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We established the existence of a positive solution of nonlinear fractional differential equations
�(D)[x(t)−x(0)] = f(t, xt), t ∈ (0, b]with finite delay x(t) = ω(t), t ∈ [−τ, 0], where limt→ 0f(t, xt) =
+∞, that is, f is singular at t = 0 and xt ∈ C([−τ, 0],�≥0). The operator of �(D) involves the
Riemann-Liouville fractional derivatives. In this problem, the initial conditions with fractional
order and some relations among them were considered. The analysis rely on the alternative of
the Leray-Schauder fixed point theorem, the Banach fixed point theorem, and the Arzela-Ascoli
theorem in a cone.

1. Introduction

Fractional differential equations have gained considerable importance due to their varied
applications in viscoelasticity, electroanalytical chemistry, and many other physical problems
[1–7]. So far there have been several fundamental works done on the fractional derivative and
fractional differential equations [1–4, 6]. These works are in the introduction of the theory
of the fractional derivative and fractional differential equations and provide a systematic
understanding of the fractional calculus such as the existence and the uniqueness of some
analytic methods for solving fractional differential equations, namely, the Green’s function
method, the Mellin transform method, and the power series.
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The existence of positive solutions for fractional differential equations with delay has
been carried out by various researchers [8–17]. In [8] the authors have investigated the
following type of fractional differential equations:

L(D)[x(t) − x(0)] = f(t, xt), t ∈ (0, T],

x(t) = φ(t) ≥ 0, t ∈ [−w, 0],
(1.1)

where

L(D) = Dαn −
n−1∑

j=1

pj(t)Dαn−j , 0 < α1 < · · · < αn < 1, pj(t) =
Nj∑

k=0

ajkt
k,

p
(2m)
j (t) ≥ 0, p

(2m+1)
j (t) ≤ 0, m = 0, 1, . . . ,

[
Nj

2

]
, j = 1, 2, . . . , n − 1,

(1.2)

and Dαj is the standard Riemann-Liouville fractional derivative, T > 0, w > 0, φ ∈ C =
C([−w, 0],�+ ) and f : I × C → �

+ is a given continuous function, I = [0, T].
As a pursuit of this in this paper, we discuss the existence of positive solutions for

initial nonlinear fractional differential equations with finite delay,

L(D)[x(t) − x(0)] = f(t, xt), t ∈ (0, b],

x(t) = ω(t), t ∈ [−τ, 0],
(1.3)

with initial conditions x(0) = x0, [Dα−n+1x(t)]t=0 = xn−1, and [Dα−n+jx(t)]t=0 = xn−j , where
L(D) = Dα − ∑n−1

j=1 ajDα−j , aj > 0, for all j, j = 1, 2, . . . , n − 1, n − 1 < α ≤ n, n ∈ �, f :
(0, b] × C → [0,+∞) is a given continuous function so that limt→ 0f(t, xt) = +∞ (i.e., f is
singular at t = 0), where C is the space of continuous functions from [−τ, 0] to �≥0 and xt ∈ C
defined by xt(s) = x(t+s) for each s ∈ [−τ, 0). In the initial conditions of (1.1), we also assume
that

(i) xn−1 ≥ 0, (ii) xn−j ≥
j−1∑

k=1

akxk+n−j , ∀j = 2, 3, . . . , n − 1. (1.4)

The paper is organized as follows.
In Section 2, we provide some definitions about the fractional derivatives and the

fractional integrals as well as we list their basic properties. Required topics of functional
analysis such as Banach fixed point theorem and Leray-Schauder Theorem were also
introduced. Section 3 deals with existence of a positive solution theorem and it gives an
explainable example. The unique positive solution theorem with an explainable example has
been discussed in Section 4.

2. Preliminaries

Preliminaries from fractional calculus [1, 4, 6] and functional analysis [17] are outlined below.
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Let E be a real Banach space with a cone K. K introduces a partial order ≤ in E as
x ≤ y if y − x ∈ K.

