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We consider equation x′′ + g(x) = 0, where g(x) is a polynomial, allowing the equation to have
multiple period annuli. We detect the maximal number of possible period annuli for polynomials
of odd degree and show how the respective optimal polynomials can be constructed.

1. Introduction

Consider equation

x′′ + g(x) = 0, (1.1)

where g(x) is an odd degree polynomial with simple zeros.
The equivalent differential system

x′ = y, y′ = −g(x) (1.2)

has critical points at (pi, 0), where pi are zeros of g(x). Recall that a critical point O of (1.2) is
a center if it has a punctured neighborhood covered with nontrivial cycles.

We will use the following definitions.

Definition 1.1 (see [1]). A central region is the largest connected region covered with cycles
surrounding O.
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Figure 2: The phase portrait for (1.1), where G(x) is as in Figure 1.

Definition 1.2 (see [1]). A period annulus is every connected region covered with nontrivial
concentric cycles.

Definition 1.3. We will call a period annulus associated with a central region a trivial period
annulus. Periodic trajectories of a trivial period annulus encircle exactly one critical point of
the type center.

Definition 1.4. Respectively, a period annulus enclosing several (more than one) critical points
will be called a nontrivial period annulus.

For example, there are four central regions and three nontrivial period annuli in the
phase portrait depicted in Figure 2.

Period annuli are the continua of periodic solutions. They can be used for constructing
examples of nonlinear equations which have a prescribed number of solutions to the Dirichlet
problem

x′′ + g(x) = 0, x(0) = 0, x(1) = 0, (1.3)

or a given number of positive solutions [2] to the same problem.
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Under certain conditions, period annuli of (1.1) give rise to limit cycles in a dissipative
equation

x′′ + f(x)x′ + g(x) = 0. (1.4)

The Liénard equation with a quadratical term

x′′ + f(x)x′2 + g(x) = 0 (1.5)

can be reduced to the form (1.1) by Sabatini’s transformation [3]

u := Φ(x) =
∫x

0
eF(s)ds, (1.6)

where F(x) =
∫x

0 f(s)ds. Since du/dx > 0, this is one-to-one correspondence and the inverse
function x = x(u) is well defined.

Lemma 1.5 (see [3, Lemma 1]). The function x(t) is a solution of (1.5) if and only if u(t) = Φ(x(t))
is a solution to

u′′ + g(x(u))eF(x(u)) = 0. (1.7)

Our task in this article is to define the maximal number of nontrivial period annuli for
(1.1).

(A) We suppose that g(x) is an odd degree polynomial with simple zeros and with a
negative coefficient at the principal term (so g(−∞) = +∞ and g(+∞) = −∞). A
zero z is called simple if g(z) = 0 and g ′(z)/= 0.

The graph of a primitive function G(x) =
∫x

0 g(s)ds is an even degree polynomial with
possible multiple local maxima.

The function g(x) = −x(x2 − p2)(x2 − q2) is a sample.
We discuss nontrivial period annuli in Section 2. In Section 3, a maximal number of

regular pairs is detected. Section 4 is devoted to construction of polynomials g(x) which
provide the maximal number of regular pairs or, equivalently, nontrivial period annuli in (1.1).

2. Nontrivial Period Annuli

The result below provides the criterium for the existence of nontrivial period annuli.

Theorem 2.1 (see [4]). Suppose that g(x) in (1.1) is a polynomial with simple zeros. Assume
that M1 and M2 (M1 < M2) are nonneighboring points of maximum of the primitive function
G(x). Suppose that any other local maximum of G(x) in the interval (M1,M2) is (strictly) less than
min{G(M1);G(M2)}.

Then, there exists a nontrivial period annulus associated with a pair (M1,M2).
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It is evident that if G(x) has m pairs of non-neighboring points of maxima then m
nontrivial period annuli exist.

Consider, for example, (1.1), where

g(x) = −x(x + 3)(x + 2.2)(x + 1.9)(x + 0.8)(x − 0.3)(x − 1.5)(x − 2.3)(x − 2.9). (2.1)

The equivalent system has alternating “saddles” and “centers”, and the graph of G(x) is
depicted in Figure 1.

