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This paper is concerned with a diffusive predator-prey system with Beddington-DeAngelis func-
tional response and delay effect. By analyzing the distribution of the eigenvalues, the stability of
the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous
periodic solutions are investigated. Also, it is shown that the small diffusion can affect the Hopf
bifurcations. Finally, the direction and stability of Hopf bifurcations are determined by normal
form theory and center manifold reduction for partial functional differential equations.

1. Introduction

In this paper, we will study the stability and Hopf bifurcations of a diffusive predator-prey
system with Beddington-DeAngelis functional response and delay effect as follows:

ut = d1Δu(t, x) + u(t, x)(1 − u(t − τ, x)) − sP(u, v), t > 0, x ∈ Ω,

vt = d2Δv(t, x) + rP(u, v) − dv(t, x), t > 0, x ∈ Ω,

∂νu = ∂νv = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where u and v denote the population densities of prey and predator species at time t and
space x, respectively; the positive constants d1 and d2 represent the diffusion coefficients of
prey and predator species, respectively; s > 0 (s is called the capturing rate) and r > 0 (r is
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called the conversion rate) represent the strength of the relative effect of the interaction on
the two species; d denotes the death rate of predator species; P(u, v) = uv/(m + u + nv) is
the Beddington-DeAngelis functional response function with m and n are positive numbers;
τ ≥ 0 denotes the generation time of the prey species; Ω is a bounded domain in RN (N is
any positive integer) with a smooth boundary ∂Ω; Δ is the Laplacian operator on Ω; ν is the
outward normal to ∂Ω; homogeneous Neumann boundary conditions reflect the situation
where the population cannot move across the boundary of the domain.

System (1.1) includes the models which have been discussed by many researchers;
for examples, when τ = 0, the models were considered in [1, 2]; if d1 = d2 = 0 and τ = 0,
it was discussed in [3]; if P(u, v) = 1, it was discussed in [4]. Moreover, when τ = 0 and
P(u, v) = u2v/(1 + u2), system (1.1) can be transformed into Narcisa Apreutesei’s model (see
[5]).

There has been an increasing interest in the study of diffusive predator-prey system
(see [1, 2, 4, 6–14] and references therein) with functional response. As is known to all,
the Beddington-DeAngelis functional response, proposed by Beddington [6] and DeAngelis
et al. [8], is more general than those the above authors considered, and it has been studied
extensively in the literature [1–3, 7, 14–16]. However, to the authors’ best knowledge,
few researches have been done on the diffusive predator-prey system with Beddington-
DeAngelis functional response and time delay.

The aim of this paper is to extend and develop the work in [1, 2]; that is, we will
study the stability andHopf bifurcation of a diffusive predator-prey systemwith Beddington-
DeAngelis functional response and delay. The system we consider here is more general than
the system in [1, 2].

The rest of the paper is organized as follows. In Section 2, we analyze the distribution
of the roots of the characteristic equation and give various conditions on the stability of a
positive constant steady state and the existence of Hopf bifurcation. In Section 3, we discuss
the effect of diffusion on the Hopf bifurcation. In Section 4, by applying the normal form
theory and the center manifold reduction of partial functional differential equations by Wu
[17], an explicit algorithm for determining the direction of the Hopf bifurcation and the
stability of the bifurcating periodic solutions is given.

2. Analysis of the Characteristic Equations

In this section, by choosing the delay τ as the bifurcation parameter and analyzing the
associated characteristic equation of (1.1) at the positive constant steady state, we investigate
the stability of the positive constant steady state of (1.1) and obtain the conditions under
which (1.1) undergoes Hopf bifurcation.

It can be seen that homogeneousNeumann boundary conditions imposed on (1.1) lead
to E1(0, 0) and E2(1, 0), always being two boundary equilibria for any feasible parameters,
and (1.1) always having a unique positive constant steady state E(u∗, v∗) provided that the
condition

(A1) 0 < d < (ru∗/(u∗ +m)), hold, where

u∗ =
−(sr − nr − sd) +

√
(sr − nr − sd)2 + 4smndr

2rn
, v∗ =

(r − d)u∗ − dm
dn

. (2.1)
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Under (A1), let u = u − u∗, v = v − v∗ and drop the bars for simplicity of notations,
then (1.1) can be transformed into the following equivalent system:

ut = d1Δu(t, x) + (u + u∗)(1 − (u(t − τ, x) + u∗)) − s(u + u∗)(v + v∗)
m + (u + u∗) + n(v + v∗)

,

vt = d2Δv(t, x) +
r(u + u∗)(v + v∗)

m + (u + u∗) + n(v + v∗)
− d(v + v∗).

