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Let Tn(A,B, γ, α) (−1 ≤ B < 1, B < A, 0 < γ ≤ 1 and α > 0) denote the class of functions of
the form f(z) = z +

∑∞
k=n+1 akz

k (n ∈ N = {1, 2, 3, . . .}), which are analytic in the open unit disk
U and satisfy the following subordination condition f ′(z) + αzf ′′(z) ≺ ((1 +Az)/(1 + Bz))γ , for
(z ∈ U;A ≤ 1; 0 < γ < 1), (1 + Az)/(1 + Bz), for (z ∈ U; γ = 1). We obtain sharp bounds
on Ref ′(z),Ref(z)/z, |f(z)|, and coefficient estimates for functions f(z) belonging to the class
Tn(A,B, γ, α). Conditions for univalency and starlikeness, convolution properties, and the radius
of convexity are also considered.

1. Introduction

Let An denote the class of functions of the form

f(z) = z +
∞∑

k=n+1

akz
k (n ∈N = {1, 2, 3, . . .}), (1.1)

which are analytic in the open unit diskU = {z : z ∈ C and |z| < 1}. Let Sn and S∗
n denote the

subclasses of An whose members are univalent and starlike, respectively.
For functions f(z) and g(z) analytic inU, we say that f(z) is subordinate to g(z) inU

and we write f(z) ≺ g(z) (z ∈ U), if there exists an analytic function w(z) inU such that

|w(z)| ≤ |z|, f(z) = g(w(z)) (z ∈ U). (1.2)
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Furthermore, if the function g(z) is univalent inU, then

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0), f(U) ⊂ g(U). (1.3)

Throughout our present discussion, we assume that

n ∈N, −1 ≤ B < 1, B < A, α > 0, β < 1, 0 < γ ≤ 1. (1.4)

We introduce the following subclass of An.

Definition 1.1. A function f(z) ∈ An is said to be in the class Tn(A,B, γ, α) if it satisfies

f ′(z) + αzf ′′(z) ≺ h(z) (z ∈ U), (1.5)

where

h(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 +Az
1 + Bz

)γ

,
(
A ≤ 1; 0 < γ < 1

)
,

1 +Az
1 + Bz

,
(
γ = 1

)
.

(1.6)

The classes

T1
(
1 − 2β,−1, 1, 1) = R(β) (

β = 0 or β < 1
)
, T1(A, 0, 1, α) = R̃(α,A) (A > 0)

(1.7)

have been studied by several authors (see [1–5]). Recently, Gao and Zhou [6] showed some
mapping properties of the following subclass of A1:

R
(
β, α

)
=
{
f(z) ∈ A1 : Re

{
f ′(z) + αzf ′′(z)

}
> β (z ∈ U)

}
. (1.8)

Note that

R
(
β, 1

)
= R

(
β
)
, T1

(
1 − 2β,−1, 1, α) = R(β, α). (1.9)

For further information of the above classes (with γ = 1) and related analytic function classes,
see Srivastava et al. [7], Yang and Liu [8], Kim [9], and Kim and Srivastava [10].

In this paper, we obtain sharp bounds on Re f ′(z), Re(f(z)/z), |f(z)|, and coefficient
estimates for functions f(z) belonging to the class Tn(A,B, γ, α). Conditions for univalency
and starlikeness, convolution properties, and the radius of convexity are also presented. One
can see that the methods used in [6] do not work for the more general class Tn(A,B, γ, α) than
R(β, α).
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2. The bounds on Ref ′(z), Re(f(z)/z), and |f(z)| in Tn(A,B, γ, α)

In this section, we let

λm
(
A,B, γ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m∑

j=0

⎛

⎝
γ

j

⎞

⎠

⎛

⎝
−γ
m − j

⎞

⎠AjBm−j ,
(
A ≤ 1; 0 < γ < 1

)
,

(A − B)(−B)m−1,
(
γ = 1

)
,

(2.1)

wherem ∈N and

(
γ

j

)

=

⎧
⎪⎨

⎪⎩

γ
(
γ − 1

) · · · (γ − j + 1
)

j!
,

(
j = 1, 2, . . . , m

)
,

1,
(
j = 0

)
.

