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We present a systemic study of some families of higher-order g-Bernoulli numbers and polyno-
mials with weight a. From these studies, we derive some interesting identities on the g-Bernoulli
numbers and polynomials with weight a.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Z,, Q,, and C, will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
algebraic closure of Q,, respectively. The p-adic norm of C, is defined as |x|, = p™", where
x =p'm/nwith (p,m) = (p,n) =1, r € Qand m,n € Z. Let N and Z be the set of natural
numbers and integers, respectively, Z, = N U {0}. Let g € C, with [1 - g|, < p™/?D. The
notation of g-number is defined by [x],, = (1 - w")/(1 -w) and [x], = (1 -g%)/(1 - q), (see
[1-13]).
As the well known definition, the Bernoulli polynomials are defined by

t & t"
mex = ZOBn(x)E. (1.1)
n=i

In the special case, x = 0, B,,(0) = B, are called the nth Bernoulli numbers. That is, the recur-
rence formula for the Bernoulli numbers is given by



2 Abstract and Applied Analysis

1 ifn=1,
By =1, (B+1)"-B, = (1.2)
0 ifn>1,

with the usual convention about replacing B’ with B;.
In [1, 2], g-extension of Bernoulli numbers are defined by Carlitz as follows:

1 ifn=1,

Poa=1 q(@p+1)" ~Pug= { _ (1.3)
0 ifn>1,

with the usual convention about replacing ' with f; .

By (1.2) and (1.3), we get lim; .1 ; = B;. In this paper, we assume that a € N.
In [7], the g-Bernoulli numbers with weight a are defined by Kim as follows:

~ no o = 1/
B =1, a(q"p+1) - By =14 Ll (1.4)
0 if n>1,

with the usual convention about replacing (ﬂ(“)) with ﬁ(“)

Let UD(Z,) be the space of uniformly differentiable functions on Z,. For f € UD(Z,),
the p-adic g-integral on Z, is defined as

1) = [ ) = tim, Z e (15)

qu

(see[4, 5]). From (1.5), we note that
"Ly (f) =15(f) + (9 - 1>Zq FO + qu 0, (1.6)

where f,(x) = f(x +n) and f'(I) = (df (x)/dx)|,_;-
By (1.4), (1.5), and (1.6), we set

NL?; = J‘z [x];‘ud‘uq (x), whereneZ,, (1.7)

P

(see[7]). The g-Bernoulli polynomials are also given by

ﬂ(a)(x) = j [X + y] d‘l/lq(x) Z(rll) n -1 alxﬂ(a). (18)

Zp 1=0
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The purpose of this paper is to derive a new concept of higher-order g-Bernoulli
numbers and polynomials with weight a from the fermionic p-adic g-integral on Z,. Finally,

we present a systemic study of some families of higher-order g-Bernoulli numbers and poly-
nomials with weight a.

2. Higher Order g-Bernoulli Numbers with Weight a

Let p € Z and a € N in this paper. For k € N and n € Z., we consider the expansion of
higher-order g-Bernoulli polynomials with weight a as follows:

Nifékla) (x) = j ,[ [o) + -+ xp + x];aqxl(ﬁ_l)%”k(ﬂ_k)dﬂq(xl) “edpg (xr). (2.1)
zZ, V/

From (2.1), we note that

(ﬁkla) ( q)k " <Tl> 1 1 _alx H::Ol(al-kp_l)
O = &) T R e

(2.2)

c lalx (al’:ﬂ>k'
e q) [} IZ< > (““ﬂ)q[k]q!'

k

where (§), = (1 - g1 - ¢ (1 - @) /(1 - )1 - g)---(1 - ¢))) and [k],! =
[kl, - [21,[1],.

Therefore, we obtain the following theorem.

Theorem 2.1. Forn € Z. and k € N, we have

n al+p k!
Gk N 1 "\ (1) g ( k > ‘ )3
Prg (x) (1—q)"[a]';z§<l>( )q —(“12ﬂ>q[k]q! (2.3)

In the special case, x = 0, ﬁ(ﬂ ki) 0) = Ni(ft’akla)

numbers with weight a.

are called the nth higher order g-Bernoulli
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From (2.1) and (2.2), we can derive

5Bk k k
ifq & - ( 1)ﬁrfi—1aq & ﬂ(ﬂ “ |“) (24)

By Theorem 2.1 and (2.4), we get

ﬁ(mak‘vl) f q ll(am ]x]dll (xl) d#q(xk)