Definition 2.1. For x, y ∈ E, the order interval 〈x, y〉 is defined as

〈
x, y
〉
=
{
z ∈ E : x ≤ z ≤ y

}
. (2.1)

Theorem 2.2 (Leray-Schauder Theorem [17]). Let E be a Banach space with C ⊆ E closed and
convex. Assume U is relatively open subset of C with 0 ∈ U and F : U → C is a continuous,
compact map. Then, either

(i) F has fixed point in U or

(ii) there exists u ∈ ∂U and γ ∈ (0, 1) with u = γFu.

Theorem 2.3 (Banach fixed point theorem [17]). Let K be a closed subspace of a Banach space
Ω. Let F be a contraction mapping with Lipschitz constant l(< 1) from K to itself. Then, F has
a unique fixed point x∗ in K. Moreover, if x0 is an arbitrary point in K and {xn} is defined by
xn+1 = Fxn, (n = 0, 1, 2, . . .), then limn→∞xn = x∗ ∈ K and d(xn, x

∗) ≤ (kn/(1 − k))d(x1, x0).

The complete Gamma function Γ(α) plays an important role in the theory of fractional
integral and derivatives. A comprehensive definition of Γ(α) is provided by the Euler limit as

Γ(α) = lim
n→∞

n!nα

α(α + 1) · · · (α + n)
. (2.2)

If α > 0, then Γ(α) has the following familiar integral representation:

Γ(α) =
∫+∞

0
tα−1e−tdt. (2.3)

In this paper, the Beta function B(α, β) is used. We notice that B(α, β) is closely related to the
Gamma function. If α, β > 0, then it has the integral representation

B
(
α, β
)
=
∫1

0
tα−1(1 − t)β−1dt =

Γ(α)Γ
(
β
)

Γ
(
α + β

) . (2.4)

The definitions of Riemann-Liouville fractional derivative/integral and their proper-
ties are given bellow.

Definition 2.4. Let x : [a, b] → � and x ∈ L1[a, b]; then the expression

Iαa+x(t) =
1

Γ(α)

∫ t

a

(t − s)α−1x(t)dt, x > a, (2.5)

is called a left-sided factional integrals of order α.
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Definition 2.5. Let n be a positive integer number and α ∈ (n − 1, n]. Then the left-sided
fractional derivative of a function x : [a, b] → � is defined as

Dα
a+x(t) = Dn(In−αx(t)

)
, t ∈ [a, b]. (2.6)

We denote Dα
a+x(t) as D

α
ax(t) and Iαa+x(t) as I

α
ax(t). Further, D

αx(t) and Iαx(t) are referred as
Dαx(t) and Iαx(t), respectively.

If the fractional derivativeDβ
ax(t) is integrable; then

Iαa

(
D

β
ax(t)

)
= I

α−β
a x(t) −

{
I
n−β
a x(t)

}

t=a

(t − a)α−n

Γ(α − n + 1)

−
n−1∑

j=1

{
D

β−j
a x(t)

}

t=a

(t − a)α−j

Γ
(
α − j + 1

) ,
(2.7)

where n − 1 ≤ β < n, β ≤ α, and n ∈ � [9]. Further, if x ∈ C[a, b], then {In−βa x(t)}t=a = 0 and
(1.4) reduces to

Iαa

(
D

β
ax(t)

)
= I

α−β
a x(t) −

n−1∑

j=1

{
D

β−j
a x(t)

}

t=a

(t − a)α−j

Γ
(
α − j + 1

) . (2.8)

3. Existence Theorem

In this section, we show that the initial value problem (1.1) under the conditions among the
initial value (i.e., (1.3)) has a positive solution.

Lemma 3.1. Let g : (0, b] → � be a continuous function and limt→ 0+g(t) = +∞. If there exits σ ∈
(0, 1) such that σ < α and by letting tσg(t) be a continuous function on [0, b], thenH(t) = Iαtσg(t)
is continuous [0, b], where n − 1 < α < n, n ∈ �.

