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We investigate the stability and superstability of ternary quadratic higher derivations in non-
Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional
equation.

1. Introduction

In 1897, Hensel [1] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications [2, 3].

A non-Archimedean field is a field K equipped with a function (valuation) | · | from K

into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r‖s|, and |r + s| ≤ max{|r|, |s|} for all
r, s ∈ K. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. An example of a non-Archimedean
valuation is the mapping | · | taking everything but 0 into 1 and |0| = 0. This valuation is called
trivial (see [4–12]).

Definition 1.1. LetX be a vector space over a scalar fieldKwith a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies
the following conditions:
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(NA1) ‖x‖ = 0 if and only if x = 0;

(NA2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;

(NA3) ‖x + y‖ ≤ max{‖x‖, ‖y‖} for all x, y ∈ X (the strong triangle inequality).

Then, (X, ‖ · ‖) is called a non-Archimedean normed space.

We note the inequality

‖xm − xl‖ ≤ max
{∥∥xj+1 − xj

∥
∥ : l ≤ j ≤ m − 1

}
(m > l), (1.1)

where a sequence {xm} is Cauchy if and only if {xm+1 − xm} converges to zero in a non-
Archimedean space. By a complete non-Archimedean space, we mean one in which every
Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key
property of p-adic numbers is that they do not satisfy the Archimedean axiom “for x, y > 0,
there exists n ∈ N such that x < ny.”

Let p be a prime number. For any nonzero rational number x = (a/b)pnx such that a
and b are integers not divisible by p, define the p-adic absolute value |x|p := p−nx . Then | · |
is a non-Archimedean norm on Q. The completion of Q with respect to | · | is denoted by Qp

which is called the p-adic number field.
Note that if p ≥ 3, then |2n| = 1 in for each integer n.

Definition 1.2. Let X be a nonempty set and d : X × X → [0,∞] satisfy the following
properties:

(D1) d(x, y) = 0 if and only if x = y,

(D2) d(x, y) = d(y, x) (symmetry),

(D3) d(x, z) ≤ max{d(x, y), d(y, z)} (strong triangle inequality),

for all x, y, z ∈ X. Then (X, d) is called a non-Archimedean generalized metric space. (X, d)
is called complete if every d-Cauchy sequence in X is d-convergent.

Example 1.3 (see [13]). For each nonempty set X, define

d
(
x, y
)
=

⎧
⎨

⎩

0 if x = y

∞ if x /=y.
(1.2)

Then d is a generalized non-Archimedean metric on X.

A non-Archimedean ternary algebra is a non-Archimedean vector space over a non-
Archimedean field K, endowed with a linear mapping, the so-called a ternary product,
(x, y, z) → [xyz] of A × A × A into A such that [[xyz]tu] = [x[yzt]u] = [xy[ztu]] for
all x, y, z, t, u ∈ A. If (A, ·) is a usual binary non-Archimedean algebra, then an induced
ternary multiplication can be defined by [xyz] = (x · y) · z. Hence, the non-Archimedean
algebra is a natural generalization of the binary case. A normed non-Archimedean ternary
algebra is a non-Archimedean ternary algebra with a norm ‖·‖ such that ‖[xyz]‖ ≤ ‖x‖‖y‖‖z‖
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for x, y, z ∈ A. A Banach non-Archimedean ternary algebra is a normed non-Archimedean
ternary algebra such that the normed non-Archimedean vector space with norm ‖ · ‖ is
complete.

The ternary algebras have been studied in nineteenth century. Their structures
appeared more or less naturally in various domains of mathematical physics and data
processing. The discovery of the Nambu mechanics and the progress of quantum mechanics
[14], as well as work of Okubo [15] on Yang-Baxter equation gave a significant development
on ternary algebras (see also [16–20]).

We say that a functional equation (ξ) is stable if any function g satisfying the equation
(ξ) approximately is near to true solution of (ξ). We say that a functional equation (ξ) is
superstable if every approximately solution of (ξ) is an exact solution of it (see [21]).

