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We define the Bessel ultrahyperbolic Marcel Riesz operator on the function f by Uα(f) = RB
α ∗ f ,

where RB
α is Bessel ultrahyperbolic kernel of Marcel Riesz, α . . .C, the symbol ∗ designates as the

convolution, and f ∈ S, S is the Schwartz space of functions. Our purpose in this paper is to obtain
the operator Eα = (Uα)−1 such that, if Uα(f) = ϕ, then Eαϕ = f .

1. Introduction

The n-dimensional ultrahyperbolic operator �k iterated k times is defined by

�k =
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∂x2
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+
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2

+ · · · + ∂2
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k

, (1.1)

where p + q = n is the dimension of R
n and k is a nonnegative integer.

Consider the linear differential equation in the form of

�ku(x) = f(x), (1.2)

where u(x) and f(x) are generalized functions and x = (x1, x2, . . . , xn) ∈ R
n.

Gel′fand and Shilov [1] have first introduced the fundamental solution of (1.2), which
is a complicated form. Later, Trione [2] has shown that the generalized function RH

2k(x),
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defined by (2.6) with γ = 2k, is the unique fundamental solution of (1.2) and Téllez [3] has
also proved that RH

2k(x) exists only when n = p + q with odd p.
Next, Kananthai [4] has first introduced the operator ♦k called the diamond operator

iterated k times, which is defined by

♦k =
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, (1.3)

where n = p + q is the dimension of R
n, for all x = (x1, x2, . . . , xn), and k is a nonnegative

integer. The operator ♦k can be expressed in the form

♦k = �k�k = �k�k, (1.4)

where �k is defined by (1.1), and

�k =

(
∂2

∂x2
1

+
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∂x2
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+ · · · + ∂2

∂x2
n

)k

(1.5)

is the Laplace operator iterated k times. On finding the fundamental solution of this
product, Kananthai uses the convolution of functions which are fundamental solutions of the
operators �k and �k. He found that the convolution (−1)kRe

2k(x) ∗RH
2k(x) is the fundamental

solution of the operator ♦k, that is,

♦k
(
(−1)kRe

2k(x) ∗ RH
2k(x)

)
= δ(x), (1.6)

where RH
2k(x) and Re

2k(x) are defined by (2.6) and (2.11), respectively with γ = 2k and δ(x)
is the Dirac delta distribution. The fundamental solution (−1)kRe

2k(x) ∗ RH
2k(x) is called the

diamond kernel of Marcel Riesz. A wealth of some effective works on the diamond kernel of
Marcel Riesz have been presented by Kananthai [5–10].

In 1978, Domı́nguez and Trione [11] have introduced the distributional functions
Hα(P ± i0, n) which are causal (anticausal) analogues of the elliptic kernel of Riesz [12].
Next, Cerutti and Trione [13] have defined the causal (anticausal) generalized Marcel Riesz
potentials of order α, α ∈ C, by

Rαϕ = Hα(P ± i0, n) ∗ ϕ, (1.7)

where ϕ ∈ S, S is the Schwartz space of functions [14] andHα(P ± i0, n) is given by

Hα(P ± i0, n) =
e∓απi/2e±qπi/2Γ((n − α)/2)(P ± i0)(α−n)/2

2απn/2Γ(α/2)
. (1.8)
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Here, P is defined by

P = P(x) = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q, (1.9)

where q is the number of negative terms of the quadratic form P . The distributions (P ± i0)λ

are defined by

(P ± i0)λ = lim
ε→ 0

(
P ± iε|x|2

)λ
, (1.10)

where ε > 0, λ ∈ C, and |x|2 = x2
1 + x2

2 + · · · + x2
n; see [1]. They have also studied the inverse

operator of Rα, denoted by (Rα)−1, such that, if f = Rαϕ, then (Rα)−1f = ϕ.
Later, Aguirre [15] has defined the ultrahyperbolic Marcel Riesz operator Mα of the

function f by

Mα(f) = RH
α ∗ f, (1.11)

where RH
α is defined by (2.6) and f ∈ S. He has also studied the operator Nα = (Mα)−1 such