(2.2)

With (2.1), it is easily seen that the function h(z) given by (1.6) can be expressed as

h(z) = 1 +
∞∑

m=1

λm
(
A,B, γ

)
zm (z ∈ U). (2.3)

Theorem 2.1. Let f(z) ∈ Tn(A,B, γ, α). Then, for |z| = r < 1,

Re f ′(z) ≥ 1 +
∞∑

m=1

(−1)mλm
(
A,B, γ

)

αnm + 1
rnm,

Re f ′(z) ≤ 1 +
∞∑

m=1

λm
(
A,B, γ

)

αnm + 1
rnm.

(2.4)

The bounds in (2.4) are sharp for the function fn(z) defined by

fn(z) = z +
∞∑

m=1

λm
(
A,B, γ

)

(nm + 1)(αnm + 1)
znm+1 (z ∈ U). (2.5)

Proof. The analytic function h(z) given by (1.6) is convex (univalent) in U (cf. [11]) and
satisfies h(z) = h(z) (z ∈ U). Thus, for |ζ| ≤ σ(ζ ∈ C and σ < 1),

h(−σ) ≤ Reh(ζ) ≤ h(σ). (2.6)

Let f(z) ∈ Tn(A,B, γ, α). Then, we can write

f ′(z) + αzf ′′(z) = h(w(z)) (z ∈ U), (2.7)
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where w(z) = wnz
n + wn+1z

n+1 + · · · is analytic and |w(z)| < 1 for z ∈ U. By the Schwarz
lemma, we know that |w(z)| ≤ |z|n (z ∈ U). It follows from (2.7) that

(
z1/αf ′(z)

)′
=

1
α
z(1/α)−1h(w(z)), (2.8)

which leads to

f ′(z) =
1
α
z−1/α

∫z

0
ζ(1/α)−1h(w(ζ))dζ (2.9)

or to

f ′(z) =
1
α

∫1

0
t(1/α)−1h(w(tz))dt (z ∈ U). (2.10)

Since

|w(tz)| ≤ (tr)n (|z| = r < 1; 0 ≤ t ≤ 1), (2.11)

we deduce from (2.6) and (2.10) that

1
α

∫1

0
t(1/α)−1h

(−(tr)n)dt ≤ Re f ′(z) ≤ 1
α

∫1

0
t(1/α)−1h

(
(tr)n

)
dt. (2.12)

Now, by using (2.3) and (2.12), we can obtain (2.4).
Furthermore, for the function fn(z) defined by (2.5), we find that

f ′
n(z) = 1 +

∞∑

m=1

λm
(
A,B, γ

)

αnm + 1
znm, (2.13)

f ′
n(z) + αzf

′′
n(z) = 1 +

∞∑

m=1

λm
(
A,B, γ

)
znm = h(zn) ≺ h(z) (z ∈ U). (2.14)

Hence, fn(z) ∈ Tn(A,B, γ, α) and from (2.13), we see that the bounds in (2.4) are the best
possible.

Hereafter, we write

Tn(A,B, 1, α) = Tn(A,B, α). (2.15)
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Corollary 2.2. Let f(z) ∈ Tn(A,B, α). Then, for z ∈ U,

Re f ′(z) > 1 − (A − B)
∞∑

m=1

Bm−1

αnm + 1
, (2.16)

Re f ′(z) < 1 + (A − B)
∞∑

m=1

(−B)m−1

αnm + 1
(B /= − 1). (2.17)

The results are sharp.

Proof. For γ = 1, it follows from (2.12) (used in the proof of Theorem 2.1) that

Re f ′(z) >
1
α

∫1

0
t(1/α)−1

(
1 −Atn
1 − Btn

)

dt,

Re f ′(z) <
1
α

∫1

0
t(1/α)−1

(
1 +Atn

1 + Btn

)

dt (B /= − 1),

(2.18)

for z ∈ U. From these, we have the desired results.