The stability of functional equations was first introduced by Ulam [22] in 1940. In 1941,
Hyers [23] gave a first affirmative answer to the question of Ulam for Banach spaces. In 1978,
Rassias [24] generalized the theorem ofHyers for linearmappings by considering the stability
problem with unbounded Cauchy differences ‖f(x +y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (ε >
0, p ∈ [0, 1)). In 1991, Gajda [25] answered the question for the case p > 1, which was raised
by Rassias. This new concept is known as generalized Hyers-Ulam stability of functional
equations (see [6–12, 17, 21, 25–58]). In 1982–1994, Rassias (see [59–66]) solved the Ulam
problem for different mappings and for many Euler-Lagrange type quadratic mappings, by
involving a product of different powers of norms. In addition, Rassias considered the mixed
product sum of powers of norms control function [67].

In 1949, Bourgin [41] proved the following result, which is sometimes called the
superstability of ring homomorphisms. Suppose that A and B are Banach algebras with unit.
If f : A → B is a surjective mapping such that

∥∥f
(
x + y
)
− f(x) − f

(
y
)∥∥ ≤ ε,

∥∥f
(
xy
)
− f(x)f

(
y
)∥∥ ≤ δ

(1.3)

for some ε ≥ 0, δ ≥ 0 and for all x, y ∈ A, then f is a ring homomorphism.
Badora [68] and Miura et al. [69] proved the Ulam-Hyers stability and the Isaac and

Rassias type stability of derivations [30].
The functional equation

f
(
x + y
)
+ f
(
x − y
)
= 2f(x) + 2f

(
y
)
, (1.4)

is related to a symmetric biadditive function [2, 27]. It is natural that this equation is called
a quadratic functional equation. In particular, every solution of the quadratic equation (1.4) is
said to be a quadratic mapping. It is well known that a mapping f between real vector spaces
is quadratic if and only if there exists a unique symmetric bi-additive mapping B1 such that
f(x) = B1(x, x) for all x. The bi-additive mapping B1 is given by B1(x, y) = (1/4)(f(x + y) −
f(x − y)).

The stability problem of quadratic functional equation (1.4) was proved by Skof [37]
for functions f : A → B, where A is normed space and B Banach space (see also [42, 43]).
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Definition 1.4. A mappingH : A → B is called a ternary quadratic homomorphism between
non-Archimedean ternary algebras A,B if

(1) H is a quadratic function,

(2) H([xyz]) = [H(x)H(y)H(z)], for all x, y, z ∈ A.

For instance, let A be commutative ternary algebra, then the function f : A → A
defined by f(a) = a2(a ∈ A) is a quadratic homomorphism.

Definition 1.5. A mapping D : A → A is called a non-Archimedean ternary quadratic
derivation on ternary non-Archimedean algebra A if

(1) D is a quadratic function,

(2) D([xyz]) = [D(x)y2z2] + [x2D(y)z2] + [x2y2D(z)], for all x, y, z ∈ A.

For example, consider the algebra of 2 × 2 matrices

A =

{[
c1 c2

0 0

]

: c1, c2 ∈ C

}

, (1.5)

then it is easy to see that A is a ternary algebra. Moreover, the function f : A → A defined
by

f

([
c1 c2

0 0

])

=

[
0 c22

0 0

]

, (1.6)

is a ternary quadratic derivation.
We note that ternary quadratic derivations and ternary ring derivations are different.
As another example, LetA be a Banach algebra. Then we take

T =

⎡

⎢⎢
⎣

0 A A
0 0 A
0 0 0

⎤

⎥⎥
⎦, (1.7)

where T is a ternary Banach algebra equipped with the usual matrix-like operations and the
following norm:

∥∥∥∥∥∥∥∥

⎡

⎢⎢
⎣

0 a b

0 0 c

0 0 0

⎤

⎥⎥
⎦

∥∥∥∥∥∥∥∥

= ‖a‖ + ‖b‖ + ‖c‖ (a, b, c ∈ A). (1.8)
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It is known that

T∗ =

⎡

⎢
⎢
⎣

o A∗ A∗

0 0 A∗

0 0 0

⎤

⎥
⎥
⎦ (1.9)

is the dual of T under the following norm:

∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎣

0 f g

0 0 h
0 0 0

⎤

⎥
⎦

∥
∥
∥
∥
∥
∥
∥
= max

{∥∥f
∥
∥,
∥
∥g
∥
∥, ‖h‖

} (
f, g, h ∈ A∗). (1.10)

Let the left module action of T on T∗ be trivial, and let the right module action of T on T∗ is
defined as follows:

〈
⎡

⎢⎢
⎣

0 f g

0 0 h

0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 a b

0 0 c

0 0 0

⎤

⎥⎥
⎦,

⎡

⎢⎢
⎣

0 x y

0 0 z

0 0 0

⎤

⎥⎥
⎦

〉

= g(acz), (1.11)

for all f, g, h ∈ A∗, a, b, c, x, y, z ∈ A. Then T∗ is a Banach T-module. Let

⎡

⎢⎢
⎣

0 k g

0 0 h

0 0 0

⎤

⎥⎥
⎦ ∈ T∗. (1.12)

We define D : T → T∗ by

D

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

0 a b

0 0 c

0 0 0

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ =

⎡

⎢⎢
⎣

0 k g

0 0 h

0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 0 ac

0 0 0

0 0 0

⎤

⎥⎥
⎦ (a, b, c ∈ A). (1.13)

Then it is easy to show that D is a ternary quadratic derivation from T into T∗.

Definition 1.6. Let A,B be two non-Archimedean ternary normed algebras over a non-
Archimedean field K. For m ∈ N ∪ {0} = N0, a sequence H = {h0, h1, . . . , hm} (resp.,
H = {h0, h1, . . . , hn, . . .}) of quadratic mappings from A into B is called a ternary quadratic
higher derivation of rankm (resp. infinite rank) from A into B if

hn
[
xyz
]
=
∑

i+j+k=n

[
hi(x)hj

(
y
)
hk(z)
]
, (1.14)

holds for each n ∈ {0, 1, . . . , m} (resp., n ∈ N0) and all x, y, z ∈ A. The ternary quadratic
higher derivationH on A is said to be strong if h0(x) = x2 for all x ∈ A. Of course, a ternary
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quadratic higher derivation of rank 0 from A into B (resp., a strong ternary quadratic higher
derivation of rank 1 on A) is a ternary quadratic homomorphism (resp., a ternary quadratic
derivation). So a ternary quadratic higher derivation is a generalization of both a a ternary
quadratic homomorphism and a ternary quadratic derivation.

Recently, Jung and Chang [70] have investigated the stability and superstability of
higher derivations on rings. More recently, the first author of the present paper [46] has
investigated the stability of homomorphisms and derivations on non-Archimedean Banach
algebras, also Eshaghi Gordji and Alizadeh [47] by using fixed point methods, established
the stability and superstability of derivations on non-Archimedean Banach algebras. In this
paper, by using fixed point methods, we establish the stability and superstability of quadratic
ternary higher derivations on non-Archimedean Banach ternary algebras.

We need the following fixed point theorem (see [13, 71]).

Theorem 1.7 (non-Archimedean alternative contraction principle). Suppose that (X, d) is a
non-Archimedean generalized complete metric space and Λ : X → X is a strictly contractive
mapping, that is,

d
(
Λx,Λy

)
≤ Ld
(
x, y
) (

x, y ∈ X
)
, (1.15)

for some L < 1. If there exists a nonnegative integer k such that d(Λk+1x,Λkx) <∞ for some x ∈ X,
then the followings are true:

(a) the sequence {Λnx} converges to a fixed point x∗ of Λ;

(b) x∗ is a unique fixed point of Λ in

X∗ =
{
y ∈ X | d

(
Λkx, y

)
<∞
}
, (1.16)

(c) If y ∈ X∗, then

d
(
y, x∗) ≤ d

(
Λy, y
)
. (1.17)

2. Main Results

In this section, A denotes a non-Archimedean ternary normed algebra over a non-
Archimedean field K, and B is a non-Archimedean Banach ternary algebra over K.

Theorem 2.1. Let ϕ : A ×A ×A → [0,∞) be a function. Suppose that F = {f0, f1, . . . , fn, . . .} be
a sequence of mappings from A into B such that for each n ∈ N0, fn(0) = 0,

∥∥fn
(
x + y
)
+ fn
(
x − y
)
− 2fn(x) − 2fn

(
y
)∥∥ ≤ ϕ

(
x, y, o

)
, (2.1)

∥∥∥∥∥∥
fn
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥∥∥∥∥∥
≤ ϕ
(
x, y, z

)
, (2.2)



