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Some oscillation criteria are established for the second-order nonlinear neutral differential
equations of mixed type [(x(t) + p1x(t − τ1) + p2x(t + τ2))

γ ]′′ = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2),
t ≥ t0, where γ ≥ 1 is a quotient of odd positive integers. Our results generalize the results given in
the literature.

1. Introduction

This paper is concerned with the oscillatory behavior of the second-order nonlinear neutral
differential equation of mixed type

[(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)γ]′′ = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2), t ≥ t0. (1.1)

Throughout this paper, we will assume the following conditions hold.

(A1) pi, τi, and σi, i = 1, 2, are positive constants;

(A2) qi ∈ C([t0,∞), [0,∞)), i = 1, 2.

By a solution of (1.1), we mean a function x ∈ C([Tx,∞),�) for some Tx ≥ t0 which
has the property that (x(t) + p1x(t − τ1) + p2x(t + τ2))γ ∈ C2([Tx,∞),�) and satisfies (1.1) on
[Tx,∞). As is customary, a solution of (1.1) is called oscillatory if it has arbitrarily large zeros
on [t0,∞), otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.
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Neutral functional differential equations have numerous applications in electric
networks. For instance, they are frequently used for the study of distributed networks
containing lossless transmission lines which rise in high speed computers where the lossless
transmission lines are used to interconnect switching circuits; see [1].

Recently, many results have been obtained on oscillation of nonneutral continuous
and discrete equations and neutral functional differential equations, we refer the reader to
the papers [2–35], and the references cited therein.

Philos [2] established some Philos-type oscillation criteria for the second-order linear
differential equation

(
r(t)x′(t)

)′ + q(t)x(t) = 0, t ≥ t0. (1.2)

In [3–5], the authors gave some sufficient conditions for oscillation of all solutions of
second-order half-linear differential equation

(
r(t)

∣∣x′(t)
∣∣γ−1x′(t)

)′
+ q(t)|x(τ(t))|γ−1x(τ(t)) = 0, t ≥ t0 (1.3)

by employing a Riccati substitution technique.
Zhang et al. [15] examined the oscillation of even-order neutral differential equation

[
x(t) + p(t)x(τ(t))

](n) + q(t)f(x(σ(t))) = 0, t ≥ t0. (1.4)

Some oscillation criteria for the following second-order quasilinear neutral differential
equation

(
r(t)

∣∣z′(t)
∣∣γ−1z′(t)

)′
+ q(t)|x(σ(t))|γ−1x(σ(t)) = 0, for z(t) = x(t) + p(t)x(τ(t)), t ≥ t0

(1.5)

were obtained by [12–17].
However, there are few results regarding the oscillatory properties of neutral

differential equations with mixed arguments, see the papers [20–24]. In [25], the authors
established some oscillation criteria for the following mixed neutral equation:

(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)′′ = q1(t)x(t − σ1) + q2(t)x(t + σ2), t ≥ t0; (1.6)

here q1 and q2 are nonnegative real-valued functions. Grace [26] obtained some oscillation
theorems for the odd order neutral differential equation

(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)(n) = q1x(t − σ1) + q2x(t + σ2), t ≥ t0, (1.7)
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where n ≥ 1 is odd. Grace [27] and Yan [28] obtained several sufficient conditions for the
oscillation of solutions of higher-order neutral functional differential equation of the form

(x(t) + cx(t − h) + Cx(t +H))(n) + qx
(
t − g

)
+Qx(t +G) = 0, t ≥ t0, (1.8)

where q and Q are nonnegative real constants.
Clearly, (1.6) is a special case of (1.1). The purpose of this paper is to study the

oscillation behavior of (1.1).
In the sequel, when we write a functional inequality without specifying its domain of

validity we assume that it holds for all sufficiently large t.

2. Main Results

In the following, we give our results.

Theorem 2.1. Assume that σi > τi, i = 1, 2. If

lim sup
t→∞

∫ t+σ2−τ2

t

(t + σ2 − τ2 − s)Q2(s)ds >
(
2γ−1

)2
(

1 + p
γ

1 +
p
γ

2

2γ−1

)

, (2.1)

lim sup
t→∞

∫ t

t−σ1+τ1
(s − t + σ1 − τ1)Q1(s)ds >

(
2γ−1

)2
(

1 + p
γ

1 +
p
γ
2

2γ−1

)

, (2.2)

where

Qi(t) = min
{
qi(t − τ1), qi(t), qi(t + τ2)

}
, (2.3)

for i = 1, 2, then every solution of (1.1) oscillates.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(t−τ1) > 0, x(t+τ2) > 0, x(t−σ1) > 0, and x(t+σ2) > 0
for all t ≥ t1. Setting

z(t) =
(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)γ
,

y(t) = z(t) + p
γ

1z(t − τ1) +
p
γ

2

2γ−1
z(t + τ2).

