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We consider boundary value problem for nonlinear fractional differential equation Dα
0+u(t) +

f(t, u(t)) = 0, 0 < t < 1, n − 1 < α ≤ n, n > 3, u(0) = u′(1) = u′′(0) = · · · = u(n−1)(0) = 0,
whereDα

0+ denotes the Caputo fractional derivative. By using fixed point theorem, we obtain some
new results for the existence and multiplicity of solutions to a higher-order fractional boundary
value problem. The interesting point lies in the fact that the solutions here are positive, monotone,
and concave.

1. Introduction

In this paper, we deal with the following boundary value problem for higher-order fractional
differential equation:

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, n − 1 < α � n, n > 3,

u(0) = u′(1) = u′′(0) = · · · = u(n−1)(0) = 0,
(1.1)

where Dα
0+ denotes the Caputo fractional derivative and f : [0, 1] × [0,+∞) → [0,+∞) is a

real function. By using fixed point theorem, some sufficient conditions for existence and mul-
tiplicity of solutions to the above boundary value problem are obtained. Moreover, we will
show that the solutions obtained here are positive, monotone, and concave.

Fractional differential equations are valuable tools in the modelling of many phenom-
ena in various fields of science and engineering [1–5]. Due to their applications, fractional
differential equations have gained considerable attentions and there has been a significant
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development in the study of existence of solutions, and positive solutions to boundary value
problems for fractional differential equations (e.g., [6–9] and references therein).

Some papers are devoted to study the existence of solutions for higher-order fractional
boundary value problem. Salem [10] investigated the existence of pseudosolutions for the
nonlinear m-point boundary value problem of fractional type

Dαx(t) + q(t)f(t, x(t)) = 0, 0 < t < 1, α ∈ (n − 1, n], n � 2,

x(0) = x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(1) =
m−2∑

i=1

ξix
(
ηi
)
.

(1.2)

Zhang [11] considered the existence of positive solutions to the singular boundary value
problem for fractional differential equations

Dα
0+u(t) + q(t)f

(
u, u′, . . . , u(n−2)

)
= 0, 0 < t < 1, α ∈ (n − 1, n], n � 2,

u(0) = u′′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0,
(1.3)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α. In another paper, Zhang

[9] studied the existence, multiplicity, and nonexistence of positive solutions for the following
higher-order fractional boundary value problem:

Dαu + λh(t)f(u) = 0, 0 < t < 1, α ∈ (n − 1, n], n � 2,

u(1) = u′(0) = · · · = u(n−2)(0) = u(n−1)(0) = 0,
(1.4)

where Dα is the Caputo fractional derivative of order α.
It seems that the authors of the papers only studied the existence of the solutions or

positive solutions. No one consider the qualities of the solutions for boundary value problems
of fractional differential equation. Motivated by all the above works, the aim of this paper is
to study the monotone, concave, and positive solutions of a fractional differential equation.

The rest of the paper is organized as follows. In Section 2, we will introduce some
lemmas and definitions which will be used later. In Section 3, the existence and multiplicity
of positive solutions for the boundary value problem (1.1) will be discussed. In Section 4,
examples are given to check our results.

2. Basic Definitions and Preliminaries

In this section, we introduce some necessary definitions and lemmas, which will be used in
the proofs of our main results.

Definition 2.1 (see [12]). The integral

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

where α > 0 is called the Riemann-Liouville fractional integral of order α.
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Definition 2.2 (see [12]). The Caputo fractional derivative for a function y : (0,∞) → R can
be written as

Dα
0+y(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1y(n)(s)ds, (2.2)

where n = [α] + 1, [α] denotes the integer part of real number α.

According to the definitions of fractional calculus, we can obtain that the fractional
integral and the Caputo fractional derivative satisfy the following Lemma.

Lemma 2.3 (see [13]). Assume that u ∈ Cm[0, 1] and ρ ∈ (m − 1, m), m ∈ N and v ∈ C1[0, 1].
Then, for t ∈ [0, 1],

(a) Dρ

0+I
ρ

0+v(t) = v(t),

(b) Iρ0+D
ρ

0+u(t) = u(t) −∑m−1
k=0 ((u

(k)(0))/k!)tk,

(c) limt→ 0+D
ρ

0+u(t) = limt→ 0+I
ρ

0+u(t) = 0.