Zp Zy

Z( >(‘7 1)j ’[ [x1+- +xk]quZ’iljx"dﬂq(xl)“'dﬂq(xk)

1=0

3 (") v

1=0

k k _
_ (1 B q) _ (1 _ q)kz <k +1 1> q(acm—k+l)l.
H:F:—Ol (1 _ qam—k+l+i) e 1 ]

From (2.1), we have

(2.5)

i i j n—i+j
Z() (g“-1) f f [ocr + -+ xi] H gbaxie (e RB gy (1) - dpg ()
j=0 \J Zp Zp

= I .. f [og+---+ xk];‘;iq(ﬂfl)ler-..Jr(ﬁ*k)xkqa(x1+"'+xk)(i*1)d‘uq(xl) .. d‘l/lq (xx) (2.6)
Z Z

14 14
< ~( Kl
= Z< > 1) ﬁn -i+j,q°
j=0

Thus, we obtain the following theorem.
Theorem 2.2. Fori € N, we have

i /i i-1 /i1 .
Z<;> (q"-1)BL = <l ; >(q"—1)]ﬁ,(f’ﬁjﬁ;. 2.7)
j=0

j=0 Jj=

It is easy to show that

m k

S0 - DFR = - B () g
j= =

(1-q)"
k-1 am—k+1+iY)
[T (1—¢q )
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3. Polynomials 3" (x)

In this section, we consider the polynomials ﬂ( K9 (x) as follows:
By (x) = f f [+ -+ g 2] g () - g ().

From (3.1), we can easily derive the following equation:

FOA )_ i0< > 1) gt 1}:1_5}0(“_1—1’3
i:0

By (3.1) and (3.2), we get

k —j)xj+anx ; n a
f | gEmem dﬂq(xl)-~dﬂq(xk)=z<l> [al}(q- 1B (),
Zp Z,

1=0

J‘ J‘ qzzll(an—l)xwanxd#q(xl)...dﬂq(xk)
Z

qanx(l - q)k (H;:(} (“Tl - ])> ~ g ( kel

TS (- SONCE

Therefore, by (3.3) and (3.4), we obtain the following theorem.

Theorem 3.1. For n € Z.., we have

R 1 n n e (al)k!
-0 - o3 (vt
Moreover,

— [N (Okla) “"x( ¢ k!

T
o

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Let d € N. Then, we have

f f [x+x1+---+xk];laq_zjf:1ixjdﬂq(xl)"'d.uQ(xk)

" d-1
—z};zu—l)aj

[d],, Wy (37)

k n
X+ D> qa; k )
- f T 31 s e dion
Z, Z, i=1

qad

Thus, by (3.1) and (3.7), we obtain the following theorem.

Theorem 3.2. Ford,k € N, and n € Z,, we have

d-1

~(0,k|a) [] -3k, (j-Da (Okla) X+ay+---+dg

P = X a R (R ), (3.8)
qﬂl ..... ag=

ﬁn k\“)( Z<7> [X]" -1 aIXﬁIO k\“)’

(3.9)
Kla < (M [l aix 5O KI)
B (x +y) = §<l> ] a Bl ().
4. Polynomials f'" (x
For h € Z, let us define weighted (h, q)-Bernoulli polynomials ﬂ(h 17 (x) as follows:
ﬁ(hlla)(x) _ J‘ [x+x1]Zaqxl(h_l)d[/lq(x1)- (41)
p
By (4.1), we easily see that
FUia) 1 -1 | @l+h
—_— -1 —_— 4.2
R~ G ) I R 7

Therefore, by (4.2), we obtain the following theorem.
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Theorem 4.1. For h € Z and n € Z.., we have

A\ _ 1 (N, o\ ax ALt h
us <x>—mz<z>(1’q fal + 1,

1=0

From (4.1), we can derive the following equation:

g™ I [x +x1]5q" "Dy (x1)
ZV

= (q“ — 1) f [x + xl]Z;rqul(h_“_l)d[/lq(xl) + f [x + xl];laqxl(h_a_l)d‘uq(xl).
Zyp

Zy

By (4.4), we easily get
ax,ﬁn 1\u)(x) (q 1)ﬂ7(l}iluq11\a)( ) +ﬁ(h a— 11|a)( )

From (4.1), we have

n n
p(hlla) J [x+x1];laqx1(h_1)dﬂq(x1) — Z<l> 1= -1 alxﬂ(hl\ ),

Zy 1=0

where ﬁ(h ) ﬁ(h 1a)

