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A semilinear elliptic problem (Eλ) with concave-convex nonlinearities and multiple Hardy-type
terms is considered. By means of a variational method, we establish the existence and multiplicity
of positive solutions for problem (Eλ).

1. Introduction and Main Results

In this paper, we consider the following semilinear elliptic problem:

−Δu −
k∑

i=1

μi

|x − ai|2
u = Q(x)|u|2∗−2u + λ|u|q−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(Eλ)

whereΩ ⊂ R
N(N ≥ 3) is a smooth bounded domain such that the different points ai ∈ Ω, i =

1, 2, . . . , k, k ≥ 2, 0 ≤ μi < μ � ((N − 2)/2)2, λ > 0, 1 ≤ q < 2, 2∗ � 2N/(N − 2) is the critical
Sobolev exponent, and Q(x) is a positive bounded function on Ω.

Problem (Eλ) is related to the well-known Hardy inequality (see [1, 2]):

∫

Ω

|u|2
|x − a|2

dx ≤ 1
μ

∫

Ω
|∇u|2dx, ∀u ∈ H1

0(Ω), a ∈ Ω. (1.1)



2 Abstract and Applied Analysis

In this paper, for
∑k

i=1 μi ∈ [0, μ), we use H � H1
0(Ω) to denote the completion of

C∞
0 (Ω)with respect to the norm

‖u‖ = ‖u‖H =

(∫

Ω

(
|∇u|2 −

k∑

i=1

μiu
2

|x − ai|2
)
dx

)1/2

. (1.2)

By (1.1), this norm is equivalent to the usual norm (
∫
Ω |∇u|2dx)1/2.

The function u ∈ H is said to be solution of problem (Eλ) if u satisfies

∫

Ω

(
∇u∇v −

k∑

i=1

μi

|x − ai|2
uv −Q(x)|u|2∗−2uv − λ|u|q−2uv

)
dx = 0, ∀v ∈ H, (1.3)

and, by the standard elliptic regularity argument, we have that u ∈ C2(Ω \ {a1, a2, . . . , ak}) ∩
C1(Ω \ {a1, a2, . . . , ak}).

The energy functional corresponding to problem (Eλ) is defined as follows:

Jλ(u) � 1
2

∫

Ω

(
|∇u|2 −

k∑

i=1

μiu
2

|x − ai|2
)
dx − 1

2∗

∫

Ω
|u|2∗dx − λ

q

∫

Ω
|u|qdx, (1.4)

then Jλ(u) is well defined on H and belongs to C1(H,R). The solutions of problem (Eλ) are
then the critical points of the functional Jλ.

It should be mentioned that, for 0 ∈ Ω, λ > 0, 1 ≤ q < 2, 0 ≤ μ < μ, 0 ≤ s < 2 and
2∗(s) = 2(N − s)/(N − 2) is the critical Sobolev-Hardy exponent. Note that 2∗(0) = 2∗, the
following semilinear elliptic problem:

−Δu − μ

|x|2
u = Q(x)

|u|2∗(s)−2
|x|s u + λ|u|q−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)

had been extensively studied, and the existence and multiplicity results of positive solutions
had been obtained; see [3–7] and references therein.

For the case k ≥ 2, our problem (Eλ) can be regarded as a perturbation problem of the
following semilinear elliptic problem:

−Δu −
k∑

i=1

μi

|x − ai|2
u = Q(x)|u|2∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.6)

In [8], by using Morse iteration, the authors studied the asymptotic behavior of solutions
for problem (1.6); by critical point theory, the authors also proved the existence of nontrivial
solutions to problem (1.6). On the other hand, the authors in [9] also studied problem (1.6);
they discussed the corresponding Rayleigh quotient and gave both sufficient and necessary
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conditions on masses and location of singularities for the minimum to be achieved. In [9],
both the case of the whole R

N and bounded domains are taken into account.
To proceed, wemake somemotivations of the present paper. In [6], the authors studied

more general problem than problem (1.5) with μ ∈ [0, μ), s = 0, and they proved that there
exists Λ > 0 such that problem (1.5) has at least two positive solutions for all λ ∈ (0,Λ). A
natural question is whether the above results remain true for problem (Eλ)withmultisingular
inverse square potentials. In recent work [10], the author studied problem (1.1)withQ(x) ≡ 1
on Ω and showed that there exists Λ > 0 such that problem (1.1) has at least two positive
solutions for all λ ∈ (0,Λ). In this paper, we continue the study of [10] by considering the
more general function Q(x) instead of Q(x) ≡ 1 and extend the results of [10] to the more
general function Q(x).

For 0 ≤ μi < μ and ai ∈ Ω, i = 1, 2, . . . , k, we can define the best constant

Sμi � inf
u∈H\{0}

∫
Ω

(
|∇u|2 − μi

(
u2/|x − ai|2

))
dx

(∫
Ω |u|2∗dx

)2/2∗ , (1.7)

and from [11], we get that Sμi is independent of Ω. For 0 ≤ μ < μ, 0 ≤ μi < μ, setting

β �
√
μ − μ, γ �

√
μ + β, γ ′ �

√
μ − β,

βi �
√
μ − μi, γi �

√
μ + βi, γ ′i �

√
μ − βi,

(1.8)

the authors in [1, 2] proved that Sμi is attained in R
N by the function

Uμi(x − ai) =
(
22∗β2i

)1/(2∗−2)

|x − ai|γ
′
i

(
1 + |x − ai|(2∗−2)βi

)2/(2∗−2) , (1.9)

and, moreover, for all ε > 0, V ai
μi,ε(x) � ε(2−N)/2Uμi((x − ai)/ε) solve the problem

−Δu − μi

|x − ai|2
u = |u|2∗−2u in R

N \ {ai} (1.10)

and satisfy

∫

RN

⎛

⎝∣∣∇V ai
μi,ε

∣∣2 − μi
∣∣V ai

μi,ε

∣∣2

|x − ai|2

⎞

⎠dx =
∫

RN

∣∣V ai
μi,ε

∣∣2∗dx = SN/2μi . (1.11)
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Note that Sμ is a decreasing function of μ for μ ∈ [0, μ) and

Uai
μi(x) =

1
(
|x − ai|γk/

√
μ + |x − ai|γ

′
k
/
√
μ
)√μ (1.12)

also attains Sμi for i = 1, 2, . . . , k.
Now we recall the following standard definition.
Assume that X is a Banach space and X−1 is the dual space of X. The functional

I ∈ C1(X,R) is said to satisfy the Palais-Smale condition at level c ((PS)c in short), if
every sequence {un} ⊂ X satisfying I(un) → c and I ′(un) → 0 in X−1 has a convergent
subsequence.