Proof. Let us consider L = max tσ g(t), t ∈ [0, b]. For all t ∈ [0, b) and for given all ε > 0,

|H(t + ε) −H(t)| = 1
Γ(α)

∣∣∣∣∣

∫ t+ε

0
(t + ε − s)α−1ds −

∫ t

0
(t − s)α−1ds

∣∣∣∣∣

=
1

Γ(α)

∣∣∣∣∣

∫ t+ε

0
(t + ε − s)α−1s−σsσg(s)ds −

∫ t

0
(t − s)α−1s−σsσg(s)ds

∣∣∣∣∣

≤ L

Γ(α)

∣∣∣∣∣

∫ t+ε

0
(t + ε − s)α−1s−σds −

∫ t

0
(t − s)α−1s−σds

∣∣∣∣∣

=
L

Γ(α)
B(1 − σ, α)

∣∣(t + ε)α−σ − tα−σ
∣∣.

(3.1)

Hence we conclude that limε→ 0|H(t + ε) − H(t)| = 0. We notice that a similar result is
conclusion for |H(b − ε) −H(b)|.
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In the following, we want to show that (1.1) is equivalent to an integral equation.

Theorem 3.2. Suppose that f : (0, b] × C → [0,+∞) is a given continuous function so that
limt→ 0f(t, xt) = +∞ (i.e., f is singular at t = 0), where C is the space of continuous functions
from [−τ, 0] to �≥0 and xt ∈ C defined by xt(s) = x(t + s) for each s ∈ [−τ, 0]. If there exists
σ ∈ (0, 1) such that 0 < σ < α ∈ (n − 1, n) and tσf(t, xt) is a continuous function on [0, b], then the
fractional differential equation

⎛

⎝Dα −
n−1∑

j=1

ajD
α−j

⎞

⎠[x(t) − x(0)] = f(t, xt), t ∈ (0, b], (3.2)

is equivalent to the integral equation

x(t) = x(0) + λ(t) +L(I)[x(t) − x(0)] + Iαf(t, xt), t ∈ [0, b], (3.3)

where

λ(t) =
n−1∑

j=1

λjt
α−j , λj =

1
Γ
(
α − j + 1

)
(
xj −

n−j−1∑

k=1

akxk+j

)
, j = 1, . . . , n − 2,

λn−1 =
1

Γ(α − n + 1)
, L(I) =

n−1∑

j=1

ajI
jx(t).

(3.4)

Proof. From (3.2), we have

Iα{Dα[x(t) − x(0)]} −
n−1∑

j=1

ajI
α
{
Dα−j[x(t) − x(0)]

}
= Iαf(t, xt), t ∈ (0, b]. (3.5)

By using (2.7), we conclude that

Iα{Dα[x(t) − x(0)]} = [x(t) − x(0)] −
n−1∑

j=1

xjt
α−j

Γ
(
α − j + 1

) , (3.6)

and for k = 1, 2, . . . , n − 1,

Iα
{
Dα−k[x(t) − x(0)]

}
= Ik[x(t) − x(0)] −

n−k−1∑

j=1

xj+ktα−j

Γ
(
α − j + 1

) . (3.7)

Note that, by Lemma 3.1, Iαf(t, xt) = Iα(tσt−σf(t, xt) exists and DαIαf(t, xt) = f(t, xt), as
t−σf(t, xt) is continuous and Iαf(t, xt) ∈ C[0, b]. In view of (3.5), (3.6), and (3.7), (3.2) is
equivalent to the following integral equation:

x(t) = x(0) + λ(t) +L(I)[x(t) − x(0)] + Iαf(t, xt), t ∈ (0, b], (3.8)
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where

λ(t) =
n−1∑

j=1

λjt
α−j , λj =

1
Γ
(
α − j + 1

)
(
xj −

n−j−1∑

k=1

akxk+j

)
, j = 1, . . . , n − 2,

λn−1 =
1

Γ(α − n + 1)
, L(I) =

n−1∑

j=1

ajI
jx(t).

(3.9)

The proof is completed. Therefore, by Theorem 3.2, the other expression of (1.1) is given as
follows:

x(t) =

⎧
⎨

⎩
x(0) + λ(t) +L(I)[x(t) − x(0)] + Iαf(t, xt), t ∈ (0, b],

x(t) = ω(t), t ∈ [−τ, 0],
(3.10)

where λ(t) and L(I) are mentioned in above.
Let y : [−τ, b] → [0,+∞) be function defined by

y(t) =

⎧
⎨

⎩
ω(0), t ∈ [0, b],

ω(t) ≥ 0, t ∈ [−τ, 0],
(3.11)

for each z ∈ C([0, b],�) with z(0) = 0; we denote by z the function define by

z(t) =

⎧
⎨

⎩
z(t), t ∈ [0, b],

0, t ∈ [−τ, 0].
(3.12)