that, ifMα(f) = ϕ, thenNαϕ = f .
Let us consider the diamond kernel of Marcel Riesz Kα,β(x) introduced by Kananthai

in [6], which is given by the convolution

Kα,β(x) = Re
α ∗ RH

β , (1.12)

where Re
α is elliptic kernel defined by (2.11) and RH

β
is the ultrahyperbolic kernel defined

by (2.6). Tellez and Kananthai [16] have proved that Kα,β(x) exists and is in the space of
rapidly decreasing distributions. Moreover, they have also shown that the convolution of the
distributional families Kα,β(x) relates to the diamond operator.

Later, Maneetus and Nonlaopon [17] have defined the diamondMarcel Riesz operator
of order (α, β) of the function f by

M(α,β)(f) = Kα,β ∗ f, (1.13)

where Kα,β is defined by (1.12), α, β ∈ C, and f ∈ S. They have also studied the operator

N(α,β) = [M(α,β)]
−1

such that, ifM(α,β)(f) = ϕ, thenN(α,β)ϕ = f .
In this paper, we define the Bessel ultrahyperbolic Marcel Riesz operator of order α of

the function f by

Uα(f) = RB
α ∗ f, (1.14)

where α ∈ C and f ∈ S, S is the Schwartz space of functions. Our aim in this paper is to
obtain the operator Eα = (Uα)−1 such that, if Uα(f) = ϕ, then Eαϕ = f .

Before we proceed to ourmain theorem, the following definitions and concepts require
some clarifications.
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2. Preliminaries

Definition 2.1. Let x = (x1, x2, . . . , xn) be a point in the n-dimensional Euclidean space R
n. Let

u = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q (2.1)

be the nondegenerated quadratic form, where p + q = n is the dimension of R
n. Let Γ+ = {x ∈

R
n : u > 0 and xi > 0 (i = 1, 2, . . . , p)} be the interior of a forward cone, and let Γ+ denote its

closure. For any complex number γ , we define

RB
γ (x) =

⎧⎪⎨
⎪⎩

u(γ−2|ν|−n)/2

K
|ν|
n

(
γ
) , for x ∈ Γ+,

0, for x /∈ Γ+,
(2.2)

where

K
|ν|
n

(
γ
)
=

π(n−1+2|ν|)/2Γ
((
2 + γ − n − 2|ν|)/2)Γ((1 − γ

)
/2

)
Γ
(
γ
)

Γ
((
2 + γ − p − 2|ν|)/2)Γ((p − γ

)
/2

) , (2.3)

2vi = 2αi + 1, αi > −1/2 and |ν| = ν1 + ν2 + · · · + νn, see [18–20].

The function RB
γ (x) is called the Bessel ultrahyperbolic kernel and was introduced by

Aguirre [21]. It is well known that RB
γ (x) is an ordinary function if Re(γ − 2|ν|) ≥ n and is a

distribution of (γ − 2|ν|) if Re(γ − 2|ν|) < n. Let suppRB
γ (x) denote the support of RB

γ (x) and

suppose that suppRB
γ (x) ⊂ Γ+ (i.e., suppRB

γ (x) is compact).
Letting γ = 2k in (2.2) and (2.3), we obtain

RB
2k(x) =

u(2k−n−2|ν|)/2

Kn(2k)
, (2.4)

where

Kn(2k) =
π(n−1+2|ν|)/2Γ((2 + 2k − n − 2|ν|)/2)Γ((1 − 2k)/2)Γ(2k)

Γ
((
2 + 2k − p − 2|ν|)/2)Γ((p − 2k

)
/2

) . (2.5)

By putting |ν| = 0 in (2.2) and (2.3), then formulae (2.2) and (2.3) reduce to

RH
γ (x) =

⎧⎪⎪⎨
⎪⎪⎩

u(γ−n)/2

Kn

(
γ
) , for x ∈ Γ+,

0, for x /∈ Γ+,

(2.6)

Kn

(
γ
)
=

π(n−1)/2Γ
((
γ − n

)
/2 + 1

)
Γ
((
1 − γ

)
/2

)
Γ
(
γ
)