There are three pairs of non-neighboring points of maxima and three nontrivial period
annuli exist, which are depicted in Figure 2.

3. Polynomials

Consider a polynomial G(x). Points of local maxima xi and xj of G(x) are non-neighboring if
the interval (xi, xj) contains at least one point of local maximum of G(x).

Definition 3.1. Two non-neighboring points of maxima xi < xj of G(x) will be called a regular
pair if G(x) < min{G(xi), G(xj)} at any other point of maximum lying in the interval (xi, xj).

Theorem 3.2. Suppose g(x) is a polynomial which satisfies the condition A. Let G(x) be a primitive
function for g(x) and n a number of local maxima of G(x).

Then, the maximal possible number of regular pairs is n − 2.

Proof. By induction, let x1, x2, . . . , xn be successive points of maxima of G(x), x1 < x2 < · · · <
xn.

(1) Let n = 3. The following combinations are possible at three points of maxima:

(a) G(x1) ≥ G(x2) ≥ G(x3),

(b) G(x2) < G(x1), G(x2) < G(x3),

(c) G(x1) ≤ G(x2) ≤ G(x3),

(d) G(x2) ≥ G(x1), G(x2) ≥ G(x3).

Only the case (b) provides a regular pair. In this case, therefore, the maximal number
of regular pairs is 1.

(2) Suppose that for any sequence of n > 3 ordered points of maxima of G(x) the
maximal number of regular pairs is n − 2. Without loss of generality, add to the right one
more point of maximum of the function G(x). We get a sequence of n + 1 consecutive points
of maximum x1, x2, . . . , xn, xn+1, x1 < x2 < . . . < xn < xn+1. Let us prove that the maximal
number of regular pairs is n − 1. For this, consider the following possible variants.

(a) The couple x1, xn is a regular pair. If G(x1) > G(xn) and G(xn+1) > G(xn), then,
beside the regular pairs in the interval [x1, xn], only one new regular pair can appear,
namely, x1, xn+1. Then, the maximal number of regular pairs which can be composed
of the points x1, x2, . . . , xn, xn+1, is not greater than (n−2)+1 = n−1. IfG(x1) ≤ G(xn)
or G(xn+1) ≤ G(xn), then the additional regular pair does not appear. In a particular
caseG(x2) < G(x3) < · · · < G(xn) < G(xn+1) andG(x1) > G(xn) the following regular
pairs exist, namely, x1 and x3, x1 and x4,. . ., x1 and xn, and the new pair x1 and xn+1

appears, totally n − 1 pairs.
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(b) Suppose that x1, xn is not a regular pair. Let xi and xj be a regular pair, 1 ≤ i < j ≤ n,
and there is no other regular pair xp, xq such that 1 ≤ p ≤ i < j ≤ q ≤ n. Let us
mention that if such a pair xi, xj does not exist, then the function G(x) does not
have regular pairs at all and the sequence {G(xk)}, k = 1, · · · , n, is monotone. Then,
if G(xn+1) is greater than any other maximum, there are exactly (n + 1) − 2 = n − 1
regular pairs.

Otherwise, we have two possibilities:

either G(xi) ≥ G(xp), p = 1, . . . , i − 1,

or G(xj) ≥ G(xq), q = j + 1, . . . , n.

In the first case, the interval [x1, xi] contains i points of maximum of G(x), i < n, and
hence the number of regular pairs in this interval does not exceed i − 2. There are no regular
pairs xp, xk for 1 ≤ p < i, i < k ≤ n + 1. The interval [xi, xn+1] contains (n + 1) − (i − 1) points
of maximum of G(x), and hence the number of regular pairs in this interval does not exceed
(n + 1) − (i − 1) − 2 = n − i. Totally, there are no more regular pairs than (i − 2) + (n − i) = n − 2.