We can decompose x(·) as x(t) = z(t) + y(t), t ∈ [−τ, b], which implies that xt = zt + yt, t ∈
[0, b]. Hence by Theorem 3.2, (1.1) is equivalent to the following integral equation:

z(t) = λ(t) +L(I)z(t) + Iαf
(
t, zt + yt

)
, t ∈ [0, b]. (3.13)

SetΩ = {z ∈ C([0, b],�), z(0) = 0}, and for each z ∈ Ω, let ‖z‖b be the seminorm inΩ defined
by

‖z‖b = ‖z(0)‖ + ‖z‖ = ‖z‖ = sup{|z(t)| : t ∈ [0, b]}. (3.14)

Ω is a Banach space with norm ‖ · ‖b. Let K be a cone of Ω. K = {z ∈ Ω : z(t) ≥ 0, t ∈ [0, b]}
and

K∗ =
{
x ∈ C

(
[−τ, b],�≥0

)
: x(t) = ω(t) ≥ 0, t ∈ [−τ, 0]

}
. (3.15)

Define the operator F : K → K by
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Fz(t) = λ(t) +L(I)z(t) + Iαf
(
t, zt + yt

)
, t ∈ [0, b]. (3.16)

Theorem 3.3. Suppose that f(t, xt), t ∈ (0, b], xt ∈ C, is a continuous function and
limt→ 0+f(t, ·) = +∞. If there exits σ ∈ (0, 1) such that 0 < σ < α ∈ (n − 1, n) and tσf(t, xt) is
a continuous function on [0, b], then the operator F, defined as (3.12), maps bounded set into bounded
sets in K, continuous and completely continuous.

Proof. For all u ∈ K, since Fu(t) = λ(t) + L(I)u(t) + Iαf(t, ut + yt) by Lemma 3.1 and the
nonnegativeness of f , we obtain F : K → K.

Since tσf(t, xt) is continuous on [0, b]× [0,+∞), there exists a positive constantN such
that tσf(t, xt) ≤ N. Hence

Iαf
(
t, zt + yt

)
= Iα
(
t−σtσf(t, xt)

)

≤ NIαt−σ =
N

Γ(α)

∫ t

0
(t − s)α−1s−σds

=
Ntα−σ

Γ(α)
B(1 − σ, α) ≤ Nbα−σ

Γ(α)
B(1 − σ, α).

(3.17)

Let G ⊂ K be bounded, that is, there exists a positive constant L such that ‖z‖b ≤ L, for all

z ∈ C. In view of (3.13), for each z ∈ G, we obtain

‖Fz(t)‖ ≤ |λ(t)| + |L(I)z(t)| + ∣∣Iαf(t, zt + yt

)∣∣

≤ ‖λ(t)‖ + ‖z‖b
n∑

j=1

ajbj

Γ
(
j + 1

) +
Nbα−σ

Γ(α)
B(1 − σ, α)

≤ ‖λ(t)‖ + L
n∑

j=1

ajb
j

Γ
(
j + 1
) +

Nbα−σ

Γ(α)
B(1 − σ, α).

(3.18)

Thus, F(K) is bounded. In the following text, we would like to show that F is continuous.
Let v0 ∈ K and ‖v0‖ = c0, if v ∈ K and ‖v − v0‖ < l, then ‖v‖ < l + c0; by the continuity of
tσ f(t, zt +yt), we know that tσ f(t, zt +yt) is uniformly continuous on [0, b]× [0, c]. Thus, for
all ε > 0 there exists a δ > 0 such that

∣∣tσf
(
t, ut + yt

) − tσf
(
t, vt + yt

)∣∣ < ε, (3.19)

for all t ∈ [0, b] and u, v ∈ [0, c] with |u − v| < δ. Obviously, if ‖u − v‖ < δ, then v0(t), v(t) ∈
[0, c] and |v(t) − v0(t)| < δ for each t ∈ [0, b]. Hence, we have