(2.2)

Let P(u, v) = uv/(m + u + nv). By u∗(1 − u∗) − (su∗v∗/(m + u∗ + nv∗)) = 0 and −dv∗ +
(ru∗v∗/(m + u∗ + nv∗)) = 0 (2.2) becomes

ut = d1Δu(t, x) + (1 − u∗ − a1)u(t) − u∗u(t − τ, x) − a2v − uu(t − τ, x) − f(u, v),
vt = d2Δv(t, x) + b1u(t) + (b2 − d)v(t) + g(u, v),

(2.3)

where a1 = sP10(u∗, v∗), a2 = sP01(u∗, v∗), b1 = rP10(u∗, v∗), b2 = rP01(u∗, v∗), and

f(u, v) = s
3∑

i+j=2

Pij

i!j!
uivj + h.o.t., g(u, v) = r

3∑
i+j=2

Pij

i!j!
uivj + h.o.t., (2.4)

where ∂i+jP(u, v)/∂ui∂vj |(u,v)=(u∗,v∗) denoted by Pij and h.o.t. for shorthand of “higher order
terms.”

Denote u1(t) = u(t, ·), u2(t) = v(t, ·), and U = (u1, u2)
T . Then (2.3) can be transformed

into an abstract differential equation in the phase space � = C([−τ, 0], X),

U̇(t) = DΔU(t) + L(Ut) + F(Ut), (2.5)

with

D =

(
d1 0

0 d2

)
, L

(
φ
)
=

(
1 − u∗ − a1 −a2

b1 b2 − d

)(
φ1(0)

φ2(0)

)
+

(−u∗ 0

0 0

)(
φ1(−τ)
φ2(−τ)

)
,

F
(
φ
)
=

⎛
⎜⎜⎜⎜⎝

−φ1(0)φ1(−τ) − s
3∑

i+j=2

Pij

i!j!
φi1(0)φ

j

2(0)

r
3∑

i+j=2

Pij

i!j!
φi1(0)φ

j

2(0)

⎞
⎟⎟⎟⎟⎠
,

(2.6)

where φ = (φ1, φ2)
T ∈ �.

The linearization of (2.5) is given by

U̇(t) = DΔU(t) + L(Ut), (2.7)
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and its characteristic equation is

λy −DΔy − L
(
eλy
)
= 0, (2.8)

where y ∈ dom(Δ) and y /= 0, dom(Δ) ⊂ X.
From the properties of the Laplacian operator defined on the bounded domain, the

operator Δ on X has the eigenvalues −k2 with the relative eigenfunctions

β1k =

(
γk

0

)
, β2k =

(
0

γk

)
, (2.9)

where γk = cos kx, k ∈ N0 = {0, 1, 2, . . .}. Clearly, (β1
k
, β2

k
)∞k=0 construct a basis of the phase

space X and therefore any element y in X can be expanded as Fourier series in the following
form:

y =
∞∑
k=0

(
〈y, β1k〉β1k + 〈y, β2k〉β2k

)
=

∞∑
k=0

(
β1k, β

2
k

)(〈y, β1k〉
〈y, β2

k
〉

)
. (2.10)

Some simple computations show that

L

(
φT
(
β1k

β2k

))
= L
(
φ
)T
(
β1k

β2k

)
, k ∈N0. (2.11)

From (2.10)-(2.11), (2.8) is equivalent to

∞∑
k=0

(
〈y, β1k〉, 〈y, β2k〉

)[(
λI2 +Dk2

)
−
(−u∗e−λτ + 1 − u∗ − a1 −a2

b1 b2 − d

)](
β1
k

β2k

)
= 0. (2.12)

Assume that

(A2) 1 − u∗ − a1 < 0, b2 − d < 0.

Let −a3 = 1 − u∗ − a1, −b3 = b2 − d, p = a3 + b3, r = a3b3 + a2b1, s = u∗, q = b3u
∗,

then we conclude that the characteristic equation (2.8) is equivalent to the sequence of the
characteristic equations:

λ2 +
(
d1k

2 + d2k2 + p
)
λ + d1d2k4 + b3d1k2 + a3d2k2 + r +

(
sλ + d2sk2 + q

)
e−λτ = 0. (2.13)

Obviously, for all k ∈N0, λ = 0 is not a root of (2.13).
Equation (2.13) with τ = 0 is equivalent to the following quadratic equations:

λ2 +
(
d1k

2 + d2k2 + p + s
)
λ + d1d2k4 + b3d1k2 + a3d2k2 + r + d2sk2 + q = 0. (2.14)
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Let λ1 and λ2 be the two roots of (2.14). Then, for all k ∈N0,

λ1 + λ2 = −
(
d1k

2 + d2k2 + p + s
)
< 0,

λ1λ2 = d1d2k4 + b3d1k2 + a3d2k2 + r + d2sk2 + q > 0.
(2.15)

Therefore, we have the following Lemma.