The bounds in (2.16) and (2.17) are sharp for the function

fn(z) = z + (A − B)
∞∑

m=1

(−B)m−1

(nm + 1)(αnm + 1)
znm+1 ∈ Tn(A,B, α). (2.19)

Theorem 2.3. Let f(z) ∈ Tn(A,B, γ, α). Then, for |z| = r < 1,

Re
f(z)
z

≥ 1 +
∞∑

m=1

(−1)mλm
(
A,B, γ

)

(nm + 1)(αnm + 1)
rnm,

Re
f(z)
z

≤ 1 +
∞∑

m=1

λm
(
A,B, γ

)

(nm + 1)(αnm + 1)
rnm.

(2.20)

The results are sharp.

Proof. Noting that

f(z) = z
∫1

0
f ′(uz)du, Re

f(z)
z

=
∫1

0
Re f ′(uz)du (z ∈ U), (2.21)

an application of Theorem 2.1 yields (2.20). Furthermore, the results are sharp for the function
fn(z) defined by (2.5).
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Corollary 2.4. Let f(z) ∈ Tn(A,B, α). Then, for z ∈ U,

Re
f(z)
z

> 1 − (A − B)
∞∑

m=1

Bm−1

(nm + 1)(αnm + 1)
,

Re
f(z)
z

< 1 + (A − B)
∞∑

m=1

(−B)m−1

(nm + 1)(αnm + 1)
.

(2.22)

The results are sharp for the function fn(z) defined by (2.19).

Proof. For f(z) ∈ Tn(A,B, α), it follows from (2.6) and (2.10) (with γ = 1) that

1
α

∫1

0
t(1/α)−1

(
1 −A(ut)n

1 − B(ut)n
)

dt < Re f ′(uz) <
1
α

∫1

0
t(1/α)−1

(
1 +A(ut)n

1 + B(ut)n

)

dt, (2.23)

for z ∈ U and 0 < u ≤ 1. Making use of (2.21) and (2.23), we can obtain (2.22).

Theorem 2.5. Let f(z) ∈ T1(A,B, α) and g(z) ∈ T1(A0, B0, α0) (−1 ≤ B0 < 1, B0 < A0 and
α0 > 0). If

(A0 − B0)
∞∑

m=1

Bm−1
0

(m + 1)(α0m + 1)
≤ 1

2
, (2.24)

then (f ∗ g)(z) ∈ T1(A,B, α), where the symbol ∗ stands for the familiar Hadamard product (or
convolution) of two analytic functions inU.

Proof. Since g(z) ∈ T1(A0, B0, α0)(−1 ≤ B0 < 1, B0 < A0 and α0 > 0), it follows from
Corollary 2.4 (with n = 1) and (2.24) that

Re
g(z)
z

> 1 − (A0 − B0)
∞∑

m=1

Bm−1
0

(m + 1)(α0m + 1)
≥ 1

2
(z ∈ U). (2.25)

Thus, g(z)/z has the Herglotz representation

g(z)
z

=
∫

|x|=1

dμ(x)
1 − xz (z ∈ U), (2.26)

where μ(x) is a probability measure on the unit circle |x| = 1 and
∫
|x|=1 dμ(x) = 1.

For f(z) ∈ T1(A,B, α), we have

(
f ∗ g)′(z) + αz(f ∗ g)′′(z) = F(z) ∗ g(z)

z
(z ∈ U), (2.27)
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where

F(z) = f ′(z) + αzf ′′(z) ≺ 1 +Az
1 + Bz

(z ∈ U). (2.28)

In view of the function (1 +Az)/(1 + Bz) is convex (univalent) in U, we deduce from (2.26)
to (2.28) that

(
f ∗ g)′(z) + αz(f ∗ g)′′(z) =

∫

|x|=1
F(xz)dμ(x) ≺ 1 +Az

1 + Bz
(z ∈ U). (2.29)

This shows that (f ∗ g)(z) ∈ T1(A,B, α).

Corollary 2.6. Let f(z) ∈ T1(A,B, α), g(z) ∈ R(β, 1) and

β ≥ − π2 − 9
12 − π2

. (2.30)

Then, (f ∗ g)(z) ∈ T1(A,B, α).