Definition 2.4. Let E be a real Banach space over R. A nonempty convex closed set p ⊂ E is
said to be a cone, provided that

(a) au ∈ P, for all u ∈ P, a � 0,

(b) u,−u ∈ P, implies u = 0.

Definition 2.5. Let E be a real Banach space and P ⊂ E a cone. A function ϕ : P → [0,∞) is
called a nonnegative continuous concave functional if ϕ is continuous and

ϕ
(
λx + (1 − λ)y

)
� λϕ(x) + (1 − λ)ϕ

(
y
)
, (2.3)

for all x, y ∈ P and 0 � λ � 1.

Lemma 2.6 (see [14]). Let E be a Banach space, K ⊆ E a cone in E, and Ω1, Ω2 two bounded open
subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose that T : K ∩ (Ω2 \ Ω1) → K is continuous and
completely continuous such that either

(i) ‖Tu‖ � ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Tu‖ � ‖u‖ for u ∈ K ∩ ∂Ω2,

or

(ii) ‖Tu‖ � ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Tu‖ � ‖u‖ for u ∈ K ∩ ∂Ω2

holds. Then, T has a fixed point in K ∩ (Ω2 \Ω1).
Let b, d, r > 0 be constants, Pr = {u ∈ P : ‖u‖ < r}, P(ϕ, b, d) = {u ∈ P : b � ϕ(u),

‖u‖ � d}.
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Lemma 2.7 (see [15]). Let P be a cone in real Banach space E. Let T : Pc → Pc be a completely
continuous map and ϕ a nonnegative continuous concave functional on P such that ϕ(u) � ‖u‖, for
all u ∈ Pc. Suppose that there exist constants a, b, d with 0 < a < b < d � c such that

(i)
{
u ∈ P

(
ϕ, b, d

)
: ϕ(u) > b

}
/= ∅, ϕ(Tu) > b ∀u ∈ P

(
ϕ, b, d

)
,

(ii) ‖Tu‖ < a ∀u ∈ Pa,

(iii) ϕ(Tu) > b, ∀u ∈ P
(
ϕ, b, c

)
with ‖Tu‖ > d.

(2.4)

Then, T has at least three fixed points u1, u2, and u3 satisfying

‖u1‖ < a, b < ϕ(u2), ‖u3‖ > a, ϕ(u3) < b. (2.5)

Lemma 2.8. Assume that f(t, u) ∈ C([0, 1] × [0,+∞), [0,+∞)), then u ∈ C[0, 1] be a solution of
fractional boundary value problem (1.1) if and only if u ∈ C[0, 1] is a solution of integral equation

u(t) =
∫1

0
G(t, s)f(s, u(s))ds, (2.6)

where

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)t(1 − s)α−2 − (t − s)α−1

Γ(α)
, 0 � s � t � 1,

(α − 1)t(1 − s)α−2

Γ(α)
, 0 � t � s � 1.

(2.7)

Proof. Firstly, we prove the necessity. Let u ∈ C[0, 1] is a solution of fractional boundary value
problem (1.1). By Lemma 2.3, we have

u(t) = −Iα0+f(t, u(t)) + u(0) + u′(0)t + · · · + u(n−1)(0)
(n − 1)!

tn−1

= − 1
Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds + u′(0)t.

(2.8)

Therefore,

u′(t) = − 1
Γ(α)

∫ t

0
(α − 1)(t − s)α−2f(s, u(s))ds + u′(0). (2.9)

By the boundary value condition u′(1) = 0, we have

u′(0) =
1

Γ(α)

∫1

0
(α − 1)(1 − s)α−2f(s, u(s))ds. (2.10)



Abstract and Applied Analysis 5

Hence, we obtain

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds +

1
Γ(α)

∫1

0
(α − 1)t(1 − s)α−2f(s, u(s))ds

=
∫1

0
G(t, s)f(s, u(s))ds.

(2.11)

The necessity is proved.
Now, we prove the sufficiency. Let u ∈ C[0, 1] be a solution of integral equation (2.6).