∣∣tσf
(
t, vt + yt

) − tσf
(
t, v0t + yt

)∣∣ < ε, (3.20)

for all t ∈ [0, b] and v ∈ K with ‖v−v0‖ < δ. For all t ∈ [0, b], let u, v ∈ K, and |u(t)−v(t)| < δ,
we choose δ ≤ ε(

∑n−1
j=1 (xjbj/Γ(j + 1)))

−1
. By using (3.20), we get
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|Fu(t) − Fv(t)| ≤ ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
∣∣Iα
(
f
(
t, ut + yt

) − f
(
t, vt + yt

))∣∣

= ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
∣∣Iα
(
t−σtσf

(
t, ut + yt

) − t−σtσf
(
t, vt + yt

))∣∣

≤ ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

)

+
1

Γ(α)
max
0≤t≤b

∫ t

0
(t − s)α−1s−σ

∣∣sσf
(
t, ut + yt

) − sσf
(
t, vt + yt

)∣∣ds

≤ ‖u − v‖b
n−1∑

j=1

ajb
j

Γ
(
j + 1

) +
ε

Γ(α)
max
0≤t≤b

∫ t

0
(t − s)α−1s−σds

= ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
ε

Γ(α)
max
0≤t≤b

tα−σB(1 − σ, α)

≤ (1 + bα−σ
)
B(1 − σ, α)ε.

(3.21)

Finally, we want to prove that the operator F is equicontinuous. Let G ⊆ K be bounded, that
is, three exits a positive constant l such that ‖u‖ ≤ l, for all u ∈ G. Suppose, u ∈ K, t, r ∈ [0, b]
and t < r. For a given ε > 0, there exists δ > 0, so that if |t − r| < δ, then

|Fu(t) − Fu(r)|
≤ |λ(t) − λ(r)| + |L(I)u(t) − L(I)u(r)| + ∣∣Iαf(t, ut + yt

) − Iαf
(
r, ur + yr

)∣∣

≤
n−1∑

j=1

λj

∣∣∣tα−j − rα−j
∣∣∣ +

n−1∑

j=1

laj

Γ
(
j
)

∣∣∣∣∣

∫ t

0
(t − s)j−1 − (r − s)j−1ds

∣∣∣∣∣

+
n−1∑

j=1

laj

Γ
(
j
)
∫ r

t

(r − s)j−1ds

+
1

Γ(α)

∣∣∣∣∣

∫ t

0
(t − s)α−1s−σsσf

(
s, us + ys

)
ds −

∫ r

0
(r − s)α−1s−σsσf

(
s, us + ys

)
ds

∣∣∣∣∣

≤ 2
n−1∑

j=1

λjb
α−j + l

n−1∑

j=1

ajtj

Γ
(
j + 1

) + l
n−1∑

j=1

aj

Γ
(
j + 1
)
[
|r − t|j +

∣∣∣rj − tj
∣∣∣
]

+
NB(1 − σ, α)

Γ(α)

∣∣tα−σ − rα−σ
∣∣
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≤ 2
n−1∑

j=1

λjb
α−j + l

n−1∑

j=1

ajbj

Γ
(
j + 1

) + 2l
n−1∑

j=1

aj

Γ
(
j + 1

) + l
n−1∑

j=1

aj

Γ
(
j + 1

) |r − t|j

+
2NB(1 − σ, α)

Γ(α)
bα−σ .

(3.22)

Set Δ = max{3Δ1/ε, 3Δ2/ε,Δ3,Δ4, . . . ,Δn+1}, where

Δ1 =
n−1∑

j=1

(
2λjb

α−j +
lajbj

Γ
(
j + 1
) +

2laj

Γ
(
j + 1
)
)
,

Δ2 =
2 N

Γ(α)
B(1 − σ, α)bα−σ,

Δj+2 = l
n−1∑

j=1

aj

Γ
(
j + 1
) , j = 1, 2, . . . , n − 1.

(3.23)

Case 1. If 0 < |r − t| < 1 < b, we choose δ = ε/(3(n − 1)). Hence,

|Fu(t) − Fu(r)| ≤ ε

3
Δ +

ε

3
Δ + Δ

n−1∑

j=1

|r − t|j

≤ ε

3
Δ +

ε

3
Δ + (n − 1)Δδ < Δε.