In the second case, the number of regular pairs in [xi, xj] does not exceed j −(i−1)−2 =
j − i− 1. In [xj , xn+1],there are no more than (n+ 1)− (j − 1)− 2 = n− j regular pairs. The points
xp, p = 1, . . . , i − 1, xq, j < q ≤ n do not form regular pairs, by the choice of xp and xq. The
points xp, p = 1, . . . , i, together with xn+1 (it serves as the i+1th point in a collection of points)
form not more than (i + 1) − 2 = i − 1 regular pairs. Totally, the number of regular pairs is not
greater than (j − i − 1) + (n − j) + (i − 1) = n − 2.

4. Existence of Polynomials with Optimal Distribution

Theorem 4.1. Given number n, a polynomial g(x) can be constructed such that

(a) the condition (A) is satisfied,

(b) the primitive function G(x) has exactly n points of maximum and the number of regular
pairs is exactly n − 2.

Proof of the Theorem. Consider the polynomial

G(x) = −
(
x +

1
2

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)(
x +

5
2

)(
x − 5

2

)(
x +

7
2

)(
x − 7

2

)
. (4.1)

It is an even function with the graph depicted in Figure 3.
Consider now the polynomial

Gε(x) = −
(
x +

1
2
+ ε

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)(
x +

5
2

)(
x − 5

2

) (
x +

7
2

)(
x − 7

2

)
,

(4.2)

where ε > 0 is small enough. The graph of Gε(x) with ε = 0.2 is depicted in Figure 4.
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Figure 3: G(x) (solid) and G′(x) = g(x) (dashed).
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Figure 4: G(x) (solid line), Gε(x) (dashed line), and G(x) −Gε(x) (dotted line).

Denote the maximal values of G(x) and Gε(x) to the right of x = 0 m+
1 , m

+
2 . Denote

the maximal values of G(x) and Gε(x) to the left of x = 0 m−1 , m
−
2 . One has for G(x) that

m+
1 = m−1 < m

−
2 = m+

2 . One has for Gε(x) that m+
1 < m

−
1 < m

+
2 < m

−
2 . Then, there are two regular

pairs (resp., m−1 and m+
2 , m+

2 and m−2 ).
For arbitrary even n the polynomial

Gε(x) = −
(
x +

1
2

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)
· · ·

(
x +

2n − 1
2

)(
x − 2n − 1

2

)
, (4.3)

is to be considered where the maximal values m+
1 , m

+
2 , . . . , m

+
n/2 to the right of x = 0 form

ascending sequence, and, respectively, the maximal values m−1 , m
−
2 , . . . , m

−
n/2 to the left of x =

0 also form ascending sequence. One has that m+
i = m−i for all i. For a slightly modified

polynomial

Gε(x) = −
(
x +

1
2
+ ε

)(
x − 1

2

)(
x +

3
2

)(
x − 3

2

)
. . .

(
x +

2n − 1
2

)(
x − 2n − 1

2

)
, (4.4)

the maximal values are arranged as

m+
1 < m

−
1 < m

+
2 < m

−
2 < · · · < m

+
n/2 < m

−
n/2. (4.5)
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Figure 5: G(x) (solid) and G′(x) = g(x) (dashed).
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Figure 6: G(x) (solid), Gε(x) (dashed), and G(x) −Gε(x) (dotted).

Therefore, there exist exactly n − 2 regular pairs and, consequently, n − 2 nontrivial period
annuli in the differential equation (1.1).

If n is odd, then the polynomial

G(x) = −x2(x − 1)(x + 1)(x − 2)(x + 2) · · · (x − (n − 1))(x + (n − 1)) (4.6)

with n local maxima is to be considered. The maxima are descending for x < 0 and ascending
if x > 0. The polynomial with three local maxima is depicted in Figure 5.

The slightly modified polynomial

G(x) = −x2(x − 1 − ε)(x + 1)(x − 2)(x + 2) · · · (x − (n − 1))(x + (n − 1)) (4.7)

has maxima which are not equal and are arranged in an optimal way in order to produce the
maximal (n − 2) regular pairs.

The graph of Gε(x) with ε = 0.2 is depicted in Figure 6.
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