In this paper, we will take I = Jλ and X = H. To proceed, we need the following
assumptions:

(H1) there exists an l ∈ {1, 2, . . . , k} such that

SN/2μl Q(al)(2−N)/2 = min
{
SN/2μi Q(ai)(2−N)/2, i = 1, 2, . . . , k

}
, (1.13)

(H2) Q(x) is a positive bounded function on Ω, and there exists an x0 ∈ Ω such that

Q(x0) is a strict local maximum. Furthermore, there exists τ > (
√
μ − μlN)/

√
μ

such that

Q(x0) = QM = max
Ω
Q(x),

Q(x) −Q(x0) = o
(|x − x0|τ

)
as x −→ x0,

Q(x) −Q(al) = o
(|x − al|τ

)
as x −→ al,

(1.14)

(H3) 0 ≤ μi < μ for every i = 1, 2, . . . , k and
∑k

i=1 μi < μ.

We define the following constants:

S � inf
u∈H1

0 (Ω)\{0}

∫
Ω

(
|∇u|2 −∑k

i=1 μi
(
u2/|x − ai|2

))
dx

(∫
Ω |u|2∗dx

)2/2∗ , (1.15)

Λ0 �
(

2 − q
(
2∗ − q)QM

)(2−q)/(2∗−2)(
2∗ − 2
2∗ − q

)
|Ω|−((2∗−q)/2∗)S(2∗(2−q))/(2(2∗−2))+q/2. (1.16)

The main result of this paper is the following theorem.
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Theorem 1.1. Assume that conditions (H1)–(H3) hold; then one has the following.

(i) If λ ∈ (0,Λ0), then problem (Eλ) has at least one positive solution.

(ii) If λ ∈ (0, (q/2)Λ0), then problem (Eλ) has at least two positive solutions.

This paper is organized as follows. In Section 2, we give some properties of Nehari
manifold. In Sections 3 and 4, we complete proofs of Theorem 1.1. At the end of this section,
we explain some notations employed in this paper. Lp(Ω, |x−ai|t) denotes the usual weighted
Lp(Ω) space with the weight |x−ai|t. |Ω| is the Lebesguemeasure ofΩ. Br(x) is a ball centered
at x with radius r. O(εt) denotes |O(εt)|/εt ≤ C, and on(1) denotes on(1) → 0 as n → ∞. C,
Ci will denote various positive constants and omit dx in the integration for convenience.

2. Nehari Manifold

In this section, we will give some properties of Nehari manifold. As the energy functional Jλ
is not bounded below onH, it is useful to consider the functional on the Nehari manifold

Mλ =
{
u ∈ H \ {0} :

〈
J ′λ(u), u

〉
= 0
}
. (2.1)

Thus, u ∈ Mλ if and only if

〈
J ′λ(u), u

〉
= ‖u‖2 −

∫

Ω
Q(x)|u|2∗ − λ

∫

Ω
|u|q = 0. (2.2)

Note that Mλ contains every nonzero solution of problem (Eλ). Moreover, we have the
following results.

Lemma 2.1. The energy functional Jλ is coercive and bounded below on Mλ.

Proof. If u ∈ Mλ, then by (1.15), (2.2), and Hölder inequality,

Jλ(u) =
2∗ − 2
22∗

‖u‖2 − λ
(
2∗ − q
2∗q

)∫

Ω
|u|q

≥ 1
N

‖u‖2 − λ
(
2∗ − q
2∗q

)
|Ω|(2∗−q)/2∗S−q/2‖u‖q.

(2.3)

Thus, Jλ is coercive and bounded below on Mλ.

The Nehari manifold is closely linked to the behavior of the function of the form
ϕu : t → Jλ(tu) for t > 0. Such maps are known as fibering maps and were introduced by
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Drábek and Pohozaev in [12] and are also discussed by Brown and Zhang [13]. If u ∈ H, we
have

ϕu(t) =
t2

2
‖u‖2 − t2

∗

2∗

∫

Ω
Q(x)|u|2∗ − λt

q

q

∫

Ω
|u|q,

ϕ′
u(t) = t‖u‖2 − t2

∗−1
∫

Ω
Q(x)|u|2∗ − λtq−1

∫

Ω
|u|q,

ϕ′′
u(t) = ‖u‖2 − (2∗ − 1)t2

∗−2
∫

Ω
Q(x)|u|2∗ − λ(q − 1

)
tq−2

∫

Ω
|u|q.

(2.4)

It is easy to see that

tϕ′
u(t) = ‖tu‖2 −

∫

Ω
Q(x)|tu|2∗ − λ

∫

Ω
|tu|q, (2.5)

and so, for u ∈ H \ {0} and t > 0, ϕ′
u(t) = 0 if and only if tu ∈ Mλ, that is, the critical points

of ϕu correspond to the points on the Nehari manifold. In particular, ϕ′
u(1) = 0 if and only if

u ∈ Mλ. Thus, it is natural to split Mλ into three parts corresponding to local minima, local
maxima, and points of inflection. Accordingly, we define

M+
λ =

{
u ∈ Mλ : ϕ′′

u(1) > 0
}
,

M0
λ =

{
u ∈ Mλ : ϕ′′

u(1) = 0
}
,

M−
λ =

{
u ∈ Mλ : ϕ′′

u(1) < 0
}

(2.6)

and note that, if u ∈ Mλ, that is, ϕ′
u(1) = 0, then

ϕ′′
u(1) =

(
2 − q)‖u‖2 − (2∗ − q)

∫

Ω
Q(x)|u|2∗ (2.7)

= λ(2 − 2∗)‖u‖2 − (q − 2∗
) ∫

Ω
|u|q. (2.8)

We now derive some basic properties of M+
λ,M0

λ, and M−
λ .

