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This paper addresses the max-type difference equation xn = max{fn/xα
n−k, B/x

β
n−m}, n ∈ N0, where

k,m ∈ N, B > 0, and (fn)n∈N0
is a positive sequence with a finite limit. We prove that every positive

solution to the equation converges to max{(limn→∞fn)
1/(α+1), B1/(β+1)} under some conditions.

Explicit positive solutions to two particular cases are also presented.

1. Introduction

The study of difference equations, which usually depicts the evolution of certain phenomena
over the course of time, has a long history. Many experts recently pay some attention to so-
called max-type difference equations which stem from certain models in control theory, see,
for example, [1–23] and the references therein.

The study of the following family of max-type difference equations

xn = max

{
B
(0)
n , B

(1)
n

xr1
n−p1

xs1
n−q1

, B
(2)
n

xr2
n−p2

xs2
n−q2

, . . . , B
(k)
n

xrk
n−pk

xsk
n−qk

}
, n ∈ N0, (1.1)

where pi, qi ∈ N such that 1 ≤ p1 < · · · < pk, 1 ≤ q1 < · · · < qk, ri, si ∈ R+, k ∈ N and
B
(i)
n (i = 0, 1, . . . , k) are real sequences, was proposed by S. Stević at numerous conferences, for

example, [10, 11]. For some results in this direction, see [1, 2, 4, 12–23].
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In the beginning of the investigation the following equation was studied:

xn = max

{
A

(1)
n

xn−1
,
A

(2)
n

xn−2
, . . . ,

A
(k)
n

xn−k

}
, n ∈ N0, (1.2)

where k ∈ N, (A(i)
n )n∈N0

, i = 1, . . . , k are real sequences and the initial values are nonzero (see,
e.g., [3, 5, 6, 9] and the related references therein).

In [22], Sun studied the second-order difference equation

xn = max

⎧⎨
⎩ A

xα
n−1

,
B

x
β

n−2

⎫⎬
⎭, n ∈ N0, (1.3)

with α, β ∈ (0, 1), A, B > 0, and proved that each positive solution to (1.3) converges to
the equilibrium point max{A1/(α+1), B1/(β+1)}, by considering several subcases. However, the
method used there is a bit complicated and difficult for extending. Hence in [14] Stević
extended this, as well as the main result in [13], by presenting a more concise and elegant
proof of the next theorem.

Theorem 1.1 (see [14, Theorem 1]). Every positive solution to the difference equation

xn = max

{
A1

xα1
n−p1

,
A2

xα2
n−p2

, . . . ,
Ak

xαk
n−pk

}
, n ∈ N0, (1.4)

where pi, i = 1, . . . , k are natural numbers such that 1 ≤ p1 < · · · < pk, k ∈ N and Ai > 0, αi ∈
(−1, 1), i = 1, . . . , k, converges tomax1≤i≤k{A1/(αi+1)

i }.

Definition 1.2. Let F : N0 × R
k → R be a function of k + 1 variables, then the difference

equation

xn = F(n, xn−1, . . . , xn−k), n ∈ N0, (1.5)

is called nonautonomous or time variant.

Note that the following nonautonomous difference equation

xn = max

{
A

(1)
n

xα1
n−1

,
A

(2)
n

xα2
n−2

, . . . ,
A

(l)
n

xαl

n−l

}
, n ∈ N0, (1.6)

where l ∈ N, αi ∈ R, and (A(i)
n )n∈N0

, i = 1, . . . , l are real sequences (not all constant), is a natural
generalization of (1.2), (1.3), and (1.4). It is a special case of (1.1) of particular interest.

The aforementioned works are mainly devoted to the study of (1.6) with constant or
periodic numerators.
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This paper is devoted to the study of the following nonautonomous max-type
difference equation with two delays:

xn = max

{
fn
xα
n−k

,
B

x
β
n−m

}
, n ∈ N0, (1.7)

where k,m ∈ N, α, β ∈ R are fixed and (fn)n∈N0
is a positive sequence with a finite

limit. Inspired by the methods and proofs of the above-mentioned papers, here we try
to find some sufficient conditions such that every positive solution to (1.7) converges to
max{(limn→∞fn)

1/(α+1), B1/(β+1)}.
This paper proceeds as follows. Several useful lemmas are given in Section 2. In

Section 3 we establish three main results about the global attractivity of (1.7) under some
conditions. Finally motivated by a recent theorem in [21], explicit solutions to two particular
cases of (1.7) are presented in Section 4.