(2.4)

Thus z(t) > 0, y(t) > 0, and

z′′(t) = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2) ≥ 0. (2.5)
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Then, z′(t) is of constant sign, eventually. On the other hand,

y′′(t) = q1(t)xγ (t − σ1) + q2(t)xγ (t + σ2)

+ p
γ

1q1(t − τ1)xγ (t − τ1 − σ1) + p
γ

1q2(t − τ1)xγ (t − τ1 + σ2)

+
p
γ
2

2γ−1
q1(t + τ2)xγ (t + τ2 − σ1)

+
p
γ

2

2γ−1
q2(t + τ2)xγ (t + τ2 + σ2).

(2.6)

Note that g(u) = uγ , γ ≥ 1, u ∈ (0,∞) is a convex function. Hence, by the definition of convex
function, we obtain

aγ + bγ ≥ 1
2γ−1

(a + b)γ . (2.7)

Using inequality (2.7), we get

xγ (t − σ1) + p
γ

1x
γ (t − τ1 − σ1) ≥ 1

2γ−1
(
x(t − σ1) + p1x(t − τ1 − σ1)

)γ
,

1
2γ−1

(
x(t − σ1) + p1x(t − τ1 − σ1)

)γ +
p
γ
2

2γ−1
xγ (t + τ2 − σ1)

≥ 1
(
2γ−1

)2
(
x(t − σ1) + p1x(t − τ1 − σ1) + p2x(t + τ2 − σ1)

)γ =
z(t − σ1)
(
2γ−1

)2 .

(2.8)

Similarly, we obtain

xγ (t + σ2) + p
γ

1x
γ (t − τ1 + σ2) +

p
γ

2

2γ−1
xγ (t + τ2 + σ2) ≥ z(t + σ2)

(
2γ−1

)2 . (2.9)

Thus, from (2.6), we have

y′′(t) ≥ 1
(
2γ−1

)2 (Q1(t)z(t − σ1) +Q2(t)z(t + σ2)). (2.10)

In the following, we consider two cases.

Case 1. Assume that z′(t) > 0. Then, y′(t) > 0. In view of (2.10), we see that

y′′(t + τ2) ≥ 1
(
2γ−1

)2Q2(t + τ2)z(t + τ2 + σ2). (2.11)
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Applying the monotonicity of z, we find

y(t + σ2) = z(t + σ2) + p
γ

1z(t − τ1 + σ2) +
p
γ

2

2γ−1
z(t + τ2 + σ2)

≤
(

1 + p
γ

1 +
p
γ

2

2γ−1

)

z(t + τ2 + σ2).

(2.12)

Combining the last two inequalities, we obtain the inequality

y′′(t + τ2) ≥ Q2(t + τ2)
(
2γ−1

)2(1 + p
γ

1 + p
γ

2/2
γ−1

)y(t + σ2). (2.13)

Therefore, y is a positive increasing solution of the differential inequality

y′′(t) ≥ Q2(t)
(
2γ−1

)2(1 + p
γ

1 + p
γ

2/2
γ−1

)y(t − τ2 + σ2). (2.14)

However, by [11], condition (2.1) contradicts the existence of a positive increasing solution
of inequality (2.14).

Case 2. Assume that z′(t) < 0. Then, y′(t) < 0. In view of (2.10), we see that

y′′(t − τ1) ≥ 1
(
2γ−1

)2Q1(t − τ1)z(t − τ1 − σ1). (2.15)

Applying the monotonicity of z, we find

y(t − σ1) = z(t − σ1) + p
γ

1z(t − τ1 − σ1) + p
γ

2
1

2γ−1
z(t + τ2 − σ1)

≤
(

1 + p
γ

1 +
p
γ

2

2γ−1

)

z(t − τ1 − σ1).
(2.16)

Combining the last two inequalities, we obtain the inequality

y′′(t − τ1) ≥ Q1(t − τ1)
(
2γ−1

)2(1 + p
γ

1 + p
γ

2/2
γ−1

)y(t − σ1). (2.17)

Therefore, y is a positive decreasing solution of the differential inequality

y′′(t) ≥ Q1(t)
(
2γ−1

)2(1 + p
γ

1 + p
γ
2/2

γ−1
)y(t + τ1 − σ1). (2.18)
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However, by [11], condition (2.2) contradicts the existence of a positive decreasing solution
of inequality (2.18).

Remark 2.2. When γ = 1, Theorem 2.1 involves results of [25, Theorem 1].