Lemma 2.2. Assume that u0 is a local minimizer for Jλ on Mλ and u0 /∈ M0
λ
. Then J ′

λ
(u0) = 0 in

H−1.

Proof. Our proof is almost the same as that in Brown-Zhang [13, Theorem 2.3] (or see Binding
et al. [14]).

Moreover, we have the following result.

Lemma 2.3. If λ ∈ (0,Λ0), thenM0
λ
= ∅, where Λ0 is the same as in (1.16).
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Proof. Suppose the contrary. Then there exists λ ∈ (0,Λ0) such that M0
λ /= ∅. Then, for u ∈ M0

λ
by (1.15) and (2.7), we have that

2 − q
2∗ − q‖u‖

2 =
∫

Ω
Q(x)|u|2∗ ≤ QMS

−2∗/2‖u‖2∗ , (2.9)

and so

‖u‖ ≥
(

2 − q
(
2∗ − q)QM

)1/(2∗−2)
S2∗/(2(2∗−2)). (2.10)

Similarly, using (1.15), (2.8), and Hölder inequality, we have that

‖u‖2 = λ2
∗ − q
2∗ − 2

∫

Ω
|u|q ≤ λ2

∗ − q
2∗ − 2

|Ω|(2∗−q)/2∗S−q/2‖u‖q, (2.11)

which implies that

‖u‖ ≤
(
λ
2∗ − q
2∗ − 2

|Ω|(2∗−q)/2∗
)1/(2−q)

S−q/(2(2−q)). (2.12)

Hence, we must have

λ ≥
(

2 − q
(
2∗ − q)QM

)(2−q)/(2∗−2)(
2∗ − 2
2∗ − q

)
|Ω|−(2∗−q)/2∗S(2∗(2−q))/(2(2∗−2))+(q/2) = Λ0, (2.13)

which is a contradiction. This completes the proof.

In order to get a better understanding of the Nehari manifold and fibering maps, we
consider the function ψu :R+ → R defined by

ψu(t) = t2−q‖u‖2 − t2∗−q
∫

Ω
Q(x)|u|2∗ for t > 0. (2.14)

Clearly tu ∈ Mλ if and only if ψu(t) = λ
∫
Ω |u|q. Moreover,

ψ ′
u(t) =

(
2 − q)t1−q‖u‖2 − (2∗ − q)t2∗−q−1

∫

Ω
Q(x)|u|2∗ for t > 0, (2.15)

and so it is easy to see that, if tu ∈ Mλ, then tq−1ψ ′
u(t) = ϕ

′′
u(t). Hence, tu ∈ M+

λ (or tu ∈ M−
λ) if

and only if ψ ′
u(t) > 0 (or ψ ′

u(t) < 0).
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For u ∈ H \ {0}, by (2.15), ψu has a unique critical point at t = tmax(u), where

tmax(u) =

( (
2 − q)‖u‖2

(
2∗ − q) ∫ΩQ(x)|u|2∗

)1/(2∗−2)
> 0, (2.16)

and clearly ψu is strictly increasing on (0, tmax(u)) and strictly decreasing on (tmax(u),∞)with
limt→∞ψu(t) = −∞. Moreover, if λ ∈ (0,Λ0), then

ψu(tmax(u)) =

[(
2 − q
2∗ − q

)(2−q)/(2∗−2)
−
(

2 − q
2∗ − q

)(2∗−q)/(2∗−2)] ‖u‖(2(2∗−q))/(2∗−2)
(∫

ΩQ(x)|u|2∗
)(2−q)/(2∗−2)

= ‖u‖q
(
2∗ − 2
2∗ − q

)(
2 − q
2∗ − q

)(2−q)/(2∗−2)( ‖u‖2∗
∫
ΩQ(x)|u|2∗

)(2−q)/(2∗−2)

≥ ‖u‖q
(
2∗ − 2
2∗ − q

)(
2 − q

(
2∗ − q)QM

)(2−q)/(2∗−2)
S(2∗(2−q))/(2(2∗−2))

> λ|Ω|(2∗−q)/2∗S−q/2‖u‖q

≥ λ
∫

Ω
|u|q.

(2.17)

Therefore, we have the following lemma.

Lemma 2.4. Let λ ∈ (0,Λ0). For each u ∈ H \ {0}, one has the following:

(i) there exist unique 0 < t+ = t+(u) < tmax(u) < t− = t−(u) such that t+u ∈ M+
λ
, t−u ∈

M−
λ, ϕu is decreasing on (0, t+), increasing on (t+, t−) and decreasing on (t−,∞)

Jλ(t+u) = inf
0≤t≤tmax(u)

Jλ(tu), Jλ
(
t−u
)
= sup

t≥t+
Jλ(tu), (2.18)

(ii) M−
λ
= {u ∈ H \ {0} : (1/‖u‖)t−(u/‖u‖) = 1},

(iii) there exists a continuous bijection between U = {u ∈ H \ {0} : ‖u‖ = 1} and M−
λ
. In

particular, t− is a continuous function for u ∈ H \ {0}.

Proof. For the proof see Wu [15, Lemma 2.6].

3. Existence of Ground State

First, we remark that it follows from Lemma 2.3 that

Mλ = M+
λ ∪M−

λ (3.1)
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for all λ ∈ (0,Λ0). Furthermore, by Lemma 2.4 it follows that M+
λ and M−

λ are nonempty, and
by Lemma 2.1 we may define

αλ = inf
u∈Mλ

Jλ(u), α+λ = inf
u∈M+

λ

Jλ(u), α−λ = inf
u∈M−

λ

Jλ(u). (3.2)

Then we get the following result.

Theorem 3.1. One has the following.

(i) If λ ∈ (0,Λ0), then one has α+λ < 0.

(ii) If λ ∈ (0, (q/2)Λ0), then α−λ > d0 for some d0 > 0.

In particular, for each λ ∈ (0, (q/2)Λ0), one has α+λ = αλ.