2. Auxiliary Results

To establish the main results in Section 3, here we present several lemmas. First we extend
Lemma 2.4 in [21] by proving the following result.

Lemma 2.1. Consider the nonautonomous difference equation

zn = min{C1(n) − α1(n)zn−1, . . . , Ck(n) − αk(n)zn−k}, n ∈ N0, (2.1)

where k ∈ N and αi(n), Ci(n), i = 1, 2, . . . , k are sequences. If Ci(n)s are nonnegative sequences and
there always exists i0 ∈ {1, 2, . . . , k} such that Ci0(n) = 0 for each fixed n ∈ N0, then

|zn| ≤ max{|α1(n)||zn−1| − C1(n), . . . , |αk(n)||zn−k| − Ck(n)}, n ∈ N0. (2.2)

Proof. Suppose that n ∈ N0 is fixed, and denote by S ⊆ {1, . . . , k} the set of all indices for
which the terms in (2.1) are negative.

If S = ∅, which means all terms in the right-hand side of (2.1) are nonnegative, then
apparently

0 ≤ zn ≤ −αi0(n)zn−i0 (2.3)

which implies

|zn| ≤ |αi0(n)||zn−i0 | − Ci0(n). (2.4)

Otherwise, S/= ∅, which means that there exist indices such that the corresponding
terms in (2.1) are negative, then we derive

zn = min
j∈S

{
Cj(n) − αj(n)zn−j

}
< 0. (2.5)
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Since αj(n)zn−j must be positive for j ∈ S, it follows from (2.5) that

|zn| = max
j∈S

{
αj(n)zn−j − Cj(n)

}
= max

j∈S
{∣∣αj(n)

∣∣∣∣zn−j∣∣ − Cj(n)
}
. (2.6)

Inequality (2.2) follows easily from (2.4) and (2.6).

The following lemma is widely used in the literature.

Lemma 2.2 (see [24]). Let (an)n∈N
be a sequence of nonnegative numbers which satisfies the ine-

quality

an+k ≤ qmax{an+k−1, an+k−2, . . . , an}, for n ∈ N, (2.7)

where q > 0 and k ∈ N are fixed. Then there exists anM ≥ 0 such that

an ≤ M
(

k
√
q
)n
, n ∈ N, (2.8)

which implies an → 0 as n → ∞ if 0 < q < 1.

Lemma 2.3. Assume that (xn)n≥−k is a sequence of nonnegative numbers satisfying the difference
inequality

xn ≤ max
{
γ1xn−1 − d1(n), . . . , γkxn−k − dk(n)

}
, n ∈ N0, (2.9)

where k ∈ N, γi ∈ [0, 1), and di(n), i = 1, . . . , k are nonnegative sequences. If there exists at least one
positive γi, then the sequence xn converges to zero as n → ∞.

Proof. This lemma follows directly from Lemma 2.2 since

xn ≤ max
{
γ1xn−1 − d1(n), . . . , γkxn−k − dk(n)

}
≤ max

{
γ1xn−1, . . . , γkxn−k

} ≤ γ max{xn−1, . . . , xn−k},
(2.10)

where 0 < γ = max{γ1, γ2, . . . , γk} < 1.

Remark 2.4. If in Lemma 2.3, we assume γi = 0, i = 1, . . . , k, then the statement also holds,
since in this case, if such a sequence exists, then the solution must be trivial, that is, xn = 0,
n ∈ N0 (for some results on the existence of nontrivial solutions, see, e.g., [25–27] and the
references therein).

Through some simple calculations, we have the following result.

Lemma 2.5. Every positive solution (xn)n≥−1 to the first-order difference equation

xn = A1−1/ω(xn−1)1/ω, n ∈ N0, (2.11)
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with A > 0, ω > 0, x−1 > 0, has the form

xn = A1−1/ωn+1
(x−1)1/ω

n+1
, n ∈ N0. (2.12)

Note that Lemma 2.5 leads to the following corollary.