Theorem 2.3. Let βi = (σi − τi)/2 > 0, i = 1, 2. Suppose that, for i = 1, 2, there exist functions

ai ∈ C1[t0,∞), ai(t) > 0, (−1)ia′
i(t) ≤ 0, (2.19)

such that

Qi(t) ≥
(
2γ−1

)2
(

1 + p
γ

1 +
p
γ

2

2γ−1

)

ai(t)ai

(
t + (−1)iβi

)
, (2.20)

where Qi are as in (2.3) for i = 1, 2. If the first-order differential inequality

v′(t) + (−1)i+1ai

(
t + (−1)iβi

)
v
(
t + (−1)iβi

)
≥ 0 (2.21)

has no eventually negative solution for i = 1 and no eventually positive solution for i = 2, then (1.1)
is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we assume that
there exists t1 ≥ t0 such that x(t) > 0, x(t−τ1) > 0, x(t+τ2) > 0, x(t−σ1) > 0, and x(t+σ2) > 0
for all t ≥ t1. Define z and y as in Theorem 2.1. Proceeding as in the proof of Theorem 2.1, we
get (2.10).

In the following, we consider two cases.

Case 1. Assume that z′(t) > 0. Clearly, y′(t) > 0. Then, just as in Case 1 of Theorem 2.1, we find
that y is a positive increasing solution of inequality (2.14). Let b2(t) = y′(t) + a2(t)y(t + β2).
Then b2(t) > 0. Using (2.19) and (2.20), we obtain

b′2(t) −
a′
2(t)

a2(t)
b2(t) − a2(t)b2

(
t + β2

)

= y′′(t) − a′
2(t)

a2(t)
y′(t) − a2(t)a2

(
t + β2

)
y
(
t + 2β2

)

≥ y′′(t) − a2(t)a2
(
t + β2

)
y
(
t + 2β2

)

≥ y′′(t) − Q2(t)
(
2γ−1

)2(1 + p
γ

1 +
(
p
γ

2/2
γ−1

))y(t − τ2 + σ2) ≥ 0.

(2.22)

Define b2(t) = a2(t)v(t). Then, v is a positive solution of (2.21) for i = 2, which is a
contradiction.
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Case 2. Assume that z′(t) < 0. Clearly, y′(t) < 0. Then, just as in Case 2 of Theorem 2.1, we find
that y is a positive decreasing solution of inequality (2.18). Let b1(t) = y′(t) − a1(t)y(t − β1).
Then b1(t) < 0. Using (2.19) and (2.20), we obtain

b′1(t) −
a′
1(t)

a1(t)
b1(t) + a1(t)b1

(
t − β1

)

= y′′(t) − a′
1(t)

a1(t)
y′(t) − a1(t)a1

(
t − β1

)
y
(
t − 2β1

)

≥ y′′(t) − a1(t)a1
(
t − β1

)
y
(
t − 2β1

)

≥ y′′(t) − Q1(t)
(
2γ−1

)2(1 + p
γ

1 + p
γ

2/2
γ−1

)y(t + τ1 − σ1) ≥ 0.

(2.23)

Define b1(t) = a1(t)v(t). Then, v is a negative solution of (2.21) for i = 1. This contradiction
completes the proof of the theorem.

Remark 2.4. When γ = 1, Theorem 2.3 involves results of [25, Theorem 2].

From Theorem 2.3 and the results given in [12], we have the following oscillation
criterion for (1.1).

Corollary 2.5. Let βi = (σi − τi)/2 > 0, i = 1, 2. Assume that (2.19) and (2.20) hold for i = 1, 2. If

lim inf
t→∞

∫ t

t−β1
a1
(
s − β1

)
ds >

1
e
, (2.24)

lim inf
t→∞

∫ t+β2

t

a2
(
s + β2

)
ds >

1
e
, (2.25)

then (1.1) is oscillatory.

Proof. It is known (see [12]) that condition (2.24) is sufficient for inequality (2.21) (for i = 1)
to have no eventually negative solution. On the other hand, condition (2.25) is sufficient for
inequality (2.21) (for i = 2) to have no eventually positive solution.

For an application of our results, we give the following example.

Example 2.6. Consider the second-order differential equation

[(
x(t) + p1x(t − τ1) + p2x(t + τ2)

)γ]′′ = q1x
γ (t − σ1) + q2x

γ (t + σ2), t ≥ t0, (2.26)

where qi > 0 are constants and σi > τi for i = 1, 2.
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It is easy to see that Qi(t) = qi, i = 1, 2. Assume that ε > 0. Let ai(t) = (2 + ε)/(e(σi −
τi)), i = 1, 2. Clearly, (2.19) holds. If

qi >

[
2

(e(σi − τi))

]2(
2γ−1

)2
(

1 + p
γ

1 +
p
γ

2

2γ−1

)

(2.27)

for i = 1, 2, then (2.20) holds. Moreover, we see that

lim inf
t→∞

∫ t

t−β1
a1
(
s − β1

)
ds =

2 + ε

2e
>
1
e
,

lim inf
t→∞

∫ t+β2

t

a2
(
s + β2

)
ds =

2 + ε

2e
>
1
e
.

(2.28)

Hence by applying Corollary 2.5, we find that (2.26) is oscillatory.
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