By (4.6), we get the following recurrence formula:

(1 (1 n
e = (a7 + (2], ), forn>1,

with the usual convention about replacing (ﬁéh’lla)) with ﬂ(h 1),
From (1.6), we note that

qly(f1) = 1;(f) + (4 - 1)f(0)+ f(0)

For h € Z., by (4.8), we have

-1
g pr F+ 1)q" D dpg(x) = pr FGOdy(x) + (g = DRFO) + (L= (0)

Ifhe{-1,-2,-3,...}, then we get

q Zf<x+1>q<’1*”Xdﬂq<x> f f)dpg(x) + (1 - q)hf<0>+ f(O)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)
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Let h € Z,. By (4.9), we get

q" fz [x+2x1 + 1];’aq(h_1)x1dyq(x1) - JZ [x + xl] "

P P

]nl ax

= (g-T1)h[x]g +

—[x

[a], ]
From (4.6) and (4.11), we note that

ﬁmua)(x +1) - ﬁ(hlla (x)=(q- 1)h[x];‘,, + n[_

a]

If we take x = 0 in (4.12), then we have

a
a h a Pl a Tal
P = B (1) - p = 3 Tl
[l 0
Therefore, by (4.12) and (4.13), we obtain the following theorem.

Theorem 4.2. For h € Z.., we have

4

Shiley _ R (hle) 1y _ glelle) _ ) Ta]
= ’ (1) n, -
ﬂ [h]q 16 ﬁ q {0 q

By (4.7) and Theorem 4.2, we obtain the following corollary.

Corollary 4.3. For h € Z,, we have

4
Shaley _ h Ay 1\ _ hlla) Tal.
Pog [h_]q’ (q P > “Png = { Lal,

o

with the usual convention about replacing (ﬁ(h Ale) ) with ﬁ(h Al

D% g (x1)

[l g™

ifn=1,

ifn>1.

ifn=1,

ifn>1.

ifn=1,

ifn>1,

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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From (4.1), we have

ﬁ(h Ala) _ J' qxl(h—l)d#q(xl) = %, if heZ,.
Zy q

It is not difficult to show that

ﬁihq”“)(l —-x) = J [1-x+x1]0.g "Dy (x1)
ZP

_ <—1>"q“"*h*1f [ + 20110 D ey (1)

Zp

— (_1)nqan+h—1ﬁ1(j’lé1|a) (.X')

Therefore, by (4.17), we obtain the following theorem.

Theorem 4.4. For h,n € Z.., we have

~(h,1 ~(h,1
ﬁ(, ‘llx)(] x) ( ])nqan+h—1ﬂ(, |a)(x)'
FOI’ X = 1 ln TheOrem 4.4, we get

ﬂ(h Ala) _ ( 1)11 an+h— 1[5" 1\”)(1)

_ ( 1)71 an— 1,6(%”“) ifn>1.

Therefore, by (4.19), we obtain the following corollary.

Corollary 4.5. For h € Z, and n € N with n > 1, we have

pi(qhq”a) ( 1)71 an—1 (h1|“ .

Let d € N. By (4.1), we see that

[d]5

P

(h-1)x; "4 _ q < ha xX+a xi(h-1)d g
q [x +x1]qa Uq(x1) = P E q + X1 q Hga (x1).
Z [ ]q a=0 Zyp

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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By (4.1) and (4.21), we obtain the following equation:

(] x+a
p(h1la) ap(hlla)
ﬁ ( ) - [d]q = 0 h ﬂ ( d >/ (422)

whered e Nand h € Z,.

5. Polynomials ﬁff,;kl“) (x)and h = k

From (2.1), we note that
B = [ [ b g R ) )
p p

Z | ax (@l+h)---(al+h—-k+1)
(1 q) Z< >(_1)ql [txl+h]q~-[al+h—k+1]q’

1=0

(5.1)

qh J‘ .. j [x +14+x; 44+ xk];laq(h—l)X1+m+(h—k)Xkd#q(xl) e d‘uq(xk)
Z Z
= f f [x+x1 +...+xk]Z“q(h—l)X1+m+(h—k)Xkdﬂq(xl)...dl,lq(xk)
+(q- l)hf - --fz [ + 20+ -+ 2] gD IO G (00 - dpag ()
P

a _
n—q‘”f J [x+x2+---+xk];‘a1
[a], Z, zZ,

x qr D kDT G ) g ().
(5.2)

From (5.1), we have

AR e ) = B )+ (a - DR+ TR T W 59

Therefore, by (5.3), we obtain the following theorem.