Corollary 2.6. Each positive solution (Zn)n≥−k to the k th-order difference equation

Zn = A1−1/ω(Zn−k)1/ω, n ∈ N0, (2.13)

where A > 0, ω > 0, k ∈ N and the initial values Z−1, . . . , Z−k are positive, has the following form:

Zn = A1−(1/ω)[n/k]+1(Zρ(n,k)−k
)(1/ω)[n/k]+1

, n ≥ 0, (2.14)

where [·] represents the integer part function and ρ(n, k) = n − k · [n/k].

Remark 2.7. By Corollary 2.6 we have that for any positive solution (Zn)n≥−k to (2.13) the
following three statements hold true if ω > 1:

(1) limn→∞Zn = A;

(2) if Zi < A for every i ∈ {−k, . . . ,−1}, then the subsequences (Zjk+i)j≥0 are all strictly
increasing;

(3) if Zi > A for every i ∈ {−k, . . . ,−1}, then the subsequences (Zjk+i)j≥0 are all strictly
decreasing.

3. Main Results

In this section, we prove the main results of this paper, which concern the global attractivity
of positive solutions to (1.7) under some conditions. In the sequel, we assume that there is a
finite limit of the positive sequence (fn)n∈N0

in (1.7).

Theorem 3.1. Consider (1.7), where (fn)n∈N0
is a positive monotone sequence with finite limitA > 0.

If |α| < 1, |β| < 1, B > A(β+1)/(α+1), then every positive solution to (1.7) converges to B1/(β+1).

Proof. By the change xn = ynB
1/(β+1), (1.7) is transformed into

yn = max

{
Cn

yα
n−k

,
1

y
β
n−m

}
, n ∈ N0, (3.1)

with Cn = fn/B
(α+1)/(β+1), n ∈ N0. Note that the sequence (Cn)n∈N0

is also monotone and
limn→∞Cn = A/B(α+1)/(β+1) < 1.

According to the assumption the sequence (fn)n∈N0
is nondecreasing or nonincreasing.

If (fn)n∈N0
is nonincreasing, then for some fixed ε ∈ (0, B(α+1)/(β+1) −A), there exists a natural

number N such that for every n ≥ N we have fn −A < ε, which implies

0 < Cn < 1, n ≥ N. (3.2)



6 Abstract and Applied Analysis

On the other hand, if (fn)n∈N0
is nondecreasing then obviously Cn < 1 for each n ∈ N0,

hence (3.2) also holds for this case.
Let D ∈ (0, 1) be fixed. Employing the transformation yn = Dzn , (3.1) becomes

Dzn = max
{

Cn

Dαzn−k
,

1
Dβzn−m

}
, n ∈ N0, (3.3)

which implies

zn = min
{
logDCn − αzn−k,−βzn−m

}
, n ∈ N0. (3.4)

Note that logDCn > 0 for all n ≥ N. From this and by Lemma 2.1 we get

|zn| ≤ max
{|α||zn−k| − logDCn,

∣∣β∣∣|zn−m|}, n ≥ N. (3.5)

When both α and β are zero, it is clear that zn is always zero for n ≥ N. Otherwise, it follows
from Lemma 2.3 that limn→∞|zn| = 0, which implies

lim
n→∞

zn = 0. (3.6)

Finally, from the above two transformations we get

lim
n→∞

xn = B1/(β+1) lim
n→∞

yn = B1/(β+1)Dlimn→∞zn = B1/(β+1). (3.7)

The proof is complete.

Theorem 3.2. Consider (1.7). Let (fn)n≥−k be a positive solution to (2.13) such that fi < A (or
fi > A), i = −k, . . . ,−1, and denote

Γ = sup
n≥m

{
ln fn−m − lnA
ln fn − lnA

}
. (3.8)

If ω > 1, 0 < αω < 1, |β|Γ < 1, B < A(β+1)/(α+1), then every positive solution to (1.7) converges to
A1/(α+1).