Lemma 2.1. Assume that (A1) and (A2) hold. Then the equilibrium E(u∗, v∗) of (1.1) with τ = 0 is
asymptotically stable.

Assume that

(A3) s2 − p2 + 2r < 0, r > q;

(A4) b3d1 + a3d2 − d2s ≥ 0, or (b3d1 + a3d2 − d2s)2 < 4d1d2(r − q), if b3d1 + a3d2 − d2s < 0.

Theorem 2.2. If (A1)–(A4) hold, then all roots of (2.13) have negative real parts for all τ ≥ 0. Fur-
thermore, the equilibrium E(u∗, v∗) of the system (1.1) is asymptotically stable for all τ ≥ 0.

Proof. Let λ = iω (ω > 0) be a root of the characteristic equation (2.13). Then ω satisfies the
following equation for some k ∈N0:

− ω2 +
(
d1k

2 + d2k2 + p
)
iω + d1d2k4 + b3d1k2

+ a3d2k2 + r +
(
sωi + d2sk2 + q

)
(cosωτ − i sinωτ) = 0.

(2.16)

Separating the real and imaginary parts of (2.16) leads to

−ω2 + d1d2k4 + b3d1k2 + a3d2k2 + r + sω sinωτ +
(
d2sk

2 + q
)
cosωτ = 0,

(
d1k

2 + d2k2 + p
)
ω + sω cosωτ −

(
d2sk

2 + q
)
sinωτ = 0,

(2.17)

which implies that

ω4 +
[(
d2
1 + d

2
2

)
k4 + 2a3d1k2 + 2b3d2k2 −

(
s2 − p2 + 2r

)]
ω2

+
[(
d1d2k

4 + b3d1k2 + a3d2k2 + r
)2 −

(
d2sk

2 + q
)2]

= 0.
(2.18)

Let z = ω2, then (2.18) can be rewritten into the following form:

z2 +
[(
d2
1 + d

2
2

)
k4 + 2a3d1k2 + 2b3d2k2 −

(
s2 − p2 + 2r

)]
z

+
[(
d1d2k

4 + b3d1k2 + a3d2k2 + r
)2 −

(
d2sk

2 + q
)2]

= 0.
(2.19)
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By (A3) and (A4), for all k ∈N0, we have

−
(
d2
1 + d

2
2

)
k4 − 2a3d1k2 − 2b3d2k2 +

(
s2 − p2 + 2r

)
< 0,

d1d2k
4 + (b3d1 + a3d2 − d2s)k2 + r − q > 0,

(2.20)

which imply that (2.19) has no positive roots. Hence, the characteristic equation (2.13) has
no purely imaginary roots. By Lemma 2.1 and the theorem proved by Ruan and Wei [18], all
roots of (2.13) have negative real parts.

Notice that (2.13) with k = 0 is the characteristic equation of the linearization of (1.1)
corresponding system without diffusion (ordinary differential equations, ODEs) at the posi-
tive equilibrium. And it has been considered under the condition:

(B1) r < q.

It is easy to get that when

τ = τ0j =
1
ω0

+
arccos

⎧
⎨
⎩

(
q
((
ω0

+
)2 − r

)
− ps(ω0

+
)2)

s2
(
ω0

+
)2 + q2

+ 2jπ

⎫
⎬
⎭,

(
j = 0, 1, 2, . . .

)
, (2.21)

Equation (2.13) with k = 0 has simple imaginary roots ±iω0
+, and Re (dλ/dτ)τ=τ0j > 0, where

λ(τ) is the root of (2.13)with k = 0 satisfying λ(τ0j ) = iω
0
+, and

ω0
+ =

√
2
2

[
s2 − p2 + 2r +

√(
s2 − p2 + 2r

)2 − 4
(
r2 − q2)

]1/2
, (2.22)

and τ00 = min{τ0j , j ∈ {0, 1, 2, . . .}}. Assume that

(B2) d2
1 + d

2
2 + 2a3d1 + 2b3d2 > s2 − p2 + 2r, d1d2 + b3d1 + a3d2 − d2s + r − q > 0.