Proof. (i) Let u ∈ M+
λ
. By (2.7),

2 − q
2∗ − q‖u‖

2 >

∫

Ω
Q(x)|u|2∗ , (3.3)

and so

Jλ(u) =
(
1
2
− 1
q

)
‖u‖2 +

(
1
q
− 1
2∗

)∫

Ω
Q(x)|u|2∗

<

[(
1
2
− 1
q

)
+
(
1
q
− 1
2∗

)(
2 − q
2∗ − q

)]
‖u‖2

= − (2
∗ − 2)

(
2 − q)

22∗q
‖u‖2 < 0.

(3.4)

Therefore, α+
λ
< 0.

(ii) Let u ∈ M−
λ . By (2.7),

2 − q
2∗ − q‖u‖

2 <

∫

Ω
Q(x)|u|2∗ . (3.5)

Moreover, by (1.15), we have that

∫

Ω
Q(x)|u|2∗ ≤ QMS

−2∗/2‖u‖2∗ . (3.6)

This implies that

‖u‖ >
(

2 − q
(
2∗ − q)QM

)1/(2∗−2)
SN/4 ∀u ∈ M−

λ. (3.7)
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By (2.3) and (3.7), we have that

Jλ(u) ≥ ‖u‖q
[
1
N

‖u‖2−q − λ
(
2∗ − q
2∗q

)
S−q/2|Ω|(2∗−q)/2∗

]

>

(
2 − q

(
2∗ − q)QM

)q/(2∗−2)

× SNq/4

⎡

⎣ 1
N

(
2 − q

(
2∗ − q)QM

)(2−q)/(2∗−2)
S((2−q)N)/4 − λ

(
2∗ − q
2∗q

)
S−q/2|Ω|(2∗−q)/2∗

⎤

⎦.

(3.8)

Thus, if λ ∈ (0, (q/2)Λ0), then

Jλ(u) > d0 ∀u ∈ M−
λ, (3.9)

for some positive constant d0. This completes the proof.

Remark 3.2. (i) If λ ∈ (0,Λ0), then by (1.15), (2.8), and Hölder inequality, for each u ∈ M+
λ , we

have that

‖u‖2 < λ2
∗ − q
2∗ − 2

∫

Ω
|u|q

≤ λ2
∗ − q
2∗ − 2

S−q/2|Ω|(2∗−q)/2∗‖u‖q

≤ Λ0
2∗ − q
2∗ − 2

S−q/2|Ω|(2∗−q)/2∗‖u‖q,

(3.10)

and so

‖u‖ <
(
Λ0

2∗ − q
2∗ − 2

S−q/2|Ω|(2∗−q)/2∗
)1/(2−q)

∀u ∈ M+
λ. (3.11)

(ii) If λ ∈ (0, (q/2)Λ0), then by Lemma 2.4 (i) and Theorem 3.1 (ii), for each u ∈ M−
λ

we have that

Jλ(u) = sup
t≥0

Jλ(tu). (3.12)

Now, we use the Ekeland variational principle [16] to get the following results.

Proposition 3.3. (i) If λ ∈ (0,Λ0), then there exists a (PS)αλ sequence {un} ⊂ Mλ inH for Jλ.
(ii) If λ ∈ (0, (q/2)Λ0), then there exists a (PS)α−

λ
sequence {un} ⊂ M−

λ inH for Jλ.

Proof. The proof is almost the same as that in Wu [17, Proposition 9].
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Now, we establish the existence of a local minimum for Jλ on M+
λ .

Theorem 3.4. Assume that condition (H) holds. If λ ∈ (0,Λ0), then Jλ has a minimizer uλ in M+
λ

and it satisfies the following:

(i) Jλ(uλ) = αλ = α+λ ,

(ii) uλ is a positive solution of problem (Eλ),

(iii) ‖uλ‖ → 0 as λ → 0+.

Proof. By Proposition 3.3 (i), there is a minimizing sequence {un} for Jλ on Mλ such that

Jλ(un) = αλ + on(1), J ′(un) = on(1) in H−1(Ω). (3.13)

Since Jλ is coercive on Mλ (see Lemma 2.1), we get that {un} is bounded in H. Going if
necessary to a subsequence, we can assume that there exists uλ ∈ H such that

un ⇀ uλ weakly in H,

un −→ uλ almost everywhere in Ω,

un −→ uλ strongly in Ls(Ω) ∀1 ≤ s < 2∗.

(3.14)

Thus, we have that

λ

∫

Ω
|un|q = λ

∫

Ω
|uλ|q + on(1) as n −→ ∞. (3.15)

First, we claim that uλ is a nonzero solution of problem (Eλ). By (3.13) and (3.14), it is easy to
see that uλ is a solution of problem (Eλ). From un ∈ Mλ and (2.2), we deduce that

λ

∫

Ω
|un|q =

q(2∗ − 2)
2
(
2∗ − q)‖un‖

2 − 2∗q
2∗ − qJλ(un). (3.16)

Let n → ∞ in (3.16); by (3.13), (3.15), and αλ < 0, we get

λ

∫

Ω
|uλ|q ≥ − 2∗q

2∗ − qαλ > 0. (3.17)

Thus, uλ ∈ Mλ is a nonzero solution of problem (Eλ). Now we prove that un → uλ strongly
inH and Jλ(uλ) = αλ. By (3.16), if u ∈ Mλ, then

Jλ(u) =
1
N

‖u‖2 − λ2
∗ − q
2∗q

∫

Ω
|u|q. (3.18)
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In order to prove that Jλ(uλ) = αλ, it suffices to recall that un, uλ ∈ Mλ, by (3.18) and applying
Fatou’s lemma to get

αλ ≤ Jλ(uλ) = 1
N

‖uλ‖2 − λ
2∗ − q
2∗q

∫

Ω
|uλ|q

≤ lim inf
n→∞

(
1
N

‖un‖2 − λ
2∗ − q
2∗q

∫

Ω
|un|q

)

≤ lim inf
n→∞

Jλ(un) = αλ.