Proof. Employing the transformation xn = ynA
1/(α+1), (1.7) becomes

yn = max

{
Cn

yα
n−k

,
λ

y
β
n−m

}
, n ∈ N0, (3.9)

where Cn = fn/A, n ∈ N0 and λ = B/A(β+1)/(α+1).
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Then by the change yn = Czn
n , (3.9) is transformed into

Czn
n = max

{
Cn

Cαzn−k
n−k

,
λ

C
βzn−m
n−m

}
, n ≥ max{k,m}. (3.10)

In the sequel, we proceed by considering two cases.

Case 1. Let fi < A, i = −k, . . . ,−1.
By Remark 2.7, we have 0 < Cn < 1, n ∈ N0. From (3.10) we get

zn = min
{
1 − α

(
logCn

Cn−k
)
zn−k, logCn

λ − β
(
logCn

Cn−m
)
zn−m

}

= min
{
1 − αωzn−k, logCn

λ − β
(
logCn

Cn−m
)
zn−m

}
,

(3.11)

for n ≥ max{k,m}. By the change zn = gn + 1/(αω + 1), (3.11) becomes

gn = min
{
−αωgn−k, Tn − β

(
logCn

Cn−m
)
gn−m

}
, n ≥ max{k,m}, (3.12)

where

Tn = logCn
λ −

βlogCn
Cn−m + 1

αω + 1
. (3.13)

Claim 1. There exists an integer M > 0 such that Tn > 0 for every n ≥ M.

Proof. Since fn = ACn, we easily have that

∣∣β∣∣logCn
Cn−m ≤ ∣∣β∣∣sup

j≥m

{
logCj

Cj−m
}
=
∣∣β∣∣Γ < 1, n ≥ m. (3.14)

Hence

0 <
βlogCn

Cn−m + 1

αω + 1
< 2, n ≥ m. (3.15)

On the other hand, for ε = A(1−
√
λ), there exists anM > 0 such that for each n ≥ Mwe have

fn > A − ε = A
√
λ, which along with the fact Cn ∈ (0, 1), n ∈ N0, implies that

logCn
λ > 2, n ≥ M. (3.16)

The claim follows directly from (3.15) and (3.16), as desired.
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Next, from Lemma 2.1 and (3.12) it follows that

∣∣gn∣∣ ≤ max
{
αω

∣∣gn−k∣∣, β(logCn
Cn−m

)∣∣gn−m∣∣ − Tn
}

≤ max
{
αω

∣∣gn−k∣∣, βΓ∣∣gn−m∣∣ − Tn
}
, n ≥ max{k,m,M}.

(3.17)

From (3.17) and by Lemma 2.3, we derive limn→∞|gn| = 0. Hence

lim
n→∞

lnyn = lim
n→∞

(zn lnCn) = lim
n→∞

zn · ln
(

lim
n→∞

Cn

)
=

1
αω + 1

· ln 1 = 0, (3.18)

and consequently

lim
n→∞

xn = A1/α+1 lim
n→∞

yn = A1/α+1. (3.19)

Case 2. Let fi > A, i = −k, . . . ,−1.
By Remark 2.7, we have Cn > 1, n ∈ N0, and (3.10) is transformed into

zn = max
{
1 − α

(
logCn

Cn−k
)
zn−k, logCn

λ − β
(
logCn

Cn−m
)
zn−m

}

= max
{
1 − αωzn−k, logCn

λ − β
(
logCn

Cn−m
)
zn−m

}
,

(3.20)

for all n ≥ max{k,m}. Then employing the following change

zn = −gn + 1
αω + 1

, (3.21)

(3.20) is transformed into

gn = min
{
−αωgn−k, Tn − β

(
logCn

Cn−m
)
gn−m

}
, n ≥ max{k,m}, (3.22)

where Tn = −logCn
λ+ (βlogCn

Cn−m + 1)/(αω+ 1). In this case, Tn > 0 obviously holds. The rest
of the proof is similar to that of Case 1 so is omitted.

To illustrate Theorem 3.2, we present the following example.