Then, we have

Dα
0+u(t) = −Dα

0+

(∫ t

0

(t − s)α−1

Γ(α)
f(s, u(s))ds

)
+

(∫1

0

(α − 1)(1 − s)α−2

Γ(α)
f(s, u(s))ds

)
Dα

0+t

= −Dα
0+I

α
0+f(t, u(t)) = −f(t, u(t)).

(2.12)

By direct computation, we obtain that

u(0) = u′(1) = u′′(0) = · · · = u(n−1)(0) = 0. (2.13)

That is to say, u is a solution of fractional boundary value problem (1.1). Thus, the sufficiency
is proved.

Lemma 2.9. Let f(t, u(t)) ∈ C([0, 1]×[0,∞), [0,∞)). Then, the solution u(t) of fractional boundary
value problem (1.1) satisfies

(1) u(t) is concave on (0, 1),

(2) u(t) � 0 is increasing for t ∈ [0, 1].

Proof. Suppose that u(t) is a solution of fractional boundary value problem (1.1). By (2.11),
we know that

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds +

1
Γ(α)

∫1

0
(α − 1)t(1 − s)α−2f(s, u(s))ds. (2.14)

Therefore,

u′(t) = − 1
Γ(α)

∫ t

0
(α − 1)(t − s)α−2f(s, u(s))ds +

1
Γ(α)

∫1

0
(α − 1)(1 − s)α−2f(s, u(s))ds,

(2.15)

u′′(t) = − 1
Γ(α)

∫ t

0
(α − 1)(α − 2)(t − s)α−3f(s, u(s))ds � 0, for t ∈ [0, 1], n − 1 < α � n, n > 3,

(2.16)

which implies that u(t) is concave on (0, 1). The statement (1) is proved.
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Since u′′(t) � 0, we know that u′(t) is nonincreasing. By u′(1) = 0, we have u′(t) � 0,
t ∈ [0, 1]. Thus, u(t) is increasing. Noting u(0) = 0, we obtain that u(t) � 0 for t ∈ [0, 1]. The
statement (2) is proved.

Lemma 2.10. The Green’s function G(t, s), defined by (2.7), satisfies

(1) max0�t�1G(t, s) = G(1, s), s ∈ [0, 1],

(2) G(t, s) � 0, t, s ∈ [0, 1],

(3) minξ�t�ηG(t, s) � ξα−1G(1, s), s ∈ [0, 1], for all ξ, η ∈ (0, 1), ξ < η.

Proof. By (2.7), we have

G′
t(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)(1 − s)α−2 − (α − 1)(t − s)α−2

Γ(α)
, 0 � s � t � 1,

(α − 1)(1 − s)α−2

Γ(α)
, 0 � t � s � 1.

(2.17)

It is clear thatG′
t(t, s) � 0, t, s ∈ [0, 1]. Therefore,G(t, s) is increasing respect to t for s ∈ [0, 1].

Thus, max0�t�1G(t, s) = G(1, s). The statement (1) holds.
If 0 � t � s � 1, then,

G(t, s) =
(α − 1)t(1 − s)α−2

Γ(α)
� 0. (2.18)

Since G(t, s) is increasing respect to t for s ∈ [0, 1], it is easy to see that G(t, s) � 0 for 0 � s �
t � 1. We get the statement (2).

On the other hand, we have

min
ξ�t�η

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α − 1)ξ(1 − s)α−2 − (ξ − s)α−1

Γ(α)
, s ∈ [0, ξ],

(α − 1)ξ(1 − s)α−2

Γ(α)
, s ∈ [ξ, η],

(α − 1)ξ(1 − s)α−2

Γ(α)
, s ∈ [η, 1]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(α − 1)ξ(1 − s)α−2 − (ξ − s)α−1

Γ(α)
, s ∈ [0, ξ],

(α − 1)ξ(1 − s)α−2

Γ(α)
, s ∈ [ξ, 1].

(2.19)

If s ∈ [0, ξ], then

(α − 1)ξ(1 − s)α−2 − (ξ − s)α−1 = ξ(α − 1)(1 − s)α−2 − ξα−1(1 − (s/ξ))α−1

� ξα−1(α − 1)(1 − s)α−2 − ξα−1(1 − s)α−1

= ξα−1
[
(α − 1)(1 − s)α−2 − (1 − s)α−1

]
.