(3.24)

Case 2. If 0 < 1 ≤ |r − t| < b, we choose δ = {ε/(3 (n − 1))}1/(n−1). Hence,

|Fu(t) − Fu(r)| ≤ ε

3
Δ +

ε

3
Δ + Δ

n−1∑

j=1

|r − t|j

≤ ε

3
Δ +

ε

3
Δ + (n − 1)Δδn−1 < Δε.

(3.25)

Therefore, F(G) is equicontinuous. The Arzela-Ascoli Theorem implies that F(G) is compact.
Thus, F : K → K is completely continuous.

Theorem 3.4. With all the details of (1.1)-(1.3), further, if σ exists in (0, 1) such that 0 < σ < α ∈
(n−1, n), n ∈ �, and tσf(t, xt) is a continuous function on [0, b], then (1.1) has at least one positive
solution x∗ ∈ K∗, satisfying ‖x∗‖ ≤ max{‖ω‖, h}, where h = 2Λ/(1 − Λ) + 1 and Λ is a positive
constant which is observed in the proof of the theorem.

Proof. We know that the operatorF : K → K is continuous and it is completely continuous by
Theorem 3.3. Here we show that there exists an open set U ⊆ K, with z/= γF(z) for γ ∈ (0, 1)
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and z ∈ ∂U. Let z ∈ K be any solution of z = γF(z), γ ∈ (0, 1). According to the Theorem 3.3,
since F : K → K is continuous and it is completely continuous, we have

z(t) = γFz(t) = γ
{
λ(t) +L(I)z(t) + Iαf

(
t, zt + yt

)}
, t ∈ [0, b]

≤
n−1∑

j=1

λjb
j +

n−1∑

j=1

aj

∣∣∣Ijz(t)
∣∣∣ +
∣∣Iαf
(
t, zt + yt

)∣∣

≤
n−1∑

j=1

λjb
j + ‖z‖

n−1∑

j=1

aj

Γ
(
j + 1

)bj +
1

Γ(α)

∣∣∣∣∣

∫ t

0
(t − s)α−1s−σsσf

(
s, zs + ys

)
ds

∣∣∣∣∣.

(3.26)

Since there exists a positive constant N such that ‖sσf(s, zs + ys)‖ ≤ N, as sσf(s, zs + ys) is
continuous on [0, b], therefore

z(t) ≤
n−1∑

j=1

λjb
j + ‖z‖

n−1∑

j=1

aj

Γ
(
j + 1

)bj +
N

Γ(α)
B(1 − σ, α). (3.27)

Set Λ = max{Λ1,Λ2,Λ3}, where

Λ1 =
n−1∑

j=1

λjb
j , Λ2 =

n−1∑

j=1

aj

Γ
(
j + 1
)bj , Λ3 =

N

Γ(α)
B(1 − σ, α). (3.28)

Equation (3.20) implies that

‖z‖ ≤ Λ1 + ‖z‖Λ2 + Λ3 ≤ 2Λ + ‖z‖Λ. (3.29)

Therefore, we conclude that ‖z‖(1−Λ) ≤ 2Λ. Then, as a result, any solution z = γF(z) satisfies
‖z‖/=h. Let U = {z ∈ K : ‖z‖ < h}. Theorem 2.2 guarantees that F has a fixed point z ∈ U. By
using Theorem 3.2, (1.1) under the conditions of (1.3) has a positive solution x∗ ∈ K satisfying
‖x∗‖ ≤ max{‖ω‖, h}.

Example 3.5. Consider the following nonlinear fractional differential equation:

L(D)[x(t) − x(0)] = t−1/2 xt, t ∈ (0, 1],

x(t) = − sin t ≥ 0, t ∈ [−1, 0],
(3.30)

where L(D) = D5/2 − D3/2 − D1/2. Here, a1 = a2 = 1, α = 5/2 ∈ (2, 3), n = 3 and f(t, xt) =
t−1/2xt such that limt→ 0+f(t, ·) = +∞. We select σ = 11/12, 0 < σ < α. Hence tσf(t, ·) = t5/12xt