(3.19)

This implies that Jλ(uλ) = αλ and limn→∞‖un‖2 = ‖uλ‖2. Let vn = un − uλ; then Brézis-Lieb’s
lemma [18] implies that

‖vn‖2 = ‖un‖2 − ‖uλ‖2 + on(1). (3.20)

Therefore, un → uλ strongly inH. Moreover, we have uλ ∈ M+
λ
. On the contrary, if uλ ∈ M−

λ
,

then, by Lemma 2.4, there are unique t+0 and t−0 such that t+0uλ ∈ M+
λ
and t−0uλ ∈ M−

λ
. In

particular, we have t+0 < t
−
0 = 1. Since

d

dt
Jλ
(
t+0uλ

)
= 0,

d2

dt2
Jλ
(
t+0uλ

)
> 0, (3.21)

there exists t+0 < t ≤ t−0 such that Jλ(t+0uλ) < Jλ(tuλ). By Lemma 2.4 (i),

Jλ
(
t+0uλ

)
< Jλ

(
tuλ
)
≤ Jλ

(
t−0uλ

)
= Jλ(uλ), (3.22)

which is a contradiction. Since Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈ M+
λ
, by Lemma 2.2, wemay assume

that uλ is a nonzero nonnegative solution of problem (Eλ). By Harnack inequality [19], we
deduce that uλ > 0 in Ω. Finally, by (3.10), we have that

‖uλ‖2−q < λ
2∗ − q
2∗ − 2

|Ω|(2∗−q)/2∗S−q/2, (3.23)

and so ‖uλ‖ → 0 as λ → 0+.

4. Proof of Theorem 1.1

In this section, we will establish the existence of the second positive solution of problem (Eλ)
by proving that Jλ attains a local minimum on M−

λ
.

Lemma 4.1. If {un} ⊂ H is a (PS)c sequence for Jλ, then {un} is bounded inH.

Proof. The argument is similar to that of [10, Lemma 4.1], and here we omit the details.
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We recall that

Sμi � inf
u∈H\{0}

∫
Ω

(
|∇u|2 − μi

(
u2/|x − ai|2

))
dx

(∫
Ω |u|2∗dx

)2/2∗ . (4.1)

Lemma 4.2. Assume that conditions (H1)–(H3) holds. If {un} ⊂ H is a (PS)c sequence for Jλ with

0 < c < c∗ � 1
N

min

⎧
⎨

⎩
SN/2μl

Q(al)(N−2)/2 ,
SN/20

Q
(N−2)/2
M

⎫
⎬

⎭, (4.2)

then there exists a subsequence of {un} converging weakly to a nonzero solution of problem (Eλ).

Proof. Let {un} ⊂ H be a (PS)c sequence for Jλ with c ∈ (0, c∗). We know from Lemma 4.1 that
{un} is bounded inH, and then there exists a subsequence of {un} (still denoted by {un}) and
u0 ∈ H such that

un ⇀ u0 weakly in H,

un ⇀ u0 weakly in L2
(
Ω, |x − ai|−2

)
for 1 ≤ i ≤ k,

un ⇀ u0 weakly in L2∗(Ω),

un −→ u0 almost everywhere in Ω,

un −→ u0 strongly in Ls(Ω) ∀1 ≤ s < 2∗.

(4.3)

It is easy to see that J ′
λ
(u0) = 0 and

λ

∫

Ω
|un|q = λ

∫

Ω
|u0|q + on(1). (4.4)

Next we verify that u0 /≡ 0. Arguing by contradiction, we assume that u0 ≡ 0. By the
concentration compactness principle (see [20, 21]), there exist a subsequence, still denoted
by {un}, at most countable set J, a set of different points {xj}j∈J ⊂ Ω \ {a1, a2, . . . , ak},
nonnegative real numbers μ̃xj , ν̃xj , j ∈ J, and nonnegative real numbers μ̃ai , γ̃ai , ν̃ai (1 ≤
i ≤ k) such that

|∇un|2 ⇀ dμ̃ ≥ |∇u0|2 +
∑

j∈J
μ̃xj δxj +

k∑

i=1

μ̃aiδai ,

u2n

|x − ai|2
⇀ dγ̃ =

u20

|x − ai|2
+ γ̃aiδai ,

|un|2
∗
⇀ dν̃ = |u0|2

∗
+
∑

j∈J
ν̃xj δxj +

k∑

i=1

ν̃aiδai ,

(4.5)
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where δx is the Dirac mass at x. By the Sobolev-Hardy inequalities, we infer that

Sμi ν̃ai
2/2∗ ≤ μ̃ai − μiγ̃ai , 1 ≤ i ≤ k. (4.6)

We claim that J is finite and, for any j ∈ J, either

ν̃xj = 0 or Q
(
xj
)
ν̃xj ≥

SN/20

Q
(N−2)/N
M

. (4.7)

In fact, let ε > 0 be small enough such that ai /∈ Bε(xj) for all 1 ≤ i ≤ k and Bε(xi) ∩
Bε(xj) = ∅ for i /= j, i, j ∈ J. Let φjε be a smooth cut-off function centered at xj such that
0 ≤ φjε ≤ 1, φjε = 1 for |x − xj | ≤ ε/2, φjε = 0 for |x − xj | ≥ ε and |∇φjε| ≤ 4/ε. Then

lim
ε→ 0

lim
n→∞

∫

Ω
|∇un|2φjε = lim

ε→ 0

∫

Ω
φ
j
εdμ̃ ≥ lim

ε→ 0

(∫

Ω
|∇u0|2φjε + μ̃xj

)
= μ̃xj ,

lim
ε→ 0

lim
n→∞

∫

Ω

u2n

|x − ai|2
φ
j
ε = lim

ε→ 0

∫

Ω
φ
j
εdγ̃ = lim

ε→ 0

∫

Ω

u20

|x − ai|2
φ
j
ε = 0,

lim
ε→ 0

lim
n→∞

∫

Ω
Q(x)|un|2

∗
φ
j
ε= lim

ε→ 0

∫

Ω
Q(x)φjεdν̃= lim

ε→ 0

(∫

Ω
Q(x)|u0|2

∗
φ
j
ε +Q

(
xj
)
ν̃xj

)
=Q

(
xj
)
ν̃xj ,

lim
ε→ 0

lim
n→∞

∫

Ω
un∇un∇φjε = 0.

