. Let A = {(x, x) : x ∈ R}. It is clear that A is a closed and convex subset of R
2.

Notice that S := PA is a strongly quasinonexpansive mapping and (0, 0) ∈ Fix(S). Suppose
that S = (1 − ω)I + ωT where ω ∈ (0, 1/2) and T is a quasinonexpansive mapping. Then, by
Proposition 1.2, we have

〈(2, 0) − S(2, 0), (2, 0) − (0, 0)〉 ≥ ω

2
‖(2, 0) − T(2, 0)‖2 = 1

2ω
‖(2, 0) − S(2, 0)‖2. (2.21)

It is easy to see that S(2, 0) = (1, 1). In particular,

2 = 〈(2, 0) − (1, 1), (2, 0)〉 ≥ 1
2ω

‖(2, 0) − (1, 1)‖2 = 1
ω
. (2.22)

That is ω ≥ 1/2, a contradiction.

3. Conclusion

We propose a viscosity approximation process for approximation of a fixed point of a
quasinonexpansive mapping. This not only corrects Maingé’s result but also essentially
improves his result to a more general relaxation.
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[7] P. E. Maingé, “The viscosity approximation process for quasi-nonexpansive mappings in Hilbert
spaces,” Computers & Mathematics with Applications, vol. 59, no. 1, pp. 74–79, 2010.

[8] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, “Approximation of common fixed points of a
countable family of nonexpansive mappings in a Banach space,” Nonlinear Analysis, vol. 67, no. 8, pp.
2350–2360, 2007.

[9] W. Takahashi,Nonlinear Functional Analysis, vol. 2 of Fixed Point Theory and Its Applications, Yokohama
Publishers, Yokohama, Japan, 2000.

[10] S. Reich, “A limit theorem for projections,” Linear and Multilinear Algebra, vol. 13, no. 3, pp. 281–290,
1983.

[11] S. Itoh and W. Takahashi, “The common fixed point theory of singlevalued mappings and
multivalued mappings,” Pacific Journal of Mathematics, vol. 79, no. 2, pp. 493–508, 1978.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