is continuous on [0, 1]. We consider the initial conditions

x(0) = 0, x1 = D3/2x(t)
∣∣∣
t=0

= 2, x2 = D5/2x(t)
∣∣∣
t=0

= 1, x1 ≥ x2 > 0. (3.31)
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By using Theorem 3.2, the nonlinear fractional differential equation (3.20) is equivalent to an
integral equation given below

x(t) =

⎧
⎨

⎩
λ(t) +L(I)x(t) = I5/2

(
t−1/2 xt

)
, t ∈ (0, 1],

x(t) = − sinπt, t ∈ [−1, 0],
(3.32)

where in the view of the procedure proving Theorem 3.2, we have

λ(t) =
2∑

j=1

λj t
5/2−j =

1
Γ(5/2)

t3/2 +
1

Γ(1/2)
t1/2,

L(I)x(t) =
2∑

j=1

ajI
jx(t) =

∫ t

0
(1 + (t − s))x(s)ds.

(3.33)

In addition of that we have that Λ = max{Λ1,Λ2,Λ3}, where

Λ1 =
2∑

j=1

λjb
j = λ1 + λ2 =

1
Γ(1/2)

+
1

Γ(5/2)
=

7
3
√
π
,

Λ2 =
2∑

j=1

aj

Γ
(
j + 1

) = 1 +
1
2
=
3
2
,

Λ3 =
N

Γ52
B

(
1 − 11

12
,
5
2

)
=

4 N

3
√
π
B

(
1
12

,
5
2

)
, N = ‖t11/12xt‖.

(3.34)

Therefore, by using the Theorem 3.4, (3.30) has at least one positive solution x∗ ∈ K∗

satisfying ‖x∗‖ ≤ max{‖ω‖, h}where ‖ω‖ = max−1≤t≤0|−sinπt| = 1 and h = Λ/(1−Λ)+1, Λ =
max{Λ1,Λ2,Λ3}.

4. Unique Existence of Solution

In this section, we give conditions on f and a1, a2, . . . , an, which render a unique positive
solution to (1.1).

Theorem 4.1. Let f : (0, 1) × [0,∞) → [0, ∞) be continuous and limt→ 0+f(t, ·) = +∞. Suppose
that there exists σ ∈ (0, 1) so that 0 < σ < α ∈ (n − 1, n), n ∈ �, and tσf(t, xt) is a continuous
function on [0, b]. If further, the following conditions are satisfied

(H1) tσf(t, xt) is Lipschitz with respect to the second variable with Lipschitz constant μ, that is,

∣∣tσf(t, xt) − tσf(t, zt)
∣∣ ≤ μ‖u − v‖, ∀u, v ∈ K, t ∈ (0, b], (4.1)
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(H2)

0 <
n−1∑

j=1

ajbj

Γ
(
j + 1
) +

μbα−σ

Γ(α)
B(1 − σ, α) < 1, (4.2)

where x(t) = u(t) + y(t) and z(t) = v(t) + y(t); then (1.1) under the conditions of (1.3)
has a unique positive solution.

Proof. As it was pointed out in the previous section, (1.1) is equivalent to (3.13). Thus, for
u, v ∈ K we obtain

|Fu(t) − Fv(t)| = |L(I)u(t) − L(I)v(r)| + ∣∣Iαf(t, ut + yt

) − Iαf
(
r, vr + yr

)∣∣

≤ ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
∣∣Iα
(
f
(
t, ut + yt

) − f
(
t, vt + yt

))∣∣

= ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
∣∣Iα
(
t−σ tσf

(
t, ut + yt

) − t−σtσf
(
t, vt + yt

))∣∣

≤ ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

)

+
1

Γ(α)
max
0≤t≤b

∫ t

0
(t − s)α−1s−σ

∣∣sσf
(
t, ut + yt

) − sσf
(
t, vt + yt

)∣∣ds

≤ ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
μ

Γ(α)
max
0≤t≤b

∫ t

0
(t − s)α−1s−σds

≤ ‖u − v‖b
n−1∑

j=1

ajbj

Γ
(
j + 1

) +
μ‖u − v‖b

Γ(α)
max
0≤t≤b

tα−σB(1 − σ, α)

≤ ‖u − v‖b

⎧
⎨

⎩

n−1∑

j=1

ajbj

Γ
(
j + 1
) +

μbα−σ

Γ(α)
B(1 − σ, α)

⎫
⎬

⎭,

(4.3)

where F is given in (3.16). Hence, in view of the Theorem 2.3, F will have a unique fixed point
in K, which is the unique positive solution of (1.1).