Proof. By taking A0 = 1 − 2β, B0 = −1 and α0 = 1, (2.24) in Theorem 2.5 becomes

2
(
1 − β)

∞∑

m=1

(−1)m−1

(m + 1)2
= 2

(
1 − β)

(

1 − π2

12

)

≤ 1
2
, (2.31)

that is,

β ≥ − π2 − 9
12 − π2

. (2.32)

Hence, the desired result follows as a special case from Theorem 2.5.

Remark 2.7. R. Singh and S. Singh [4, Theorem 3] proved that, if f(z) and g(z) belong to
R(0, 1), then (f ∗ g)(z) ∈ R(0, 1). Obviously, for

− π2 − 9
12 − π2

≤ β < 0, (2.33)

Corollary 2.6 generalizes and improves Theorem 3 in [4].

Theorem 2.8. Let f(z) ∈ Tn(A,B, γ, α) and AB ≤ 1. Then, for |z| = r < 1,

∣
∣f(z)

∣
∣ ≤ r +

∞∑

m=1

λm
(
A,B, γ

)

(nm + 1)(αnm + 1)
rnm+1. (2.34)

The result is sharp, with the extremal function fn(z) defined by (2.5).
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Proof. It is well known that for ζ ∈ C and |ζ| ≤ σ < 1,

∣
∣
∣
∣
∣

1 +Aζ
1 + Bζ

− 1 −ABσ2

1 − B2σ2

∣
∣
∣
∣
∣
≤ (A − B)σ

1 − B2σ2
. (2.35)

Since AB ≤ 1, we have 1 −ABσ2 > 0 and so (2.35) leads to

∣
∣
∣
∣
1 +Aζ
1 + Bζ

∣
∣
∣
∣

γ

≤
(∣
∣
∣
∣
∣

1 −ABσ2

1 − B2σ2

∣
∣
∣
∣
∣
+
(A − B)σ
1 − B2σ2

)γ

=
(
1 +Aσ
1 + Bσ

)γ

(|ζ| ≤ σ < 1). (2.36)

By virtue of (1.6), (2.10), and (2.36), we have

∣
∣f ′(uz)

∣
∣ ≤ 1

α

∫1

0
t(1/α)−1|h(w(utz))|dt ≤ 1

α

∫1

0
t(1/α)−1h

(
(ut|z|)n)dt, (2.37)

for z ∈ U and 0 ≤ u ≤ 1. Now, by using (2.3), (2.21) and (2.37), we can obtain (2.34).

Theorem 2.9. Let

f(z) = z +
∞∑

k=n+1

akz
k ∈ Tn

(
A,B, γ, α

)
. (2.38)

Then,

|ak| ≤
γ(A − B)

k(α(k − 1) + 1)
(k ≥ n + 1). (2.39)

The result is sharp for each k ≥ n + 1.

Proof. It is known (cf. [12]) that, if

ϕ(z) =
∞∑

k=1

bkz
k ≺ ψ(z) (z ∈ U), (2.40)

where ϕ(z) is analytic in U and ψ(z) = z + · · · is analytic and convex univalent in U, then
|bk| ≤ 1 (k ∈N).

By (2.38), we have

f ′(z) + αzf ′′(z) − 1
γ(A − B) =

∞∑

k=n+1

k(α(k − 1) + 1)
γ(A − B) akz

k−1 ≺ ψ(z) (z ∈ U), (2.41)

where

ψ(z) =
h(z) − 1
γ(A − B) = z + · · · (2.42)



Abstract and Applied Analysis 9

and h(z) is given by (1.6). Since the function ψ(z) is analytic and convex univalent in U, it
follows from (2.41) that

k(α(k − 1) + 1)
γ(A − B) |ak| ≤ 1 (k ≥ n + 1), (2.43)

which gives (2.39).
Next, we consider the function

fk−1(z) = z +
∞∑

m=1

λm
(
A,B, γ

)

(m(k − 1) + 1)(αm(k − 1) + 1)
zm(k−1)+1 (z ∈ U; k ≥ n + 1). (2.44)

It is easy to verify that

f ′
k−1(z) + αzf

′′
k−1(z) = h

(
zk−1

)
≺ h(z) (z ∈ U),

fk−1(z) = z +
γ(A − B)

k(α(k − 1) + 1)
zk + · · · .