(2.20)
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If s ∈ [ξ, 1], then

(α − 1)ξ(1 − s)α−2 � (α − 1)ξα−1(1 − s)α−2

� ξα−1
[
(α − 1)(1 − s)α−2 − (1 − s)α−1

]
.

(2.21)

Thus,

min
ξ�t�η

G(t, s) � ξα−1

[
(α − 1)(1 − s)α−2 − (1 − s)α−1

]

Γ(α)

= ξα−1G(1, s), s ∈ [0, 1].

(2.22)

This yields the statement (3). The proof is finished.

3. Main Results

In this section, we establish the results for the existence and multiplicity of monotone and
concave positive solutions for fractional boundary value problem (1.1).

Let E = C[0, 1] with ‖u‖ = max0�t�1|u(t)|. We define the cone P ⊂ E by

P =
{
u ∈ E : u(t) � 0 is concave on [0, 1], min

ξ�t�η
u(t) � ξα−1‖u‖

}
. (3.1)

And denote the operator T by

Tu(t) =
∫1

0
G(t, s)f(s, u(s))ds. (3.2)

Lemma 3.1. Assume that f(t, u) ∈ C([0, 1] × [0,+∞), [0,+∞)), then T : P → P is completely
continuous.

Proof. In view of non-negativeness and continuity of G(t, s) and f(t, u(t)), we know that the
operator T is continuous and Tu(t) � 0, for u ∈ P .

By (2.16), we have

(Tu)′′(t) = − 1
Γ(α)

∫ t

0
(α − 1)(α − 2)(t − s)α−3f(s, u(s))ds

� 0, for t ∈ [0, 1], n − 1 < α � n, n > 3.

(3.3)
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Moreover, it follows from Lemma 2.10 that for u ∈ P ,

min
ξ�t�η

Tu(t) = min
ξ�t�η

∫1

0
G(t, s) f(s, u(s))ds

� ξα−1
∫1

0
G(1, s)f(s, u(s))ds

= ξα−1‖Tu‖.

(3.4)

Therefore, the operator T : P → P is well defined.
Assume thatΩ ∈ P is bounded; that is, there exists a positive constantM > 0 such that

‖u‖ � M for all u ∈ Ω. Let N = max0�t�1,‖u‖�M|f(t, u(t))| + 1. For all u ∈ Ω, we have

|Tu(t)| =
∣∣∣∣∣

∫1

0
G(t, s)f(s, u(s))ds

∣∣∣∣∣ � N

∫1

0
G(1, s)ds, (3.5)

which shows that T(Ω) is uniformly bounded.
In addition, for each u ∈ Ω, t1, t2 ∈ [0, 1] such that t1 < t2, we have

|Tu(t2) − Tu(t1)| =
∣∣∣∣∣

∫1

0
G(t2, s)f(s, u(s))ds −

∫1

0
G(t1, s)f(s, u(s))ds

∣∣∣∣∣

�
∣∣∣∣∣

∫ t1

0

(t1 − s)α−1 − (t2 − s)α−1

Γ(α)
f(s, u(s))ds −

∫ t2

t1

(t2 − s)α−1

Γ(α)
f(s, u(s))ds

∣∣∣∣∣

+

∣∣∣∣∣

∫1

0

(α − 1)(t2 − t1)(1 − s)α−2

Γ(α)
f(s, u(s))ds

∣∣∣∣∣

� N

Γ(α + 1)
(
tα2 − tα1

)
+

N

Γ(α)
(t2 − t1).

(3.6)

Thus, by the standard arguments, we obtain that T(Ω) is equicontinuous. The Arzela-Ascoli
theorem implies that T : P → P is completely continuous. The proof is completed.

Let

M1 =
∫1

0
G(1, s)ds, N1 = ξα−1

∫η

ξ

G(1, s)ds. (3.7)

Theorem 3.2. Let f(t, u) ∈ C([0, 1]×[0,∞), [0,∞)). Assume that there exist two positive constants
r2 > r1 > 0 such that

(H1) f(t, u) ≤ r2/M1 for (t, u) ∈ [0, 1] × [0, r2],

(H2) f(t, u) ≥ r1/N1 for (t, u) ∈ [0, 1] × [0, r1].