Example 3.3. Consider the difference equation

xn = max

{
fn
xα
n−1

,
B

x
β
n−m

}
, n ∈ N0, (3.23)

where B > 0, m ≥ 2, and fn = Aq1/ω
n+1
, ω > 1, A, q > 0, q /= 1, n ∈ N0.
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By Theorem 3.2 and through some calculations, we obtain

Γ = sup
n≥m

{
ln fn−m − lnA
ln fn − lnA

}
= sup

n≥m

{
ωn+1

ωn−m+1

}
= ωm. (3.24)

Hence if 0 < α < 1/ω, |β| < 1/ωm, B < A(β+1)/(α+1), then every positive solution to (3.23)
converges to A1/(α+1).

Theorem 3.4. Consider (1.7). If (fn)n∈N0
is an increasing sequence converging to A, |α|, |β| < 1 and

B = A(β+1)/(α+1), then every positive solution to (1.7) converges to A1/(α+1).

Proof. By the change xn = ynA
1/(α+1), (1.7) becomes

yn = max

{
Cn

yα
n−k

,
1

y
β
n−m

}
, n ∈ N0, (3.25)

where Cn = fn/A < 1, n ∈ N0. The rest of the proof is analogous to that of Theorem 3.1 and
thus is omitted.

4. Explicit Solutions

Recently, Stević and Iričanin in [21] proved the following theorem.

Theorem 4.1 (see [21, Theorem 2.8]). Consider

xn = max
{
xa1
n−1, . . . , x

ak
n−k

}
, n ∈ N0, (4.1)

where k ∈ N, ai ∈ R, i = 1, . . . , k. Then every well-defined solution of the equation has the following
form:

xn = d
∏k

j=1a
i
(j)
n
j

n , (4.2)

where [(n + k)/k] ≤ i
(1)
n + · · · + i

(k)
n ≤ n + 1, n ∈ N0, i

(j)
n ≥ 0, j = 1, . . . , k, and where dn is equal to

one of the initial values x−k, . . . , x−1.

The result is interesting since (4.2) holds for all real aj ’s and for all nonzero initial
values if one of these exponents is negative. However, (4.2) does not give explicit solutions
to (4.1) since dn’s and i

(j)
n ’s in (4.2) are uncertain. Thus the problem of finding more explicit

expressions of solutions to (4.1) is of interest.



10 Abstract and Applied Analysis

In this section we find explicit solutions to the next particular cases of (4.1)

xn = max

{
1

x
p

n−1
,

1
xn−2

}
, n ∈ N0, (4.3)

xn = max

{
1

xn−1
,

1

x
p

n−2

}
, n ∈ N0, (4.4)

with p > 1 and positive initial values x−2, x−1. First we prove a useful lemma.

Lemma 4.2. Let (xn)n∈N0
be a positive solution to (4.3) or (4.4). If there exists an N ∈ N0 such that

xN+3 = x
p

N, xN+4 = x
p

N+1, xN+5 = x
p

N+2, (4.5)

then for each k ∈ N the following equalities hold:

xN+3k = x
pk

N , xN+3k+1 = x
pk

N+1, xN+3k+2 = x
pk

N+2. (4.6)

Proof. We will only consider (4.3), because similar proof can be given to (4.4). The case k = 1
obviously holds due to (4.5). Next assume that (4.6) holds for 1 ≤ k ≤ m for some m ∈ N.
Then by (4.3)we derive

xN+3(m+1) = max

{
1

x
p

N+3m+2

,
1

xN+3m+1

}
= max

⎧⎨
⎩ 1

x
pm+1

N+2

,
1

x
pm

N+1

⎫⎬
⎭

= max

{
1

x
p

N+2

,
1

xN+1

}pm

= x
pm

N+3 = x
pm+1

N ,

xN+3(m+1)+1 = max

⎧⎨
⎩ 1

x
p

N+3(m+1)

,
1

xN+3m+2

⎫⎬
⎭ = max

⎧⎨
⎩ 1

x
pm+1

N+3

,
1

x
pm

N+2

⎫⎬
⎭

= max

{
1

x
p

N+3

,
1

xN+2

}pm

= x
pm

N+4 = x
pm+1

N+1,

xN+3(m+1)+2 = max

⎧⎨
⎩ 1

x
p

N+3(m+1)+1

,
1

xN+3(m+1)

⎫⎬
⎭ = max

⎧⎨
⎩ 1

x
pm+1

N+4

,
1

x
pm

N+3

⎫⎬
⎭

= max

{
1

x
p

N+4

,
1

xN+3

}pm

= x
pm

N+5 = x
pm+1

N+2.