(2.45)

The proof of Theorem 2.9 is completed.

3. The Univalency and Starlikeness of Tn(A,B, α)

Theorem 3.1. Tn(A,B, α) ⊂ Sn if and only if

(A − B)
∞∑

m=1

Bm−1

αnm + 1
≤ 1. (3.1)

Proof. Let f(z) ∈ Tn(A,B, α) and (3.1) be satisfied. Then, by (2.16) in Corollary 2.2, we see
that Re f ′(z) > 0(z ∈ U). Thus, f(z) is close-to-convex and univalent inU.

On the other hand, if

(A − B)
∞∑

m=1

Bm−1

αnm + 1
> 1, (3.2)

then the function fn(z) defined by (2.19) satisfies f ′
n(0) = 1 > 0 and

f ′
n

(
reπi/n

)
= 1 − (A − B)

∞∑

m=1

Bm−1

αnm + 1
rnm −→ 1 − (A − B)

∞∑

m=1

Bm−1

αnm + 1
< 0 (3.3)

as r → 1. Hence, there exists a point zn = rne
πi/n(0 < rn < 1) such that f ′

n(zn) = 0. This
implies that fn(z) is not univalent inU and so the theorem is proved.
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Theorem 3.2. Let (3.1) in Theorem 3.1 be satisfied. If α ≥ 1 and

(α − 1)

(

1 − (A − B)
∞∑

m=1

Bm−1

αnm + 1

)

+
nα

2

(

1 − (A − B)
∞∑

m=1

Bm−1

(nm + 1)(αnm + 1)

)

≥ A − 1
1 − B ,

(3.4)

then Tn(A,B, α) ⊂ S∗
n.

Proof. We first show that

∞∑

m=1

Bm−1

αnm + 1
≥

∞∑

m=1

Bm−1

(nm + 1)(αnm + 1)
(α ≥ 1). (3.5)

Equation (3.5) is obvious when B ≥ 0. For 0 > B ≥ −1, we have

∞∑

m=1

Bm−1

αnm + 1
−

∞∑

m=1

Bm−1

(nm + 1)(αnm + 1)
= μ1 − μ2 + μ3 − μ4 + · · · + (−1)m−1μm + · · · , (3.6)

where

μm =
nm|B|m−1

(nm + 1)(αnm + 1)
> 0. (3.7)

Since |B| ≤ 1 and

d

dx

(
x

(x + 1)(αx + 1)

)

=
1 − αx2

(x + 1)2(αx + 1)2
≤ 0 (x ≥ 1;α ≥ 1), (3.8)

{μm} is a monotonically decreasing sequence. Therefore, the inequality (3.5) follows from
(3.6).

Let f(z) ∈ Tn(A,B, α). Then,

Re
{
f ′(z) + αzf ′′(z)

}
>

1 −A
1 − B (z ∈ U). (3.9)

Define p(z) inU by

p(z) =
zf ′(z)
f(z)

. (3.10)
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In view of (3.1) in Theorem 3.1 is satisfied, the function f(z) is univalent in U, and so p(z) =
1 + pnzn + pn+1zn+1 + · · · is analytic inU. Also it follows from (3.10) that

f ′(z) + αzf ′′(z) = (1 − α)f ′(z) + α
f(z)
z

[
zp′(z) +

(
p(z)

)2
]
. (3.11)

We want to prove now that Re p(z) > 0 for z ∈ U. Suppose that there exists a point
z0 ∈ U such that

Re p(z) > 0 (|z| < |z0|), Re p(z0) = 0. (3.12)

Then, applying a result of Miller and Mocanu [13, Theorem 4], we have

z0p
′(z0) +

(
p(z0)

)2 ≤ −n
2

Re
(
1 − p(z0)

) − (Im p(z0)
)2 ≤ −n

2
. (3.13)

For α ≥ 1, we deduce from Corollaries 2.2 and 2.4, (3.1), (3.5), (3.11), (3.13), and (3.4) that

Re
{
f ′(z0) + αz0f ′′(z0)

} ≤ (1 − α)
(

1 − (A − B)
∞∑

m=1

Bm−1

αnm + 1

)

− nα

2

(

1 − (A − B)
∞∑

m=1

Bm−1

(nm + 1)(αnm + 1)

)

≤ 1 −A
1 − B .