We have the following result.

Theorem 2.3. Assume that (A1), (A2), (B1), and (B2) are satisfied. Then for τ = τ0j (j = 0, 1, 2, . . .),
(2.13) has a pair of simple imaginary roots ±iω0

+, and all roots of (2.13), except ±iω0
+, have no zero

real parts. Moreover, all the roots of (2.13) with τ = τ0j , except ±iω0
+, have negative real parts.

Proof. Let λ = iω1 (ω1 > 0) be a root of (2.13)with k ≥ 1. By the same way in Theorem 2.2, we
can obtain

ω4
1 +
[(
d2
1 + d

2
2

)
k4 + 2a3d1k2 + 2b3d2k2 −

(
s2 − p2 + 2r

)]
ω2

1

+
[(
d1d2k

4 + b3d1k2 + a3d2k2 + r
)2 −

(
d2sk

2 + q
)2]

= 0,
(2.23)

for all k ≥ 1.
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Set z = ω2
1, then

z2 +
[(
d2
1 + d

2
2

)
k4 + 2a3d1k2 + 2b3d2k2 −

(
s2 − p2 + 2r

)]
z

+
[(
d1d2k

4 + b3d1k2 + a3d2k2 + r
)2 − (d2sk2 + q

)2] = 0.
(2.24)

Let z1 and z2 be the roots of (2.24) with k ≥ 1. We know that if z1 + z2 < 0 and z1z2 > 0, then
(2.13)with k ≥ 1 has no purely imaginary roots.

By (B2), it follows that, for ∀k ≥ 1,

−
(
d2
1 + d

2
2

)
k4 − 2a3d1k2 − 2b3d2k2 +

(
s2 − p2 + 2r

)

≤ −
(
d2
1 + d

2
2 + 2a3d1 + 2b3d2

)
+
(
s2 − p2 + 2r

)
< 0,

d1d2k
4 + (b3d1 + a3d2 − d2s)k2 + r − q ≥ d1d2 + b3d1 + a3d2 − d2s + r − q > 0.

(2.25)

Therefore, (2.13) with k ≥ 1 have no purely imaginary roots.
Summarizing the above results and combining Theorem 2.3, we have the following

theorem on the stability of the positive equilibrium E(u∗, v∗) of system (1.1) and the existence
of Hopf bifurcation at E(u∗, v∗).

Theorem 2.4. Assume that (A1), (A2), (B1), and (B2) hold. For system (1.1), the following state-
ments are true:

(I) If τ ∈ [0, τ00 ), then the equilibrium point E(u∗, v∗) is asymptotically stable;

(II) If τ > τ00 , then the equilibrium point E(u∗, v∗) is unstable;

(III) τ = τ0j (j = 0, 1, 2, . . .) are Hopf bifurcation values of system (1.1), and these Hopf bifurca-
tions are all spatially homogeneous.

By the same way in Theorem 2.2, let λ = iω (ω > 0) be a root of the characteristic
equation (2.13), then ω satisfies the following equation:

ω4 +
[(
d2
1 + d

2
2

)
k4 + 2a3d1k2 + 2b3d2k2 −

(
s2 − p2 + 2r

)]
ω2

+
[(
d1d2k

4 + b3d1k2 + a3d2k2 + r
)2 − (d2sk2 + q

)2] = 0,
(2.26)

for k ∈N0.
Now, we make the following assumptions. For a certain k0 = {1, 2, . . .},

(C1) d1d2 + b3d1 + a3d2 − d2s + r − q > 0;

(C2) ((s2 − p2 + 2r)/k20 ) < d2
1 + d

2
2 + 2a3d1 + 2b3d2 < s2 − p2 + 2r;

(C3) [(d2
1+d

2
2)k

4+ 2a3d1k2 + 2b3d2k2 − (s2 − p2 + 2r)]2, −4[(d1d4
2 + b3d1k

2 + a3d2k2 + r)
2 −

(d2s2 + q)
2] ≥ 0, k ∈N0 \ {k0}.
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Under the assumptions (C1) and (C2), (2.26) with k = k0 has only a positive solution
ωk0

+ ,

ωk0
+ =

√
2
2

√
B +
√
B2 − 4

[(
d1d2k

4
0 + a3d2k

2
0 + b3d1k

2
0 + r
)2 − (d2k20s + q

)2]
, (2.27)

where B = s2 − p2 + 2r − (d2
1 + d

2
2)k

4
0 − 2a3d1k20 − 2b3d2k20 < 0.