Abstract and Applied Analysis 7

for all x, y, z ∈ A. Suppose that there exist a natural number k ∈ K and L ∈ (0, 1), such that

|k|2ϕ
(
k−1x, k−1y, k−1z

)
≤ Lϕ
(
x, y, z

)
, (2.3)

for all x, y, z ∈ A. Then there exists a unique ternary quadratic higher derivation H = {h0,
h1, . . . , hn, . . .} of any rank from A into B such that for each n ∈ N0,

∥
∥fn(x) − hn(x)

∥
∥ ≤

Lψ(x)

|k|2
, (2.4)

for all x ∈ A, where

ψ(x) = max
{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ((k − 1)x, x, 0)

}
(x ∈ A). (2.5)

Proof. By induction on i, one can show that for each n ∈ N0, for all x ∈ A and i ≥ 2,

∥∥∥fn(ix) − i2fn(x)
∥∥∥ ≤ max

{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ((i − 1)x, x, 0)

}
. (2.6)

Let x = y in (2.1), then

∥∥fn(2x) − 2fn(x)
∥∥ ≤ max

{
ϕ(0, 0, 0), ϕ(x, x, 0)

}
, n ∈ N0, x ∈ A. (2.7)

This proves (2.6) for i = 2. Let (2.6) holds for i = 1, 2, . . . J . Replacing x with jx and y with x
in (2.1) for each n ∈ N0, and for all x ∈ A, we get

∥∥fn
((
j + 1
)
x
)
+ fn
((
j − 1
)
x
)
− 2fn
(
jx
)
− 2fn(x)

∥∥ ≤ max
{
ϕ(0, 0, 0), ϕ

(
jx, x, 0

)}
. (2.8)

Since

fn
((
j + 1
)
x
)
+ fn
((
j − 1
)
x
)
− 2fn
(
jx
)
− 2fn(x)

= fn
((
j + 1
)
x
)
−
(
j + 1
)2
fn(x) + fn

((
j − 1
)
x
)
−
(
j − 1
)2
fn
(
jx
)
− 2
[
fn
(
jx
)
− j2fn(x)

]
,

(2.9)

for all x ∈ A, it follows from induction hypothesis and (2.8) that for all x ∈ A,

∥∥∥fn
((
j + 1
)
x
)
−
(
j + 1
)2
fn(x)
∥∥∥

≤ max
{∥∥fn
((
j + 1
)
x
)
+ fn
((
j − 1
)
x
)
− 2fn
(
jx
)
− 2fn(x)

∥∥,

∥∥∥fn
((
j − 1
)
x
)
−
(
j − 1
)2
fn(x)
∥∥∥, |2|
∥∥∥j2fn(x) − fn

(
jx
)∥∥∥
}

≤ max
{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ

((
j
)
x, x, 0

)}
.

(2.10)
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This proves (2.6) for all i ≥ 2. In particular,

∥
∥
∥fn(kx) − k2fn(x)

∥
∥
∥ ≤ ψ(x) (x ∈ A). (2.11)

Replacing x with k−1x in (2.11), it follows that for each x ∈ A,

∥
∥
∥fn(x) − k2fn

(
k−1x
)∥∥
∥ ≤ ψ
(
k−1x
)

(x ∈ A). (2.12)

Let

X = {h : A −→ B},

d
(
g, h
)
= inf
{
α > 0 :

∥
∥g(x) − h(x)

∥
∥ ≤ αψ(x) ∀x ∈ A

}
, f, g ∈ X.

(2.13)

It is easy to see that d defines a generalized non-Archimedean complete metric on X. Define
J : X → X by J(h)(x) = k2h(k−1x). Then J is strictly contractive on X, in fact if

∥∥g(x) − h(x)
∥∥ ≤ αψ(x), (x ∈ A), (2.14)

then by (2.3),

∥∥J
(
g
)
(x) − J(h)(x)

∥∥ = |k|2
∥∥∥g
(
k−1x
)
− h
(
k−1x
)∥∥∥ ≤ α|k|2ψ

(
k−1x
)
≤ Lαψ(x), (x ∈ A).