Γ
((
γ − p

)
/2 + 1

)
Γ
((
p − γ

)
/2

) . (2.7)
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The function RH
γ (x) is called the ultrahyperbolic kernel of Marcel Riesz and was introduced

by Nozaki [22]. It is well known that RH
γ (x) is an ordinary function if Re(γ) ≥ n and is a

distribution of γ if Re(γ) < n. Let suppRH
γ (x) denote the support of RH

γ (x) and suppose that

suppRH
γ (x) ⊂ Γ+ ( i.e., suppRH

γ (x) is compact).

By putting p = 1 in RH
2k(x) and taking into account Legendre’s duplication formula for

Γ(z), that is,

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.8)

we obtain

IHγ (x) =
v(γ−n)/2

Hn

(
γ
) (2.9)

and v = x2
1 − x2

2 − x2
3 − · · · − x2

n, where

Hn

(
γ
)
= π(n−2)/22γ−1Γ

(
γ + 2 − n

2

)
Γ
(γ
2

)
. (2.10)

The function IHγ (x) is called the hyperbolic kernel of Marcel Riesz.

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of R
n and ω = x2

1 + x2
2 + · · · + x2

n. The elliptic
kernel of Marcel Riesz is defined by

Re
γ(x) =

ω(γ−n)/2

Wn

(
γ
) , (2.11)

where n is the dimension of R
n, γ ∈ C, and

Wn

(
γ
)
=

πn/22γΓ
(
γ/2

)

Γ
((
n − γ

)
/2

) . (2.12)

Note that n = p + q. By putting q = 0 (i.e., n = p) in (2.6) and (2.7), we can reduce

u(γ−n)/2 to ω
(γ−p)/2
p , where ωp = x2

1 + x2
2 + · · · + x2

p, and reduce Kn(γ) to

Kp

(
γ
)
=

π(p−1)/2Γ
((
1 − γ

)
/2

)
Γ
(
γ
)

Γ
((
p − γ

)
/2

) . (2.13)

Using Legendre’s duplication formula

Γ(2z) = 22z−1π−1/2Γ(z)Γ
(
z +

1
2

)
, (2.14)
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and

Γ
(
1
2
+ z

)
Γ
(
1
2
− z

)
= πsec(πz), (2.15)

we obtain

Kp

(
γ
)
=

1
2
sec

(γπ
2

)
Wp

(
γ
)
. (2.16)

Thus, for q = 0, we have

RH
γ (x) =

u(γ−p)/2

Kp

(
γ
) = 2 cos

(γπ
2

)u(γ−p)/2

Wp

(
γ
) = 2 cos

(γπ
2

)
Re

γ(x). (2.17)

In addition, if γ = 2k for some nonnegative integer k, then

RH
2k(x) = 2(−1)kRe

2k(x). (2.18)

The proofs of Lemma 2.3 are given in [2].

Lemma 2.3. The function RH
α (x) has the following properties:

(i) RH
0 (x) = δ(x);

(ii) RH
−2k(x) = �kδ(x);

(iii) �kRH
α (x) = RH

α−2k(x);

(iv) �kRH
2k(x) = δ(x).

Lemma 2.4. If |ν|/= 0, then

RB
γ (x) = hγ,p,|ν|RH

γ−2|ν|(x), (2.19)

where RB
γ (x) and RH

γ−2|ν|(x) are defined by (2.2) and (2.6), respectively, and

hγ,p,|ν| =
Γ
((
1 − γ

)
/2 + |ν|)Γ(γ − 2|ν|)Γ((p − γ

)
/2

)

π |v|Γ
((
p − γ

)
/2 + |ν|)Γ((1 − γ

)
/2

)
Γ
(
γ
) . (2.20)

Proof. We get (2.19) by computing directly from definition of RB
γ (x) and RH

γ−2|ν|(x).

The proof of the following lemma is given in [23].