Set z = ω2, then (2.26) can be transformed into the following equation:

z2 +
[(
d2
1 + d

2
2

)
k4 + 2a3d1k2 + 2b3d2k2 −

(
s2 − p2 + 2r

)]
z

+
[(
d1d2k

4 + b3d1k2 + a3d2k2 + r
)2 −

(
d2sk

2 + q
)2]

= 0.
(2.28)

Let z1 and z2 be the roots of (2.28). If the assumptions (C1)–(C3) hold, we have

z1 + z2 = −
(
d2
1 + d

2
2

)
k4 − 2a3d1k2 − 2b3d2k2 +

(
s2 − p2 + 2r

)
≤ s2 − p2 + 2r < 0,

z1z2 =
(
d1d2k

4 + a3d2k2 + b3d1k2 + r
)2 −

(
d2k

2s + q
)2

> 0,

(2.29)

for k ∈N0 \ {k0}.
Therefore, (2.13) with k ∈N0 \ {k0} has no solutions with zero real parts.
In addition, similar to the proof of Theorem 2.2, we have

−
(
ωk0

+

)2
+ d1d2k40 + b3d1k

2
0 + a3d2k

2
0 + r + sω

k0
+ sinωk0

+ τ +
(
d2sk

2
0 + q

)
cosωk0

+ τ = 0,

(
d1k

2
0 + d2k

2
0 + p

)
ωk0

+ + sωk0
+ cosωk0

+ τ −
(
d2sk

2
0 + q

)
sinωk0

+ τ = 0
(2.30)

which implies that

sin
(
ωk0

+ τ
)
=

[(
ωk0

+

)2 − d1d2k40 − b3d1k20 − a3d2k20 − r
]
sωk0

+

(
d2sk

2
0 + q

)2 + s2
(
ωk0

+

)2

+

(
d1k

2
0 + d2k

2
0 + p

)(
d2sk

2
0 + q

)
ωk0

+

(
d2sk

2
0 + q

)2 + s2
(
ωk0

+

)2 � F
(
ωk0

+

)
,
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cos
(
ωk0

+ τ
)
=

[(
ωk0

+

)2 − d1d2k40 − b3d1k20 − a3d2k20 − r
](
d2sk

2
0 + q

)

(
d2sk

2
0 + q

)2 + s2
(
ωk0

+

)2

−
(
d1k

2
0 + d2k

2
0 + p

)
s
(
ωk0

+

)2

(
d2sk

2
0 + q

)2 + s2
(
ωk0

+

)2 � E
(
ωk0

+

)
.

(2.31)

Define

τk0j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ωk0
+

(
arccos

(
E
(
ωk0

+

))
+ 2jπ

)
if F
(
ωk0

+

)
≥ 0,

1

ωk0
+

(
2π − arccos

(
E
(
ωk0

+

))
+ 2jπ

)
if F
(
ωk0

+

)
< 0,

for j ∈ {0, 1, 2, . . .}.

(2.32)

From the above analysis, we have the following Theorem.

Theorem 2.5. Assume that (A1), (A2), and (C1)–(C3) hold. Then for τ = τk0j (j = 0, 1, 2, · · · ),
(2.13) has a pair of simple imaginary roots ±iωk0

+ , and all roots of (2.13), except ±iωk0
+ , have no zero

real parts. Moreover, all the roots of (2.13) with τ = τk0j , except ±iωk0
+ , have negative real parts.

Let λ(τ) = α(τ) + iβ(τ) be the root of (2.13) near τ = τk0j satisfying

α
(
τk0j

)
= 0, β

(
τk0j

)
= ωk0

+ , j = 0, 1, 2, . . . , (2.33)

where ωk0
+ and τk0j are given by (2.27) and (2.32), respectively. Then we have the following

transversality condition.