(2.15)

It follows that

d
(
J
(
g
)
, J(h)
)
≤ Ld
(
g, h
) (

g, h ∈ X
)
. (2.16)

Hence, J is strictly contractive mapping with Lipschitz constant L. By (2.12),

∥∥(Jfn
)
(x) − fn(x)

∥∥ =
∥∥∥k2fn

(
k−1x
)
− fn(x)

∥∥∥ ≤ ψ
(
k−1x
)
≤ |k|−2Lψ(x) (x ∈ A). (2.17)

This means that d(J(fn), fn) ≤ (L/|k|2). By Theorem 1.7, J has a unique fixed point hn : A →
B in the set

Un =
{
gn ∈ X : d

(
gn, J
(
fn
))

<∞
}
, (2.18)

and for each x ∈ A,

hn(x) = lim
m→∞

Jm
(
fn(x)
)
= lim k2mfn

(
k−mx
)
. (2.19)
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Therefore,

∥
∥hn
(
x + y
)
+ hn
(
x − y
)
− 2hn(x) − 2hn

(
y
)∥∥

= lim
m→∞

|k|2m
∥
∥fn
(
k−m
(
x + y
))

+ fn
(
k−m
(
x − y
))

− 2fn
(
k−mx
)
− 2fn
(
k−my
)∥∥

≤ lim
m→∞

|k|2mmax
{
ϕ(0, 0, 0), ϕ

(
k−mx, k−my, 0

)}

≤ lim
m→∞

Lmϕ
(
x, y, 0

)
= 0,

(2.20)

for all x, y ∈ A. This shows that hn is quadratic. It follows from Theorem 1.7 that

d
(
fn, hn
)
≤ d
(
J
(
fn
)
, fn
)
, (2.21)

that is,

∥∥fn(x) − hn(x)
∥∥ ≤

Lψ(x)

|k|2
(x ∈ A, n ∈ N0). (2.22)

The inequality (2.2) implies that the function Dn : A ×A ×A → B, defined by

Dn

(
x, y, z

)
= fn
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]

(2.23)

for each n ∈ N0 and for all x, y, z ∈ A, is bounded.
By (2.3), we see that

∥∥∥k2mDn

(
k−mx, k−my, k−m, k−mz

)∥∥∥ = |k|2m
∥∥Dn

(
k−mx, k−my, k−mz

)∥∥

≤ |k|2mϕ
(
k−mx, k−my, k−mz

)

≤ Lmϕ
(
x, y, z

)
, x, y ∈ A.

(2.24)

Taking the limit asm → ∞, we obtain

lim
m→∞

k2mDn

(
k−mx, k−my, k−mz

)
= 0, (2.25)
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for each n ∈ N0 and for all x, y, z ∈ A. Now, using (2.19), (2.23), and (2.25), we have

hn
[
xyz
]
= lim

m→∞
k2mfn

(
k−m
[
xyz
])

= lim
r→∞

k6rfn
[(
k−3r
)
xyz
]

= lim
r→∞

k6rfn
[(
k−rx
)(
k−ry
)(
k−rz
)]

= lim
r→∞

⎛

⎝
∑

i+j+t=n

[
k2rfi
(
k−rx
)
k2rfj
(
k−ry
)
k2rft
(
k−rz
)]

+ k6rDn

(
k−rx, k−ry, k−rz

)
⎞

⎠

=
∑

i+j+t=n

[
lim
r→∞

k2rfi
(
k−rx
)
lim
r→∞

k2rfj
(
k−ry
)
lim
r→∞

k2rft
(
k−rz
)
]

+ lim
r→∞

k6rDn

(
k−rx, k−ry, k−rz

)

=
∑

i+j+t=n

[
hi(x)hj

(
y
)
ht(z)
]
,

(2.26)

for all n ∈ N0 and all x, y, z ∈ A. It follows thatH = {h0, h1, . . . , hn, . . .} satisfies

hn
[
xyz
]
=
∑

i+j+t=n

[
hi(x)hj

(
y
)
htz
]
, (2.27)

for all n ∈ N0 and all x, y, z ∈ A. This completes the proof of the theorem.

By a same method as above, we have the following theorem.

Theorem 2.2. Let ϕ : A ×A ×A → [0,∞) be a function. Suppose that F = {f0, f1, . . . , fn, . . .} is a
sequence of mappings from A into B such that for each n ∈ N0, fn(0) = 0,

∥∥f
(
x + y
)
+ f
(
x − y
)
− 2f(x) − 2f(x)

∥∥ ≤ ϕ
(
x, y, 0

)
,

∥∥∥∥∥∥
fn
([
xyz
])