Lemma 2.5 (the convolutions of RH
α (x)). (i) If p is odd, then

RH
α (x) ∗ RH

β (x) = RH
α+β(x) +Aα,β, (2.21)
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where

Aα,β = − i

2
sin(απ/2) sin

(
βπ/2

)

sin
((
α + β

)
π/2

)
[
H+

α+β −H−
α+β

]
, (2.22)

H±
α+β = Hα+β(P ± i0, n) (2.23)

as defined by (1.8).
(ii) If p is even, then

RH
α (x) ∗ RH

β (x) = Bα,βR
H
α+β(x), (2.24)

where

Bα,β =
cos(απ/2) cos

(
βπ/2

)

cos
((
α + β

)
π/2

) . (2.25)

Lemma 2.6 (the convolutions of RB
α(x)). (i) If p is odd, then

RB
α(x) ∗ RB

β (x) = hα,p,|ν|hβ,p,|μ|

(
RH

α+β−2(|ν|+|μ|) +Aα−2|ν|,β−2|μ|

)
, (2.26)

where RH
α (x) and Aα−2|ν|,β−2|μ| are defined by (2.6) and (2.22), respectively.
(ii) If p is even, then

RB
α(x) ∗ RB

β (x) = hα,p,|ν|hβ,p,|μ|

(
Bα−2|ν|,β−2|μ|RH

α+β−2(|ν|+|μ|)
)
, (2.27)

where Bα−2|ν|,β−2|μ| is defined by (2.25).

The proof of this lemma can be easily seen from Lemmas 2.4, 2.5 and [23].

3. The Convolution RB
α(x) ∗ RB

β (x) When β = −α

We will now consider the property of RB
α(x) ∗ RB

β (x)when β = −α.
From (2.26) and (2.27), we immediately obtain the following properties.

(1) If p is odd and q is even, then

RB
α(x) ∗ RB

β (x) = hα,p,|ν|hβ,p,|μ|

(
RH

α+β−2(|ν|+|μ|) +Aα−2|ν|,β−2|μ|

)
, (3.1)

where RH
α (x) and Aα−2|ν|,β−2|μ| are defined by (2.6) and (2.22), respectively.
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(2) If p and q are both odd, then

RB
α(x) ∗ RB

β (x) = hα,p,|ν|hβ,p,|μ|

(
RH

α+β−2(|ν|+|μ|) +Aα−2|ν|,β−2|μ|

)
. (3.2)

(3) If p is even and q is odd, then

RB
α(x) ∗ RB

β (x) = hα,p,|ν|hβ,p,|μ|

(
cos((α − 2|ν|)π/2) · cos((β − 2

∣∣μ∣∣)π/2)

cos
((
α + β − 2

(|ν| + ∣∣μ∣∣))π/2) RH
α+β−2(|ν|+|μ|)

)
.

(3.3)

(4) If p and q are both even, then

RB
α(x) ∗ RB

β (x) = hα,p,|ν|hβ,p,|μ|

(
cos((α − 2|ν|)π/2) · cos((β − 2

∣∣μ∣∣)π/2)

cos
((
α + β − 2

(|ν| + ∣∣μ∣∣))π/2) RH
α+β−2(|ν|+|μ|)

)
.

(3.4)

Moreover, it follows from (2.22) that

Aα−2|ν|,−(α−2|ν|) = lim
β−2|μ|→−(α−2|ν|)

Aα−2|ν|,β−2|μ|

= − i

2
lim
γ → 0

sin((α − 2|ν|)π/2) sin((γ − (α − 2|ν|))π/2)

sin
(
γπ/2

)
[
H+

γ −H−
γ

]

= − i

2
lim
γ → 0

sin((α − 2|ν|)π/2) sin((γ − (α − 2|ν|))π/2)

sin
(
γπ/2

) · lim
γ → 0

[
H+

γ −H−
γ

]
,

(3.5)

where γ = α + β − 2(|ν| + |μ|).
On the other hand, using (2.23) and (1.8), we have

lim
γ → 0

[
H+

γ −H−
γ

]
=

Γ(n/2)
πn/2

[
lim
γ → 0

e−γπi/2eqπi/2
(P + i0)(γ−n)/2

Γ
(
γ/2

)

−lim
γ → 0

eγπi/2e−qπi/2
(P − i0)(γ−n)/2

Γ
(
γ/2

)
]

=
Γ(n/2)
πn/2

[
lim
γ → 0

e−γπi/2eqπi/2 · Resβ=−n/2(P + i0)β

Resβ=−n/2Γ
(
β + n/2

)

−lim
γ → 0

eγπi/2e−qπi/2 · Resβ=−n/2(P − i0)β

Resβ=−n/2Γ
(
β + n/2

)
]
.