(4.8)

Thus we have that

0 = lim
ε→ 0

lim
n→∞

〈
J ′λ(un), unφ

j
ε

〉
≥ μ̃xj −Q

(
xj
)
ν̃xj . (4.9)

By the Sobolev inequality, S0ν̃xj
2/2∗ ≤ μ̃xj for j ∈ J; hence we deduce that

ν̃xj = 0 or Q
(
xj
)
ν̃xj ≥

SN/20

Q
(N−2)/2
M

, (4.10)

which implies that J is finite.
Now we consider the possibility of concentraction at points ai(1 ≤ i ≤ k). For ε > 0

be small enough such that xj /∈ Bε(ai) for all j ∈ J and Bε(ai) ∩ Bε(aj) = ∅ for i /= j and
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1 ≤ i, j ≤ k. Let ϕiε be a smooth cut-off function centered at ai such that 0 ≤ ϕiε ≤ 1, ϕiε = 1 for
|x − ai| ≤ ε/2, ϕiε = 0 for |x − ai| ≥ ε and |∇ϕiε| ≤ 4/ε. Then

lim
ε→ 0

lim
n→∞

∫

Ω
|∇un|2ϕiε = lim

ε→ 0

∫

Ω
ϕiεdμ̃ ≥ lim

ε→ 0

(∫

Ω
|∇u0|2ϕiε + μ̃ai

)
= μ̃ai ,

lim
ε→ 0

lim
n→∞

∫

Ω

u2n

|x − ai|2
ϕiε = lim

ε→ 0

∫

Ω
ϕi
εdγ̃ = lim

ε→ 0

(∫

Ω

u20

|x − ai|2
ϕiε + γ̃ai

)
= γ̃ai ,

lim
ε→ 0

lim
n→∞

∫

Ω
Q(x)|un|2

∗
ϕiε = lim

ε→ 0

∫

Ω
Q(x)ϕiεdν̃ = lim

ε→ 0

(∫

Ω
Q(x)|u0|2

∗
ϕiε +Q(ai)ν̃ai

)
= Q(ai)ν̃ai ,

lim
ε→ 0

lim
n→∞

∫

Ω

u2n∣∣x − aj
∣∣2
ϕiε = 0 for j /= i,

lim
ε→ 0

lim
n→∞

∫

Ω
un∇un∇ϕiε = 0.

(4.11)

Thus we have that

0 = lim
ε→ 0

lim
n→∞

〈
J ′λ(un), unϕ

i
ε

〉
≥ μ̃ai − μiγ̃ai −Q(ai)ν̃ai . (4.12)

From (4.6) and (4.12)we derive that

Sμi ν̃ai
2/2∗ ≤ Q(ai)ν̃ai , (4.13)

and then either ν̃ai = 0 or ν̃ai ≥ (Sμi/Q(ai))
N/2 for all 1 ≤ i ≤ k.

On the other hand, from the above arguments and (4.4), we conclude that

c = lim
n→∞

(
Jλ(un) − 1

2
〈
J ′λ(un), un

〉)

=
1
N

lim
n→∞

∫

Ω
Q(x)|un|2

∗
+ λ
(
1
2
− 1
q

)∫

Ω
|u0|q

=
1
N

⎛

⎝
∫

Ω
Q(x)|u0|2

∗
+
∑

j∈J
Q
(
xj
)
ν̃xj +

k∑

i=1

Q(ai)ν̃ai

⎞

⎠ + λ
(
1
2
− 1
q

)∫

Ω
|u0|q

=
1
N

⎛

⎝
∑

j∈J
Q
(
xj
)
ν̃xj +

k∑

i=1

Q(ai)ν̃ai

⎞

⎠ + Jλ(u0).

(4.14)



16 Abstract and Applied Analysis

If ν̃ai = ν̃xj = 0 for all i ∈ {1, 2, . . . , k} and j ∈ J, then c = 0 which contradicts the
assumption that c > 0. On the other hand, if there exists an i ∈ {1, 2, . . . , k} such that ν̃ai /= 0 or
there exists a j ∈ J with ν̃xj /= 0, then we infer that

c ≥ 1
N

min

⎧
⎨

⎩
SN/2μ1

Q(a1)(N−2)/2 ,
SN/2μ2

Q(a2)(N−2)/2 , . . . ,
SN/2μk

Q(ak)(N−2)/2 ,
SN/20

Q
(N−2)/2
M

⎫
⎬

⎭

=
1
N

min

⎧
⎨

⎩
SN/2μl

Q(al)(N−2)/2 ,
SN/20

Q
(N−2)/2
M

⎫
⎬

⎭

= c∗,

(4.15)

which also contradicts the assumption that c < c∗. Therefore u0 is a nonzero solution of
problem (Eλ).

Lemma 4.3. Assume that conditions (H1)–(H3) hold. Then for any λ > 0, there exist vλ ∈ H1
0(Ω)

such that

sup
t≥0

Jλ(tvλ) < c∗. (4.16)

In particular, α−
λ
< c∗ for all λ ∈ (0,Λ0) where Λ0 is the same as in (1.16).

Proof. From (H2), we know that there exist ρ0 > 0, τ > (
√
μ − μlN)/

√
μ such that B2ρ0(al) ⊂

Ω, B2ρ0(x0) ⊂ Ω,

Q(x) = Q(al) + o
(|x − al|τ

) ∀x ∈ B2ρ0(al),

Q(x) = QM + o
(|x − x0|τ

) ∀x ∈ B2ρ0(x0).
(4.17)

To prove this lemma, we need to distinguish the following two cases:

case I:
SN/2μl

Q(al)(N−2)/2 <
SN/20

Q
(N−2)/2
M

, case II:
SN/2μl

Q(al)(N−2)/2 ≥ SN/20

Q
(N−2)/2
M

. (4.18)

We first study Case I. The definition of c∗ implies that

c∗ =
SN/2μl

NQ(al)(N−2)/2 . (4.19)

Motivated by some ideas of selecting cut-off functions in [22], we take such cut-off function
ηal(x) that satisfies ηal(x) ∈ C∞

0 (B2δ0(al)), η
al(x) = 1 for |x − al| < δ0, ηal(x) = 0 for |x − al| >
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2δ0, 0 ≤ ηal ≤ 1 and |∇ηal | ≤ C where 0 < δ0 < min{(1/2)|ai − aj |, i, j = 1, 2, . . . , k, i /= j}, δ0 ≤
ρ0, and B2δ0(al) ⊂ Ω. For ε > 0, let

ualμl,ε(x) =
ε(N−2)/4ηal(x)

[
ε|x − al|γ

′
l
/
√
μ + |x − al|γl/

√
μ
]√μ

, (4.20)

where μ = ((N − 2)/2)2, γ ′
l
=
√
μ −

√
μ − μl, and γl =

√
μ +

√
μ − μ

l
.