−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥∥∥∥∥∥
≤ ϕ
(
x, y, z

)
,

(2.28)

for all x, y, z ∈ A. If there exist k ∈ K and 0 < L < 1 such that

|k|−2ϕ
(
kx, ky, kz

)
≤ Lϕ
(
x, y, z

)
(2.29)

for all x, y, z ∈ A, then there exists a unique ternary quadratic higher derivation H = {h0,
h1, . . . , hn, . . .} of any rank from A into B such that for each n ∈ N0,

∥∥fn(x) − hn(x)
∥∥ ≤

ψ(x)

|k|2
, (2.30)
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for all x ∈ A, where

ψ(x) = max
{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ((k − 1)x, x, 0)

}
(x ∈ A). (2.31)

Proof. By a same reasoning of Theorem 2.1, for all n ∈ N0, and all x ∈ A and i ≥ 2, we have

∥
∥
∥fn(ix) − i2fn(x)

∥
∥
∥ ≤ max

{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ((i − 1)x, x, 0)

}
. (2.32)

In particular,

∥
∥
∥fn(kx) − k2fn(x)

∥
∥
∥ ≤ ψ(x) (x ∈ A). (2.33)

Let

X = {h : A −→ B}

d
(
g, h
)
= inf
{
α > 0 :

∥∥g(x) − h(x)
∥∥ ≤ αψ(x) ∀x ∈ A

}
.

(2.34)

It is easy to see that d defines a generalized complete metric on X. Define J : X → X by
J(h)(x) = k−2h(kx). Then J is strictly contractive on X, in fact if

∥∥g(x) − h(x)
∥∥ ≤ αψ(x), (x ∈ A), (2.35)

then by (2.29),

∥∥J
(
g
)
(x) − J(h)(x)

∥∥ = |k|−2
∥∥g(kx) − h(kx)

∥∥ ≤ α|k|−2ψ(kx) ≤ Lαψ(x), ) (x ∈ A). (2.36)

It follows that

d
(
J
(
g
)
, J(h)
)
≤ Ld
(
g, h
) (

g, h ∈ X
)
. (2.37)

Hence, J is strictly contractive mapping with Lipschitz constant L. By (2.33),

∥∥(Jfn
)
(x) − fn(x)

∥∥ =
∥∥∥k−2fn(kx) − fn(x)

∥∥∥,

|k|−2
∥∥∥fn(kx) − k2fn(x)

∥∥∥ ≤ |k|−2ψ(x) (x ∈ A).
(2.38)

This means that d(J(fn), fn) ≤ (1/|k|2). By Theorem 1.7, J has a unique fixed point hn : A →
B in the set

Un =
{
gn ∈ X : d

(
gn, J
(
fn
))

<∞
}
, (2.39)
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and for each x ∈ A,

hn(x) = lim
m→∞

Jm
(
fn(x)
)
= lim k−2mfn(kmx). (2.40)

Therefore,

∥
∥hn
(
x + y
)
+ hn
(
x − y
)
− 2hn(x) − 2hn

(
y
)∥∥)

= lim
m→∞

|k|−2m
∥
∥fn
(
km
(
x + y
))

+ fn
(
x − y
)
− 2fn(kmx) − 2fn

(
kmy
)∥∥

≤ lim
m→∞

|k|−2mmax
{
ϕ(0, 0, 0), ϕ

(
kx, ky, 0

)}

≤ lim
m→∞

Lmϕ
(
x, y, 0

)
= 0,

(2.41)

for all x, y ∈ A. This shows that hn is quadratic. Again by Theorem 1.7, we have

d
(
fn, hn
)
≤ d
(
J
(
fn
)
, fn
)
, (2.42)

that is,

∥∥fn(x) − hn(x)
∥∥ ≤

ψ(x)

|k|2
(x ∈ A, n ∈ N0). (2.43)

The rest of proof is similar to the proof of Theorem 2.1.

In the following corollaries, Qp is the field of p-adic numbers, where p > 2 is a prime
number.

As a consequence of Theorem 2.1, we show theHyers-Ulam-Rassias stability of ternary
quadratic higher derivations.