(3.6)
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Now, taking n as an odd integer, we obtain

Res
λ=−n/2−k

(P ± i0)λ =
e±qπi/2πn/2

22kk!Γ(n/2 + k)
�kδ(x), (3.7)

where �k is defined by (1.1), p + q = n, and k is nonnegative integer; see [24, 25]. If p and q
are both even, then

Res
λ=−n/2−k

(P ± i0)λ =
e±qπi/2πn/2

22kk!Γ(n/2 + k)
�kδ(x). (3.8)

Nevertheless, if p and q are both odd, then

Res
λ=−n/2−k

(P ± i0)λ = 0. (3.9)

Therefore, we have

lim
γ → 0

[
H+

γ −H−
γ

]
=

Γ(n/2)
πn/2

· πn/2

Γ(n/2)

[
lim
γ → 0

e−γπi/2 − lim
γ → 0

eγπi/2
]
δ(x)

= lim
γ → 0

[−2i sin(γπ/2)]δ(x).
(3.10)

From (3.6) and (3.9), we have

lim
γ → 0

[
H+

γ −H−
γ

]
= 0 (3.11)

if p and q are both odd (n even).
Applying (3.10) and (3.11) into (3.5), we have

Aα−2|ν|,−α+2|ν| = − i

2
lim
γ → 0

sin((α − 2|ν|)π/2) sin((γ − (α − 2|ν|))π/2)

sin
(
γπ/2

) · lim
γ → 0

[−2i sin(γπ/2)]δ(x)

= sin2((α − 2|ν|)π/2)δ(x)
(3.12)

if p is odd and q is even and

Aα−2|ν|,−α+2|ν| = 0 (3.13)

if p and q are both odd.
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From (3.1)—(3.4) and using Lemmas 2.3, and 2.6 and formulae (3.12) and (3.13), if p
is odd and q is even, then we obtain

RB
α(x) ∗ RB

−α(x) = hα,p,|ν|h−α,p,|ν|
(
RH

0 +Aα−2|ν|,−α+2|ν|
)

= hα,p,|ν|h−α,p,|ν|
[
δ(x) + sin2((α − 2|ν|)π/2)δ(x)

]

= hα,p,|ν|h−α,p,|ν|
[
1 + sin2((α − 2|ν|)π/2)

]
δ(x).

(3.14)

If p and q are both odd, then

RB
α(x) ∗ RB

−α(x) = hα,p,|ν|h−α,p,|ν|
(
RH

0 +Aα−2|ν|,−α+2|ν|
)

= hα,p,|ν|h−α,p,|ν|δ(x).

(3.15)

If p is even and q is odd, then

RB
α(x) ∗ RB

−α(x) = hα,p,|ν|h−α,p,|ν|
cos((α − 2|ν|)π/2) cos((−α + 2|ν|)π/2)

cos((α − α − 2|ν| + 2|ν|)π/2) RH
0

= hα,p,|ν|h−α,p,|ν|cos2((α − 2|ν|)π/2)δ(x).
(3.16)

Finally, if p and q are both even, then

RB
α(x) ∗ RB

−α(x) = hα,p,|ν|h−α,p,|ν|
cos((α − 2|ν|)π/2) cos((−α + 2|ν|)π/2)

cos((α − α − 2|ν| + 2|ν|)π/2) RH
0

= hα,p,|ν|h−α,p,|ν|cos2((α − 2|ν|)π/2)δ(x).
(3.17)

4. The Main Theorem

Let Mα(f) be the Bessel ultrahyperbolic Marcel Riesz operator of order α of the function f ,
which is defined by

Uα(f) = RB
α ∗ f, (4.1)

where RB
α is defined by (2.2), α ∈ C, and f ∈ S.