We define the following functions on the interval [0,+∞):

g(t) � Jλ
(
tualμl,ε

)

=
t2

2

∫

Ω

⎛

⎝∣∣∇ualμl,ε
∣∣2 − μl

(
ualμl,ε

)2

|x − al|2

⎞

⎠ − t2
∗

2∗

∫

Ω
Q(x)

∣∣ualμl,ε
∣∣2∗

− t2

2

k∑

i /= l, i=1

μi

∫

Ω

(
ualμl,ε

)2

|x − ai|2
− λt

q

q

∫

Ω

∣∣ualμl,ε
∣∣q

≤ t2

2

∫

Ω

⎛

⎝∣∣∇ualμl,ε
∣∣2 − μl

(
ualμl,ε

)2

|x − al|2

⎞

⎠ − t2
∗

2∗

∫

Ω
Q(x)

∣∣ualμl,ε
∣∣2∗ − λt

q

q

∫

Ω

∣∣ualμl,ε
∣∣q,

g(t) � t2

2

∫

Ω

⎛

⎝∣∣∇ualμl,ε
∣∣2 − μl

(
ualμl,ε

)2

|x − al|2

⎞

⎠ − t2
∗

2∗

∫

Ω
Q(x)

∣∣ualμl,ε
∣∣2∗ .

(4.21)

From Hsu and Lin [6, Lemma 5.3] and after a detailed calculation, we have the
following estimates:

(∫

Ω
Q(x)

∣∣ualμl,ε
∣∣2∗
)2/2∗

=
(∫

RN

Q(al)
∣∣Ual

μl

∣∣2∗
)2/2∗

+O
(
εN/2

)
,

∫

Ω

⎛

⎝∣∣∇ualμl,ε
∣∣2 − μl

(
ualμl,ε

)2

|x − al|2

⎞

⎠ =
∫

RN

⎛

⎝∣∣∇Ual
μl

∣∣2 − μl
(
Ual
μl

)2

|x − al|2

⎞

⎠ +O
(
ε(N−2)/2

)
,

(4.22)

sup
t≥0

g(t) =
SN/2μl

NQ(al)(N−2)/2 +O
(
ε(N−2)/2

)
, (4.23)

whereUal
μl is defined as in (1.12).

Using the definitions of g(t), ualμl,ε, we get

g(t) ≤ t2

2

∫

Ω

⎛

⎝∣∣∇ualμl,ε
∣∣2 − μl

(
ualμl,ε

)2

|x − al|2

⎞

⎠, ∀t ≥ 0, ∀λ > 0. (4.24)
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Combining this with (4.22), let ε ∈ (0, 1); then there exists t0 ∈ (0, 1) independent of ε such
that

sup
0≤t≤t0

g(t) <
SN/2μl

NQ(al)(N−2)/2 , ∀λ > 0, ∀ε ∈ (0, 1). (4.25)

Using the definitions of g(t) and ualμl,ε and by (4.23), we have that

sup
t≥t0

g(t) = sup
t≥t0

(
g(t) − tq

q
λ

∫

Ω

∣∣ualμl,ε
∣∣q
)

≤ SN/2μl

NQ(al)(N−2)/2 +O
(
ε(N−2)/2

)
− λt

q

0

q

∫

Bδ0 (al)

∣∣ualμl,ε
∣∣q.

(4.26)

Let 0 < ε ≤ δ(γl−γ
′
l
)/
√
μ

0 ; then we have that

∫

Bδ0 (al)

∣∣ualμl,ε
∣∣q =

∫

Bδ0 (al)

ε(q(N−2))/4

[
ε|x − al|γ

′
l
/
√
μ + |x − al|γl/

√
μ
]√μq

≥
∫

Bδ0 (al)

ε(q(N−2))/4

(
(2δ

γl/
√
μ

0

)√μq

= C1
(
N, q, μl, δ0

)
ε(q(N−2))/4.

(4.27)

Combining with (4.26) and (4.27), for all ε ∈ (0, δ
(γl−γ ′l )/

√
μ

0 ), we get

sup
t≥t0

g(t) ≤ SN/2μl

NQ(al)(N−2)/2 +O
(
ε(N−2)/2) − t

q

0

q
C1λε

(q(N−2))/4. (4.28)

Hence, for any λ > 0, we can choose small positive constant ελ < min{1, δ(γl−γ
′
l
)/
√
μ

0 } such that

O
(
ελ

(N−2)/2
)
− t

q

0

q
C1λελ

(q(N−2))/4 < 0. (4.29)

From (4.25), (4.28), and (4.29), we can deduce that, for any λ > 0, there exists ελ > 0 such that

sup
t≥0

Jλ
(
tualμl,ελ

)
<

SN/2μl

NQ(al)(N−2)/2 . (4.30)
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From Lemma 2.4 (i), the definition of α−λ , and (4.30), we can deduce that, for any λ ∈
(0,Λ0), there exists tελ > 0 such that tελuελ ∈ N−

λ
and

α−λ ≤ Jλ
(
tελu

al
μl,ελ

) ≤ sup
t≥0

Jλ
(
tualμl,ελ

)
<

SN/2μl

NQ(al)(N−2)/2 . (4.31)

Hence Case I is verified.
Next, we investigate Case II. In this case we have that

c∗ =
SN/20

NQ
(N−2)/2
M

=
SN/20

NQ(x0)(N−2)/2 ≤ SN/2μl

NQ(al)(N−2)/2 , (4.32)

where x0 is the maximum point of Q(x) defined as in (H2).
If x0 = ai for some i ∈ {1, 2, . . . , k}, from the fact that Sμi < S0, we obtain

c∗ =
SN/20

NQ(ai)(N−2)/2 >
SN/2μi

NQ(ai)(N−2)/2 ≥ SN/2μl

NQ(al)(N−2)/2 , (4.33)

which is impossible. Hence x0 /=ai for any i ∈ {1, 2, . . . , k}.
For ε > 0, let

ux00,ε(x) =
ε(N−2)/4ηx0(x)