Corollary 2.3. Let (A, ‖ · ‖A) be a non-Archimedean normed ternary algebra over Qp and (B, ‖ · ‖B)
be a non-Archimedean Banach ternary algebra over Qp. Assume that F = {f0, f1, . . . , fn, . . .} is a
sequence of mappings from A into B such that for each n ∈ N0, and for all x, y ∈ A,

∥∥fn
(
x + y
)
+ fn
(
x − y
)
− 2fn(x) − 2fn

(
y
)∥∥

B ≤ θ
(
‖x‖rA +

∥∥y
∥∥r
A

)
, (2.44)

∥∥∥∥∥∥
fn
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥∥∥∥∥∥
B

≤ θ
(
‖x‖rA +

∥∥y
∥∥r
A + ‖z‖rA

)
, (2.45)

for some θ > 0 and r < 2. Then there exists a unique ternary quadratic higher derivation H =
{h0, h1, . . . , hn, . . .} of any rank from A into B such that

∥∥fn(x) − hn(x)
∥∥ ≤ 2θpr‖x‖rA (x ∈ A), (2.46)

for all n ∈ N0.
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Proof. By (2.44), we have fn(0) = 0 for all n ∈ N0. Let ϕ(x, y, z) = θ(‖x‖rA + ‖y‖rA + ‖z‖rA) for
all x, y, z ∈ A, then

∣
∣p
∣
∣2ϕ
(
p−1x, p−1y, p−1z

)
= θ
∣
∣p
∣
∣2−r(‖x‖rA +

∥
∥y
∥
∥r
A + ‖z‖rA

)
= pr−2ϕ

(
x, y, z

) (
x, y, z ∈ A

)
.

(2.47)

Moreover,

ψ(x) = max
{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ

((
p − 1
)
x, x, 0

)}
= 2θ‖x‖rA (x ∈ A).

(2.48)

Put L = pr−2. By Theorem 2.1, there exists a sequence H = {h0, h1, . . . , hn, . . .} with the
required properties.

The following corollary is similar to Corollary 2.3 for the case where r > 2.

Corollary 2.4. Let (A, ‖ · ‖A) be a be a non-Archimedean normed ternary algebra over Qp and let
(B, ‖·‖B) be a non-Archimedean Banach ternary algebra overQp. Assume that F = {f0, f1, . . . , fn, . . .}
is a sequence of mappings from A into B such that for each n ∈ N0, for all x, y ∈ A,

∥∥fn
(
x + y
)
+ fn
(
x − y
)
− 2fn(x) − 2fn

(
y
)∥∥

B ≤ θ
(
‖x‖rA +

∥∥y
∥∥r
A

)
, (2.49)

∥∥∥∥∥∥
fn(
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥∥∥∥∥∥
B

≤ θ
(
‖x‖rA +

∥∥y
∥∥r
A + ‖z‖rA

)
, (2.50)

for some θ > 0 and r > 2. Then there exists a unique ternary quadratic higher derivation H =
{h0, h1, . . . , hn, . . .} of any rank from A into B such that

∥∥fn(x) − hn(x)
∥∥ ≤ 2θ

∣∣p
∣∣−2‖x‖rA (x ∈ A), (2.51)

for all n ∈ N0.

Proof. By (2.49), fn(0) = 0 for all n ∈ N0. Let ϕ(x, y) = θ(‖x‖rA +‖y‖rA +‖z‖rA) for all x, y, z ∈ A,
then

∣∣p
∣∣−2ϕ
(
px, py, pz

)
= θ
∣∣p
∣∣r−2(‖x‖rA +

∥∥y
∥∥r
A + ‖z‖rA

)
= p2−rϕ

(
x, y, z

) (
x, y, z ∈ A

)
. (2.52)

Moreover,

ψ(x) = max
{
ϕ(0, 0, 0), ϕ(x, x, 0), ϕ(2x, x, 0), . . . , ϕ

((
p − 1
)
x, x, 0

)}
= 2θ‖x‖rA (x ∈ A).

(2.53)

Put L = p2−r . By Theorem 2.2, there exists a sequence H = {h0, h1, . . . , hn, . . .} with the
required properties.
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Corollary 2.5. Let (A, ‖·‖A) be a non-Archimedean normed ternary algebra overQp, and let (B, ‖·‖B)
be a non-Archimedean Banach ternary algebra over Qp. Assume that F = {f0, f1, . . . , fn, . . .} is a
sequence of mappings from A into B such that for each n ∈ N0, and for all x, y ∈ A,

∥
∥fn
(
x + y
)
+ fn
(
x − y
)
− 2fn(x) − 2fn

(
y
)∥∥

B ≤ max
{
‖x‖rA,

∥
∥y
∥
∥r
A

}
,

∥
∥
∥
∥
∥
∥
fn
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥
∥
∥
∥
∥
∥
B

≤ max
{
‖x‖rA,

∥
∥y
∥
∥r
A, ‖z‖

r
A

}
,

(2.54)

for some r > 2. Then there exists a unique ternary quadratic higher derivation H = {h0,
h1, . . . , hn, . . .} of any rank from A into B such that

∥
∥fn(x) − hn(x)

∥
∥ ≤ pr‖x‖rA (x ∈ A), (2.55)

for all n ∈ N0.