Then, fractional boundary value problem (1.1) has at least one positive, increasing, and concave
solution u such that r1 ≤ ‖u‖ ≤ r2.
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Proof. Lemmas 2.8 and 3.1 imply that T : P → P is completely continuous and fractional
boundary problem (1.1) has a solution u = u(t) if and only if u satisfies the operator equation
u = Tu.

Let Ω1 := {u ∈ P : ‖u‖ < r1}. By (H2), for u ∈ ∂Ω1 and t ∈ [0, 1], we have

Tu(t) =
∫1

0
G(t, s)f(s, u(s))ds

� r1
N1

∫η

ξ

min
ξ≤t≤η

G(t, s)ds

� r1
N1

ξα−1
∫η

ξ

G(1, s)ds = r1 = ‖u‖.

(3.8)

So,

‖Tu‖ � ‖u‖, for u ∈ ∂Ω1. (3.9)

Let Ω2 := {u ∈ P : ‖u‖ < r2}. For u ∈ ∂Ω2, and t ∈ [0, 1], it follows from (H1) that

‖Tu(t)‖ = max
0≤t≤1

∣∣∣∣∣

∫1

0
G(t, s)f(s, u(s))ds

∣∣∣∣∣

� r2
M1

∫1

0
G(1, s)ds

=
r2
M1

∫1

0
G(1, s)ds = r2 = ‖u‖.

(3.10)

Lemma 2.6 implies that the fractional boundary value problem (1.1) has at least one positive
solution u such that r1 ≤ ‖u‖ ≤ r2. By Lemma 2.9, the solution is also increasing and concave.

In order to use Lemma 2.7, we define the nonnegative continuous concave functional
ϕ by ϕ(u) = minξ�t�ηu(t), for all u ∈ P .

Theorem 3.3. Suppose that f(t, u) ∈ C([0, 1] × [0,∞), [0,∞)) and there exist constants 0 < a <
b < c such that the following conditions hold:

(H3) f(t, u) <
a

M1
for (t, u) ∈ [0, 1] × [0, a],

(H4) f(t, u) >
b

N1
for (t, u) ∈ [ξ, η] × [b, c],

(H5) f(t, u) � c

M1
for (t, u) ∈ [0, 1] × [0, c].
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Then, the fractional boundary problem (1.1) has at least three positive, increasing, and concave solu-
tions u1, u2, and u3 such that

max
0�t�1

|u1(t)| < a, b < min
ξ�t�η

|u2(t)| < max
0�t�1

|u2(t)| � c,

a < max
0�t�1

|u3(t)| � c, min
ξ�t�η

|u3(t)| < b.
(3.11)

Proof. By Lemmas 2.8 and 3.1, T : P → P is completely continuous, and fractional boundary
value problem (1.1) has a solution u = u(t) if and only if u satisfies the operator equation
u = Tu.

First of all, we will prove the following assertions.

Assertion 3.4 (T(Pc) ⊆ Pc and T(Pa) ⊆ Pa). Firstly, Lemma 3.1 guarantees T(Pc) ⊆ P .
Secondly, for all u ∈ Pc, we have ‖u‖ � c. By (H5),

‖Tu(t)‖ = max
0≤t≤1

∣∣∣∣∣

∫1

0
G(t, s)f(s, u(s))ds

∣∣∣∣∣

� c

M1

∫1

0
G(1, s)ds

= c,

(3.12)

which implies that T(Pc) ⊆ Pc. In the same way, T(Pa) ⊆ Pa.

Assertion 3.5 ({u ∈ P(ϕ, b, d) | ϕ(u) > b}/= ∅, and ϕ(Tu) > b, for all u ∈ P(ϕ, b, d)). Let d = c,
u = (b + c)/2. Then, ‖u‖ < d and ϕ(u) = ϕ((b + c)/2) > b. Consequently, {u ∈ P(ϕ, b, d) |
ϕ(u) > b}/= ∅.

If u ∈ P(ϕ, b, d), then from (H4) and Lemma 2.10, we obtain that

ϕ(Tu) = min
ξ�t�η

Tu(t)

�
∫η

ξ

min
ξ�t�η

G(t, s)f(s, u(s))ds

>
b

N1
ξα−1

∫η

ξ

G(1, s)ds

= b.

(3.13)

That is, ϕ(Tu) > b, for all u ∈ P(ϕ, b, d).