Example 4.2. Consider the nonlinear fractional differential equation given below

L(D)[x(t) − x(0)] =
η√
t

∫−t

−π

1 + xt(s)
1 + x2

t (s)
ds, t ∈ (0, π], η > 0,

x(t) = − sin t ≥ 0, t ∈ [−π, 0],
(4.4)

where L(D) = D5/2 − a1D3/2 − a2D1/2 with initial conditions x(0) = 0, x1 = D3/2x(t)|t=0 =
2, x2 = D5/2x(t)|t=0 = 1, x1 ≥ x2 > 0, 0 < a1 ≤ 1/(4π), 0 < a2 ≤ 8/π2, and
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η = 3π−3/7)/16B(1/12, 5/12). Here limt→ 0+f(t, xt) = +∞. We select σ = 11/12; then
0 < σ < α and tσf(t, xt) = t5/12 f(t, xt) is continuous on [0, π]. Now, we review the
Lipschitz condition with respect to the second variable. Note that from equations (3.11)
and (3.12), for xt, zt ∈ C([−π, 0],�≥0), we have xt = ut + yt, zt = vt + yt, t ∈ [−π, π] and
xt = u(t) + y(t), zt = v(t) + y(t), t ∈ (0, π]) where u, v ∈ K. Without loss of generality, we
suppose that xt(s) ≥ yt(s), for all s ∈ [−π, 0]. Then, for each t ∈ (0, π],

∣∣∣t11/12f(t, xt) − t11/12f(t, zt)
∣∣∣ = ηt11/12

∫−t

−π

∣∣∣∣
1 + x(t + s)
1 + x2(t + s)

− 1 + z(t + s)
1 + z2(t + s)

∣∣∣∣ds

= ηt11/12
∫0

t−π

∣∣∣∣
1 + x(s)
1 + x2(s)

− 1 + z(s)
1 + z2(s)

∣∣∣∣ds

≤ ηt11/12
∫0

t−π

∣∣∣∣
1 + x(s)
1 + x2(s)

− 1 + z(s)
1 + x2(s)

∣∣∣∣ds

≤ η max
0≤t≤π

t11/12
∫0

t−π

|x(s) − z(s)|
1 + x2(s)

ds

≤ η‖x(t) − z(t)‖max
0≤t≤π

t11/12
∫0

t−π
ds

= η‖u − v‖max
0≤t≤π

t11/12(π − t) = ηπ23/12‖u − v‖.

(4.5)

Hence, the condition of (H1) holds with μ = π23/12η. On other hand, we have

a1b

Γ(2)
+
a2b

2

Γ(3)
+
μπ11/12

Γ(5/2)
B

(
1
12

,
5
12

)
∈ (0, 1). (4.6)

Thus, (4.4) satisfies the conditions required by the Theorem 4.1. This Theorem implies that
the nonlinear equation (4.4) has a unique solution in K. By using the Theorem 3.2, (4.4) is
equivalent to the following integral equation:

x(t) =
1

Γ(5/2)

(
2 − 1

4π

)
t3/2 +

1
Γ(3/2)

t1/2 + a1Ix(t) + a2I
2x(t) + I5/2f(t, xt). (4.7)
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The solution of (4.4) is x(t) = limn→+∞xn(t), where xn+1(t) = Fxn(t). Therefore, the iterated
sequence is given by

x1(t) = a1t
3/2 + a2t

1/2 +
ηe−t√

t
I5/2
[∫−t

−π

1 + x(s)
1 + x2(s)

ds

]

= a1t
3/2 + a2t

1/2 +
ηe−t√

t
I5/2
[
1
2
ln

(
1 + t2

1 + π2

)
− tan−1t

]
,

x2(t) =
(
a1I + a2I

2 + I5/2
)
x1(t) + x1(t),

...

xn+1(t) =
n∑

i=0

(
a1I + a2I

2 + I5/2
)n−i

x1(t), n = 1, 2, . . . .

(4.8)
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