Recall that our objective is to obtain the operator Eα = (Uα)−1 such that, if Uα(f) = ϕ,
then Eαϕ = f for all α ∈ C.

We are now ready to state our main theorem.
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Theorem 4.1. IfUα(f) = ϕ (whereUα(f) is defined by (4.1) and f ∈ S), then Eαϕ = f such that

Eα = (Uα)−1

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
hα,p,|ν|h−α,p,|ν|

[
1 + sin2((α − 2|ν|)π/2)

]−1
RB

−α if p is odd and q is even,

1
hα,p,|ν|h−α,p,|ν|

RB
−α if p and q are both odd,

1
hα,p,|ν|h−α,p,|ν|

sec2((α − 2|ν|)π/2)RB
−α if p is even with(α − 2|ν|)/2/= 2s + 1

(4.2)

for any nonnegative integer s.

Proof. By (4.1), we have

Uα(f) = RB
α ∗ f = ϕ, (4.3)

where RB
α is defined by (2.2), α ∈ C, and f ∈ S. If p is odd and q is even, then, in view of

(3.14), we obtain

1
hα,p,|ν|h−α,p,|ν|

[
1 + sin2((α − 2|ν|)π/2)

]−1
RB

−α ∗
(
RB

α ∗ f
)

=
1

hα,p,|ν|h−α,p,|ν|

[
1 + sin2((α − 2|ν|)π/2)

]−1(
RB

−α ∗ RB
α

)
∗ f

=
1

hα,p,|ν|h−α,p,|ν|

[
1 + sin2((α − 2|ν|)π/2)

]−1

×
{
hα,p,|ν|h−α,p,|ν|

[
1 + sin2((α − 2|ν|)π/2)

]
δ(x)

}
∗ f

= δ ∗ f = f.

(4.4)

Hence,

1
hα,p,|ν|h−α,p,|ν|

[
1 + sin2((α − 2|ν|)π/2)

]−1
RB

−α = (Uα)−1 =
(
RB

α

)−1
(4.5)

for all α ∈ C.
Similarly, if both p and q are odd, then, by (3.15), we obtain

1
hα,p,|ν|h−α,p,|ν|

RB
−α ∗

(
RB

α ∗ f
)
=

1
hα,p,|ν|h−α,p,|ν|

(
RB

−α ∗ RB
α

)
∗ f

=
1

hα,p,|ν|h−α,p,|ν|
hα,p,|ν|h−α,p,|ν|δ(x) ∗ f

= f.

(4.6)
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Hence,

1
hα,p,|ν|h−α,p,|ν|

RB
−α = (Uα)−1 =

(
RB

α

)−1
(4.7)

for all α ∈ C.
Finally, if p is even, then, by (3.16) and (3.17), we have

1
hα,p,|ν|h−α,p,|ν|

sec2((α − 2|ν|)π/2)RB
−α ∗

(
RB

α ∗ f
)

=
1

hα,p,|ν|h−α,p,|ν|
sec2((α − 2|ν|)π/2)

(
RB

−α ∗ RB
α

)
∗ f

=
1

hα,p,|ν|h−α,p,|ν|
sec2((α − 2|ν|)π/2)

{
hα,p,|ν|h−α,p,|ν|cos2((α − 2|ν|)π/2)δ(x)

}
∗ f

= δ ∗ f = f,

(4.8)

provided that (α − 2|ν|)/2/= 2s + 1 for any nonnegative integer s.
Hence,

1
hα,p,|ν|h−α,p,|ν|

sec2((α − 2|ν|)π/2)RB
−α = (Uα)−1 =

(
RB

α

)−1
(4.9)

for all α ∈ C with (α − 2|ν|)/2/= 2s + 1 for any nonnegative integer s.
In this conclusion, formulae (4.5), (4.7), and (4.9) are the desired results, and this

completes the proof.
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