(
ε + |x − x0|2

)(N−2)/2 , (4.34)

where ηx0(x) is a cut-off function that satisfies ηx0(x) ∈ C∞
0 (B2δ0(x0)), η

x0(x) = 1 for |x−x0| <
δ0, η

x0(x) = 0 for |x − x0| > 2δ0, 0 ≤ ηx0 ≤ 1 and |∇ηx0 | ≤ C where 0 < δ0 < (1/2)min{|x0 −
a1|, |x0−a2|, . . . , |x0−ak|, 2ρ0} and B2δ0(x0) ⊂ Ω. Consider the functions defined on the interval
[0,+∞):

h(t) � t2

2

∫

Ω

∣∣∣∇ux00,ε
∣∣∣
2 − t2

∗

2∗

∫

Ω
Q(x)

∣∣∣ux00,ε
∣∣∣
2∗

,

h(t) � Jλ
(
tux00,ε

)
= h(t) − t2

2

k∑

i=1

μi

∫

Ω

(
ux00,ε

)2

|x − ai|2
− λt

q

q

∫

Ω

∣∣∣ux00,ε
∣∣∣
q
.

(4.35)

By the same argument as in Case I, we can deduce that

sup
t≥0

h(t) =
SN/20

NQ(x0)(N−2)/2 +O
(
ε(N−2)/2

)
,

∫

Ω

∣∣∣ux00,ε
∣∣∣
q ≥ C2

(
N, q, δ0

)
εq(N−2)/4 ∀ε ∈

(
0, δ20

)
,

(4.36)
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and, for any λ > 0, there exists 0 < ελ < min{1, δ20} such that

sup
t≥0

Jλ
(
tux00,ελ

)
< sup

t≥0

(
h(t) − λt

q

q

∫

Ω

∣∣∣ux00,ελ
∣∣∣
q
)
<

SN/20

NQ(x0)(N−2)/2 . (4.37)

From Lemma 2.4 (i), the definition of α−
λ
, and (4.37), we can deduce that, for any λ ∈

(0,Λ0), there exists tελ > 0 such that tελuελ ∈ N−
λ
and

α−λ ≤ Jλ
(
tελu

x0
0,ελ

)
≤ sup

t≥0
Jλ
(
tux00,ελ

)
<

SN/20

NQ(x0)(N−2)/2 . (4.38)

Hence Case II is proved. From Case I and II we conclude Lemma 4.3.

Now, we establish the existence of a local minimum of Jλ on M−
λ .

Theorem 4.4. Assume that condition (H) holds. If λ ∈ (0, (q/2)Λ0), then Jλ has a minimizerUλ in
M−

λ
, and it satisfies the following:

(i) Jλ(Uλ) = α−λ ,

(ii) Uλ is a positive solution of problem (Eλ).

Proof. If λ ∈ (0, (q/2)Λ0), then, by Theorem 3.1 (ii), Proposition 3.3 (ii), and Lemma 4.3, there
exists a (PS)α−

λ
sequence {un} ⊂ M−

λ
inH for Jλ with α−

λ
∈ (0, c∗). From Lemma 4.2, there exist

a subsequence still denoted by {un} and a nonzero solution Uλ ∈ H of problem (Eλ) such
that un ⇀ Uλ weakly inH. Now we prove that un → Uλ strongly inH and Jλ(Uλ) = α−λ . By
(3.18), if u ∈ Mλ, then

Jλ(u) =
1
N

‖u‖2 − λ2
∗ − q
2∗q

∫

Ω
|u|q. (4.39)

First, we prove thatUλ ∈ M−
λ
. On the contrary, ifUλ ∈ M+

λ
, then by, the definition of

M−
λ =

{
u ∈ Mλ : ϕ′′

u(1) < 0
}

(4.40)

and Lemma 2.3, we have ‖Uλ‖2 < lim infn→∞‖un‖2. By Lemma 2.4 (i), there exists a unique
t−
λ
such that t−

λ
Uλ ∈ M−

λ
. Since un ∈ M−

λ
, by (3.12) and (4.39), we have Jλ(un) ≥ Jλ(tun) for all

t ≥ 0 and

α−λ ≤ Jλ
(
t−λUλ

)
< lim inf

n→∞
Jλ
(
t−λun

) ≤ lim inf
n→∞

Jλ(un) = α−λ, (4.41)

and this is a contradiction.
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In order to prove that Jλ(Uλ) = α−λ , it suffices to recall that un, Uλ ∈ M−
λ for all n, by

(4.39) and applying Fatou’s lemma to get

α−λ ≤ Jλ(Uλ) =
1
N

‖Uλ‖2 − λ
2∗ − q
2∗q

∫

Ω
|Uλ|q

≤ lim inf
n→∞

(
1
N

‖un‖2 − λ
2∗ − q
2∗q

∫

Ω
|un|q

)

≤ lim inf
n→∞

Jλ(un) = α−λ.

(4.42)

This implies that Jλ(Uλ) = α−λ and limn→∞‖un‖2 = ‖Uλ‖2. Let vn = un −Uλ; then Brézis-Lieb’s
lemma [18] implies that

‖vn‖2 = ‖un‖2 − ‖Uλ‖2 + on(1). (4.43)

Therefore, un → Uλ strongly inH.
Since Jλ(Uλ) = Jλ(|Uλ|) = α−λ and |Uλ| ∈ M−

λ
, by Lemma 2.2, we may assume thatUλ is

a nonzero nonnegative solution of problem (Eλ). Finally, by the Harnack inequality [19], we
deduce thatUλ > 0 in Ω.

Now, we complete the proof of Theorem 1.1. By Theorems 3.4 and 4.4, we obtain that
problem (Eλ) has two positive solutions uλ and Uλ such that uλ ∈ M+

λ, Uλ ∈ M−
λ . Since

M+
λ
∩M−

λ
= ∅, this implies that uλ andUλ are distinct. This completes the proof of Theorem 1.1.
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