Assertion 3.6 (ϕ(u) > b, for all u ∈ P(ϕ, b, c) with ‖u‖ > d). If u ∈ P(ϕ, b, c) and ‖Tu‖ > d = c,
similar to the above, we also have ϕ(Tu) > b.
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Assertions 1 ∼ 3 imply that all conditions of Lemma 2.7 hold. Therefore, the fractional
boundary value problem (1.1) has at least three positive solutions u1, u2, and u3 satisfying

max
0�t�1

|u1(t)| < a, b < min
ξ�t�η

|u2(t)| < max
0�t�1

|u2(t)| � c,

a < max
0�t�1

|u3(t)| � c, min
ξ�t�η

|u3(t)| < b.

(3.14)

By Lemma 2.9, the positive solutions are also increasing and concave. The proof is completed.

4. Example

In this section, we will present some examples to show the effectiveness of our work.

Example 4.1. Consider the fractional boundary value problem

D7/2
0+ u(t) + t2 +

√
u + 4 = 0, 0 < t < 1,

u(0) = u′′(0) = u′′′(0) = u′(1) = 0.
(4.1)

Setting ξ = 1/2, η = 3/4, we obtain

M1 =
∫1

0
G(1, s)ds =

(7/2) − 1
Γ(7/2)

∫1

0
(1 − s)(7/2)−2ds − 1

Γ(7/2)

∫1

0
(1 − s)(7/2)−1ds

=
1

(5/2)Γ(5/2)
− 1
(7/2)Γ(7/2)

≈ 0.2149,

N1 =
(
1
2

)(7/2)−1 ∫3/4

1/2
G(1, s)ds

=
(1/2)5/2

Γ(7/2)

(∫3/4

1/2

5
2
(1 − s)(7/2)−2ds −

∫3/4

1/2
(1 − s)(7/2)−1ds

)
≈ 0.0065.

(4.2)

Let r1 = 1/40, r2 = 4. We have

f(t, u) = t2 +
√
u + 4 � r2

M1
≈ 18.613, for (t, u) ∈ [0, 1] × [0, 4],

f(t, u) = t2 +
√
u + 4 � r1

N1
≈ 3.846, for (t, u) ∈ [0, 1] ×

[
0,

1
40

]
.

(4.3)

Theorem 3.2 implies that fractional boundary value problem (4.1) has at least one positive,
increasing, and concave solution. The approximate solution is obtained by the Adams-type
predictor-corrector method [16], which is displayed in Figure 1 for the step size h = 0.01.
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Figure 1: Transient response of state variable u(t).

Example 4.2. Consider the fractional boundary value problem

D7/2
0+ u(t) + f(t, u) = 0, 0 < t < 1,

u(0) = u′′(0) = u′′′(0) = u′(1) = 0,
(4.4)

where

f(t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

t

10
+ 155u3, 0 � u � 1, t ∈ [0, 1],

t

10
+ u + 154, u > 1, t ∈ [0, 1].

(4.5)

Setting ξ = 1/2, η = 3/4, we know that M1 ≈ 0.2149, N1 ≈ 0.0065. Choosing a =
1/10, b = 1, c = 45, we obtain that

f(t, u) =
t

10
+ 155u3 <

a

M1
≈ 0.466 for (t, u) ∈ [0, 1] ×

[
0,

1
10

]
,

f(t, u) =
t

10
+ u + 154 >

b

N1
≈ 153.846 for (t, u) ∈

[
1
2
,
3
4

]
× [1, 45],

f(t, u) =
t

10
+ u + 154 <

c

M1
≈ 209.4 for (t, u) ∈ [0, 1] × [0, 45].

(4.6)
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Figure 2: Transient response of state variable u(t).

Theorem 3.3 implies that fractional boundary value problem (4.4) has three positive,
increasing, and concave solutions such that

max
0�t�1

|u1(t)| < 1
10

, 1 < min
1/2�t�3/4

|u2(t)| < max
0�t�1

|u2(t)| � 45,

1
10

< max
0�t�1

|u3(t)| � 45, min
1/2�t�3/4

|u3(t)| < 1.

(4.7)

For numerical simulation case 1, Figure 2 depicts the phase responses state variables of u(t)
with the step size h = 0.01.
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