(3.14)

But this contradicts (3.9) at z = z0. Therefore, we must have Re p(z) > 0 (z ∈ U) and the
proof of Theorem 3.2 is completed.

Remark 3.3. In [6, Theorem 4(ii)], the authors gave the following: if 0 < α < 1 and β1 is the
solution of the equation

1 − 3α
2

= β +
(
1 − β)

∞∑

m=2

(−1)m−1α + 2(α − 1)m
m(α(m − 1) + 1)

, (3.15)

then R(β, α) ⊂ S∗
1 for β ≥ β1. However, this result is not true because the series in (3.15)

diverges.

4. The Radius of Convexity

Theorem 4.1. Let f(z) belong to the class Tn(γ) defined by

Tn
(
γ
)
= Tn

(
1,−1, γ, 0) =

{

f(z) ∈ An : f ′(z) ≺
(
1 + z
1 − z

)γ

, (z ∈ U)
}

, (4.1)
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0 < δ ≤ 1 and 0 ≤ ρ < 1. Then,

Re
{

(1 − δ)(f ′(z)
)1/γ + δ

(

1 +
zf ′′(z)
f ′(z)

)}

> ρ
(|z| < rn

(
γ, δ, ρ

))
, (4.2)

where rn(γ, δ, ρ) is the root in (0, 1) of the equation

(
1 − 2δ + ρ

)
r2n − 2

(
1 − δ + nδγ

)
rn + 1 − ρ = 0. (4.3)

The result is sharp.

Proof. For f(z) ∈ Tn(γ), we can write

(
f ′(z)

)1/γ =
1 + znϕ(z)
1 − znϕ(z) , (4.4)

where ϕ(z) is analytic and |ϕ(z)| ≤ 1 in U. Differentiating both sides of (4.4) logarithmically,
we arrive at

1 +
zf ′′(z)
f ′(z)

= 1 +
2nγznϕ(z)

1 − (znϕ(z))2
+

2γzn+1ϕ′(z)

1 − (znϕ(z))2
(z ∈ U). (4.5)

Put |z| = r < 1 and (f ′(z))1/γ = u + iv (u, v ∈ R). Then, (4.4) implies that

znϕ(z) =
u − 1 + iv
u + 1 + iv

, (4.6)

1 − rn
1 + rn

≤ u ≤ 1 + rn

1 − rn . (4.7)

With the help of the Carathéodory inequality

∣
∣ϕ′(z)

∣
∣ ≤ 1 − ∣∣ϕ(z)∣∣2

1 − r2 , (4.8)
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it follows from (4.5) and (4.6) that

Re
{

(1 − δ)(f ′(z)
)1/γ + δ

(

1 +
zf ′′(z)
f ′(z)

)}

≥ (1 − δ)u + δ + 2nδγ Re

{
znϕ(z)

1 − (znϕ(z))2
}

− 2δγ

∣
∣
∣
∣
∣

zn+1ϕ′(z)

1 − (znϕ(z))2

∣
∣
∣
∣
∣

≥ (1 − δ)u + δ +
nδγ

2

(

u − u

u2 + v2

)

+
δγ

2

(u − 1)2 + v2 − r2n
(
(u + 1)2 + v2

)

rn−1(1 − r2)(u2 + v2)1/2

= Fn(u, v) (say),

(4.9)

∂

∂v
Fn(u, v) = δγvGn(u, v), (4.10)

where 0 < r < 1, 0 < δ ≤ 1 and

Gn(u, v) =
nu

(u2 + v2)2
+

1 − r2n
rn−1(1 − r2)(u2 + v2)1/2

+
r2n

(
(u + 1)2 + v2

)
−
(
(u − 1)2 + v2

)

2rn−1(1 − r2)(u2 + v2)3/2

> 0
(4.11)

because of (4.6) and (4.7). In view of (4.10) and (4.11), we see that

Fn(u, v) ≥ Fn(u, 0)

= (1 − δ)u + δ +
nδγ

2

(

u − 1
u

)

+
δγ

2rn−1(1 − r2)

×
{(

1 − r2n
)(

u +
1
u

)

− 2
(
1 + r2n

)}

.