(4.7)

Thus (4.6) holds for k = m + 1, finishing the inductive proof of the lemma.

Proposition 4.3. Let (xn)n∈N0
be a solution to (4.3) with p > 1 and positive initial values x−2, x−1,

then for each k ∈ N0 the following statements hold true.
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(1) If x−2 > x
p

−1, x−1 ≥ 1, then x3k = 1/xpk+1

−1 , x3k+1 = x
pk+2

−1 , x3k+2 = x
pk+1

−1 .

(2) If x−2 > x
p

−1, x−1 < 1, then x3k = 1/xpk+1

−1 , x3k+1 = 1/xpk

−1, x3k+2 = x
pk+1

−1 .

(3) If x−2 ≤ x
p

−1, x
p

−2x−1 ≥ 1 then x3k = 1/xpk

−2, x3k+1 = x
pk+1

−2 and

x3k+2 = x
pk

−2 if x−2 ≥ 1 or =
1

xp
k+2

−2
if x−2 < 1. (4.8)

(4) If x−2 ≤ x
p

−1, x
p

−2x−1 < 1 then x3k+1 = 1/xpk

−1, x3k+2 = x
pk+1

−1 and

x3k+3 = x
pk

−1 if x−1 ≥ 1 or =
1

xp
k+2

−1
if x−1 < 1. (4.9)

Proof. (1) By the assumption x−2 > x
p

−1 and (4.3) it follows that

x0 = max

{
1

x
p

−1
,
1
x−2

}
=

1

x
p

−1
. (4.10)

Then by x−1 > 1 and (4.3), we have the following equalities:

x1 = max

{
1

x
p

0

,
1
x−1

}
= max

{
x
p2

−1,
1
x−1

}
= x

p2

−1,

x2 = max

{
1

x
p

1

,
1
x0

}
= max

⎧⎨
⎩ 1

x
p3

−1
, x

p

−1

⎫⎬
⎭ = x

p

−1,

x3 = max

{
1

x
p

2

,
1
x1

}
= max

⎧⎨
⎩ 1

x
p2

−1
,
1

x
p2

−1

⎫⎬
⎭ =

1

x
p2

−1
= x

p

0 ,

x4 = max

{
1

x
p

3

,
1
x2

}
= max

{
x
p3

−1,
1

x
p

−1

}
= x

p3

−1 = x
p

1 ,

x5 = max

{
1

x
p

4

,
1
x3

}
= max

⎧⎨
⎩ 1

x
p4

−1
, x

p2

−1

⎫⎬
⎭ = x

p2

−1 = x
p

2 .

(4.11)

Hence (4.5) is satisfied for N = 0. Then by Lemma 4.2 we have that

x3k = 1/xpk+1

−1 , x3k+1 = x
pk+2

−1 , x3k+2 = x
pk+1

−1 , k ∈ N0, (4.12)

as desired.
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(2) By similar calculations as in (1), the following equalities hold:

x0 =
1

x
p

−1
, x1 =

1
x−1

, x2 = x
p

−1, x3 =
1

x
p2

−1
= x

p

0 ,

x4 =
1

x
p

−1
= x

p

1 , x5 = x
p2

−1 = x
p

2 .

(4.13)

Thus (4.5) holds for N = 0, and the result follows again by Lemma 4.2.