Corollary 2.6. Let (A, ‖·‖A) be a non-Archimedean normed ternary algebra over Qp and let (B, ‖·‖B)
be a non-Archimedean Banach ternary algebra over Qp. Assume that F = {f0, f1, . . . , fn, . . .} is a
sequence of mappings from A into B such that for each n ∈ N0, and for all x, y ∈ A,

∥∥fn
(
x + y
)
+ fn
(
x − y
)
− 2fn(x) − 2fn

(
y
)∥∥

B ≤ max
{
‖x‖rA,

∥∥y
∥∥r
A

}
,

∥∥∥∥∥∥
fn
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥∥∥∥∥∥
B

≤ max
{
‖x‖rA,

∥∥y
∥∥r
A, ‖z‖

r
A

}
,

(2.56)

for some r < 2. Then there exists a unique ternary quadratic higher derivation H = {h0,
h1, . . . , hn, . . .} of any rank from A into B such that

∥∥fn(x) − hn(x)
∥∥ ≤
∣∣p
∣∣−2‖x‖rA (x ∈ A), (2.57)

for all n ∈ N0.

As a consequence of Theorem 2.1, we have the following superstability results for
ternary quadratic higher derivations.

Corollary 2.7. Let r, s be two real numbers such that r+s < −2. Let (A, ‖·‖A) be a non-Archimedean
normed ternary algebra over Qp and (B, ‖ · ‖B) be a non-Archimedean Banach ternary algebra over
Qp. Assume that F = {f0, f1, . . . , fn, . . .} is a sequence of mappings from A into B such that for each
n ∈ N0, and for all x, y ∈ A,

∥∥fn
(
x + y
)
+ fn
(
x − y
)
− 2fn(x) − 2fn

(
y
)∥∥

B ≤ θ
(
‖x‖rA +

∥∥y
∥∥r
A

)
,

∥∥∥∥∥∥
fn
[
xyz
]
−
∑

i+j+t=n

[
fi(x)fj

(
y
)
ft(z)
]
∥∥∥∥∥∥
B

≤ θ
(
‖x‖rA +

∥∥y
∥∥r
A

)
‖z‖sA,

(2.58)

for some θ > 0. Then F is a ternary quadratic higher derivation.
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Proof. It follows from Theorem 2.1 by putting ϕ(x, y, z) = θ(‖x‖rA + ‖y‖rA)‖z‖
s
A for all x, y,

z ∈ A.

We can prove a same result with condition r + s > −2 by using of Theorem 2.2.

Corollary 2.8. Let r, s, t be real numbers such that r+s+t < −2. Let (A, ‖·‖A) be a non-Archimedean
normed ternary algebra over Qp and (B, ‖ · ‖B) be a non-Archimedean Banach ternary algebra over
Qp. Assume that F = {f0, f1, . . . , fn, . . .} is a sequence of mappings from A into B such that for each
n ∈ N0, and for all x, y ∈ A,

∥
∥fn(x + y) + fn(x − y) − 2fn(x) − 2fn(y)

∥
∥
B ≤ θ
(
‖x‖rA +

∥
∥y
∥
∥r
A

)
,

∥
∥
∥
∥
∥
∥
fn[xyz] −

∑

i+j+t=n

[fi(x)fj(y)ft(z)]

∥
∥
∥
∥
∥
∥
B

≤ θ
(
‖x‖rA
∥
∥y
∥
∥s
A‖z‖

s
A

)
,

(2.59)

for some θ > 0. Then F is a ternary quadratic higher derivation.

Proof. It follows from Theorem 2.1 by putting ϕ(x, y, z) = θ(‖x‖rA‖y‖
r
A‖z‖

s
A) for all x, y,

z ∈ A.

Moreover, we can prove a same result with condition r + s + t > −2, by applying
Theorem 2.2.
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