Theorem 5.1. For h,n € Z, and k € N, we have

B e 1) = B ) = (g = DR 0+ TR . s
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It is easy to show that

qu‘ .. f [x+x1 4+ + xk]Zaqhxl+(h_1)x2+'"+(h+1_k)xkd/lq(Xl) L. dﬂq(xk)

= (qa - 1) f oo J‘ [x + x1 4 0+ xk]Z;lq(h_“)xl+"'+(h_u+l_k)xkdﬂq(xl) cee d‘l/lq(xk)
Z, Z

(5.5)
+f f [x+x1 +- +xk] q(h axr+t(hmatl= k)xkd,u (x1) -~ dpg(xk)
Z, z
h+1l-a,k|a h+l-a,k|a
= (4" = DBy @) + By ).
Thus, by (5.5), we obtain the following proposition.
Proposition 5.2. For h,n € Z.., we have
ux h+1k|a a F(h+l-ak|a (h+1-ak|a
Bra 9 () = (4° = 1) M () + By M (). (5.6)
For d € N, we get
k " E i
I I X+ij qzjzl( —])xjdﬂq(xl)...d‘uq(xk)
Z, Z, =1
qa
noog-q
_ [d]qk“ g S o Shati-Day (5.7)
[d]q 25 Y uk:()
X + Z;;l [1]' k " dzk (h—)x;
XI J T+ xj gt Tdpga(x1) -+ Aprga (xk)-
Zp Zp j=1 ad
q
Thus, we obtain
[d]. 4t K K (i xX+ay+--+a
hk|a q 1 ai—>i o (j-1)a;j hk|a 1 k
ﬂ( \ )( x) = . Z qhzk =22 (1) J‘g;,qdl )<f> (5.8)

[ ]q ay,...,ax=0

Equation (5.8) is multiplication formula for the g-Bernoulli polynomials of order (h, k) with
weight a.



12 Abstract and Applied Analysis

Let us define ﬂ(k H0 (x) = s (*17) (x). Then we see that

F(kla) oy _ 1 " /n Dy @+ K)o (al+1)
Prg (x )_@Tmz<l>(—l)ql [l + K], (@l +1],’

1=0

f . f [k—x+x1+-- xk];lwq—(k—l)xl—m—(k—k)xkdﬂlr1 (x1) -+ dl/qul (xx)

_(=1"g™ '”(k Z g (al + k) - (al +1)
 (1-9)"[a [al + k], [al +1],

1=0

_ (_1)71 an— k+< >ﬂ(k|a

Therefore, by (5.9) and (5.10), we obtain the following theorem.

Theorem 5.3. Forn € Z, and k € N, we have
n _an—k a
B (ke — x) = (-1)"q™ e () e (.

Let x = k in Theorem 5.3. Then we see that

p = g (B k).

From Theorem 5.1, we can derive the following equation:

ﬁ(k\ﬂ)(x+1) ﬁ(k\lx) k(q 1)ﬁ(k 1\“)(x) +7’16] ﬁ(kk 1|'1)

By (5.9), we easily get
Fkla) _ 1 S, g (al+k) - (al+1)
" (1—q)"[a];§<z>( Vv k], [al 1],

From the definition of p-adic g-integral on Z,, we note that

n /n
Z(l) (a*-1)’ J; ' "J‘Z o1+ <+ + 2] g = D gy ey ) - dpg ()
1=0 p P

(an+k)---(an+1)
B [an+k],---[an+1],

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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Thus, by (5.15), we get

A ~kay _ (%)K!
Z(l) 1)16 - (an) [k] 1 (516)

1=0 k Jql™lq®

By the definition of polynomial ﬁ,ﬂ“) (x), we see that

ﬁs]‘m) (X) — IZ - IZ [x +x1 4+ xk]Vqlaq(k—l)X1+-»-+(k—k)xkd‘uq (xl) .. dﬂq(xk)

(5.17)

n n n

= Z<l>q“1xﬁ(k|“ 1"t = ( ”‘xﬂ(kla) + [x]qa> , WhereneZ,
1=0
with the usual convention about replacing (ﬁ;kla)) with ﬁ(kla .
Let x = 01in (5.13). Then we have
k|a (k| k-1|a kk-1|a

G Ba” (1) = Pra” = k(q=1)Bug ™ + —Puy . (5.18)

[ ]
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