(4.12)

Let us now calculate the minimum value of Fn(u, 0) on the closed interval [(1−rn)/(1+
rn), (1 + rn)/(1 − rn)]. Noting that

1 − r2n
rn−1(1 − r2) ≥ n (see [8]) (4.13)
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and (4.7), we deduce from (4.12) that

d

du
Fn(u, 0) = 1 − δ +

δγ

2

[(
1 − r2n

rn−1(1 − r2) + n
)

− 1
u2

(
1 − r2n

rn−1(1 − r2) − n
)]

≥ 1 − δ +
δγ

2

[(
1 − r2n

rn−1(1 − r2) + n
)

−
(
1 + rn

1 − rn
)2
(

1 − r2n
rn−1(1 − r2) − n

)]

= 1 − δ +
2δγIn(r)

(1 − rn)2
,

(4.14)

where

In(r) =
n

2

(
1 + r2n

)
− r

(
1 + r2 + · · · + r2n−2

)
. (4.15)

Also

I ′n(r) = n
2r2n−1 −

(
1 + 3r2 + · · · + (2n − 1)r2n−2

)
(4.16)

and I ′1(r) = r − 1 < 0. Suppose that I ′n(r) < 0. Then,

I ′n+1(r) = (n + 1)2r2n+1 − (2n + 1)r2n −
(
1 + 3r2 + · · · + (2n − 1)r2n−2

)

< n2r2n −
(
1 + 3r2 + · · · + (2n − 1)r2n−2

)
< I ′n(r) < 0.

(4.17)

Hence, by virtue of the mathematical induction, we have I ′n(r) < 0 for all n ∈N and 0 ≤ r < 1.
This implies that

In(r) > In(1) = 0 (n ∈N; 0 ≤ r < 1). (4.18)

In view of (4.14) and (4.18), we see that

d

du
Fn(u, 0) > 0

(
1 − rn
1 + rn

≤ u ≤ 1 + rn

1 − rn
)

. (4.19)
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Further it follows from (4.9), (4.12), and (4.19) that

Re
{

(1 − δ)(f ′(z)
)1/γ + δ

(

1 +
zf ′′(z)
f ′(z)

)}

− ρ

≥ Fn
(
1 − rn
1 + rn

, 0
)

− ρ

= (1 − δ)1 − r
n

1 + rn
+ δ

1 − 2nγrn − r2n
1 − r2n − ρ

=
Jn(r)
1 − r2n ,

(4.20)

where 0 ≤ ρ < 1 and

Jn(r) =
(
1 − 2δ + ρ

)
r2n − 2

(
1 − δ + nδγ

)
rn + 1 − ρ. (4.21)

Note that Jn(0) = 1 − ρ > 0 and Jn(1) = −2nδγ < 0. If we let rn(γ, δ, ρ) denote the root in (0, 1)
of the equation Jn(r) = 0, then (4.20) yields the desired result (4.2).

To see that the bound rn(γ, δ, ρ) is the best possible, we consider the function

f(z) =
∫z

0

(
1 − tn
1 + tn

)γ

dt ∈ Tn
(
γ
)
. (4.22)

It is clear that for z = r ∈ (rn(γ, δ, ρ), 1),

(1 − δ)(f ′(r)
)1/γ + δ

(

1 +
rf ′′(r)
f ′(r)

)

− ρ =
Jn(r)
1 − r2n < 0, (4.23)

which shows that the bound rn(γ, δ, ρ) cannot be increased.
Setting δ = 1, Theorem 4.1 reduces to the following result.

Corollary 4.2. Let f(z) ∈ Tn(γ) and 0 ≤ ρ < 1. Then, f(z) is convex of order ρ in

|z| <

⎡

⎢
⎣

((
nγ
)2 +

(
1 − ρ)2

)1/2 − nγ
1 − ρ

⎤

⎥
⎦

1/n

. (4.24)

The result is sharp.
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