(3) By the assumption x−2 ≤ x
p

−1 and (4.3) it follows that

x0 = max

{
1

x
p

−1
,
1
x−2

}
=

1
x−2

. (4.14)

Then from x
p

−2x−1 ≥ 1 and (4.3), we get

x1 = max

{
1

x
p

0

,
1
x−1

}
= max

{
x
p

−2,
1
x−1

}
= x

p

−2. (4.15)

Now we will consider two cases x−2 ≥ 1 and x−2 < 1. When x−2 ≥ 1, the following equalities
hold:

x2 = max

{
1

x
p

1

,
1
x0

}
= max

⎧⎨
⎩ 1

x
p2

−2
, x−2

⎫⎬
⎭ = x−2,

x3 = max

{
1

x
p

2

,
1
x1

}
= max

{
1

x
p

−2
,
1

x
p

−2

}
=

1

x
p

−2
= x

p

0 ,

x4 = max

{
1

x
p

3

,
1
x2

}
= max

{
x
p2

−2,
1
x−2

}
= x

p2

−2 = x
p

1 ,

x5 = max

{
1

x
p

4

,
1
x3

}
= max

⎧⎨
⎩ 1

x
p3

−2
, x

p

−2

⎫⎬
⎭ = x

p

−2 = x
p

2 .

(4.16)

On the other hand, the case x−2 < 1 leads to

x2 =
1

x
p2

−2
, x3 =

1

x
p

−2
= x

p

0 , x4 = x
p2

−2 = x
p

1 , x5 =
1

x
p3

−2
= x

p

2 . (4.17)

Hence (4.5) holds for N = 0 no matter the value of x−2 is bigger or less than one. From this
the result follows by Lemma 4.2.
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(4) Through analogous calculations to (3), if x−1 ≥ 1 then

x0 =
1
x−2

, x1 =
1
x−1

, x2 = x
p

−1, x3 = x−1,

x4 =
1

x
p

−1
= x

p

1 , x5 = x
p2

−1 = x
p

2 , x6 = x
p

−1 = x
p

3 .

(4.18)

If x−1 < 1 then

x0 =
1
x−2

, x1 =
1
x−1

, x2 = x
p

−1, x3 =
1

x
p2

−1
,

x4 =
1

x
p

−1
= x

p

1 , x5 = x
p2

−1 = x
p

2 , x6 =
1

x
p3

−1
= x

p

3 .

(4.19)

Hence (4.5) holds for N = 1 and any x−1 > 0. Hence, the results also follow from Lemma 4.2,
finishing the proof of the proposition.

The next proposition can be similarly proved as the proof of Proposition 4.3, hence the
proof is omitted here.

Proposition 4.4. Let (xn)n∈N0
be a solution to (4.4) with p > 1 and positive initial values x−2, x−1,

then for each k ∈ N0 the following statements hold true.

(1) If xp

−2 ≥ x−1, x−1 ≥ 1, then x3k = 1/xpk

−1, x3k+1 = x
pk

−1, x3k+2 =
pk+1

−1 .

(2) If xp

−2 ≥ x−1, x−1 < 1, then x3k = 1/xpk

−1, x3k+1 = 1/xpk+1

−1 , x3k+2 = x
pk+1

−1 .

(3) If xp

−2 < x−1, x−2x−1 ≥ 1 then x3k = 1/xpk+1

−2 , x3k+1 = x
pk+1

−2 , and

x3k+2 =

⎧⎪⎪⎨
⎪⎪⎩
x
pk+2

−2 if x−2 ≥ 1,

1

x
pk+1

−2
if x−2 < 1.

(4.20)

(4) If xp

−2 < x−1, x−2x−1 < 1 then x3k+1 = 1/xpk+1

−1 , x3k+2 = x
pk+1

−1 , and

x3k+3 =

⎧⎪⎪⎨
⎪⎪⎩
x
pk+2

−1 if x−1 ≥ 1,

1

x
pk+1

−1
if x−1 < 1.

(4.21)

Remark 4.5. From the above propositions, we know that any positive solution (xn)n∈N0
to (4.3)

or (4.4) can be divided into three subsequences which have explicit expressions. If we regard
the sequence (. . . , 0,∞,∞, 0,∞,∞, . . .) as a general periodic solution to (4.3), then the solution
(xn)n∈N0

eventually converges to the general period-three solution (0,∞,∞).
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[10] S. Stević, “Boundedness character of a max-type difference equation,” in the Conference in Honour of
Allan Peterson, Book of Abstracts, p. 28, Novacella, Italy, July-August 2007.
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[25] S. Stević, “On positive solutions of a (k + 1)th order difference equation,” Applied Mathematics Letters,
vol. 19, no. 5, pp. 427–431, 2006.
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