Lemma 2.6. Assume that (A1), (A2), and (C1)–(C3) hold. Then

{
Re
(
dλ

dτ

)}

τ=τ
k0
j

> 0. (2.34)

Proof. Differentiating the two sides of (2.13) with respect to τ yields

(
dλ

dτ

)−1
=

(
2λ + d1k20 + d2k

2
0 + p

)
eλτ + s

sλ2 + sλd2k20 + λq
− τ

λ
. (2.35)
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From (2.30), we have

Re
(
dλ

dτ

)−1

τ=τ
k0
j

= Re

[
(2λ + d1k20 + d2k

2
0 + p)e

λτ + s

sλ2 + sλd2k20 + λq
− τ

λ

]

τ=τ
k0
j

=
2
(
ωk0

+

)2 − s2 + p2 − 2r +
(
d2
1 + d

2
2

)
k40 + 2a3d1k20 + 2b3d2k20

s2
(
ωk0

+

)2
+
(
sd2k

2
0 + q

)2

=
2
(
ωk0

+

)2 − B

s2
(
ωk0

+

)2
+
(
sd2k

2
0 + q

)2 ,

(2.36)

according to (2.27), and then

{
Re
(
dλ

dτ

)}

τ=τ
k0
j

=

{
Re
(
dλ

dτ

)−1}

τ=τ
k0
j

> 0. (2.37)

Applying Lemma 2.6 and Theorem 2.5, we draw the following conclusions.

Theorem 2.7. Assume that (A1), (A2), and (C1)–(C3) hold. For system (1.1), the following state-
ments are true:

(I) If τ ∈ [0, τk00 ), then the equilibrium point E(u∗, v∗) is asymptotically stable;

(II) If τ > τk00 , then the equilibrium point E(u∗, v∗) is unstable;

(III) τ = τk0j (j = 0, 1, 2, . . .) are Hopf bifurcation values of system (1.1), and these Hopf bifur-
cations are all spatially inhomogeneous.

3. The Effect of Diffusion on Hopf Bifurcations

In the previous section, we have studied the Hopf bifurcations from the positive constant
steady-state E(u∗, v∗) of (1.1) when τ crosses through the critical value τkj (k = 0, k0; j =
1, 2, 3, . . .) and have the following conclusions.

(I) If (B2) holds, then system (1.1) and the corresponding system without diffusion
(ODEs) have the sameHopf bifurcations, containing the existence and properties of
Hopf bifurcations. In this case, the diffusion has no effect on the Hopf bifurcations
of ODEs.

(II) If (B2) does not hold, then system (1.1) and ODEs have the different Hopf bifurca-
tions. In this case, the diffusion has the effect on the Hopf bifurcations of ODEs.

According to Theorems 2.4 and 2.7, system (1.1) undergoes Hopf bifurcations under
the different conditions. Comparing the conditions of Theorems 2.4 and 2.7, we have the
following conclusions.
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(I) When system (1.1) undergoes spatially homogeneous Hopf bifurcation, diffusion
coefficients satisfy the condition:

d2
1 + d

2
2 + 2a3d1 + 2b3d2 > s2 − p2 + 2r, (3.1)

and in this case, system (1.1) and ODEs have the same properties of Hopf bifurca-
tion.

(II) When system (1.1) undergoes spatially inhomogeneous Hopf bifurcation, diffusion
coefficients satisfy the condition

d2
1 + d

2
2 + 2a3d1 + 2b3d2 < s2 − p2 + 2r. (3.2)

and in this case, system (1.1) and ODEs have the different properties of Hopf bifur-
cation.

Summarizing the above results, we can obtain the conclusion. The big diffusion has no
effect on the Hopf bifurcation of system (1.1), the small diffusion can make system (1.1) un-
dergo the spatially inhomogeneous Hopf bifurcation.

4. Direction of Hopf Bifurcation and Stability of
the Bifurcating Periodic Orbits

In this section, we will study the directions, stability, and the period of bifurcating periodic
solutions by using normal formal theory and center manifold theorem of partial functional
differential equations presented in [17]. For fixed j ∈ {0, 1, 2, . . .}, we denote τkj by τ̃ . Let

ũ(t, x) = u(τt, x), ṽ(t, x) = v(τt, x), τ = μ + τk,

u1(t) = u(t, ·), u2(t) = v(t, ·), U = (u1, u2)T ,
(4.1)

and drop the tilde for the sake of simplicity. Then system (1.1) can be written as

U̇(t) = τ̃DΔU(t) + L(τ̃)(Ut) + f
(
Ut, μ

)
, (4.2)

where D =
(
d1 0
0 d2

)
, L(μ)(·) : � → X, and f : � × R → X are given, respectively, by

L
(
μ
)(
φ
)
=
(
μ + τ̃

)((1 − u∗ − a1 −a2
b1 b2 − d

)(
φ1(0)

φ2(0)

)
+

(−u∗ 0

0 0

)(
φ1(−1)
φ2(−1)

))
, (4.3)

f
(
φ, μ
)
=
(
μ + τ̃

)

⎛
⎜⎜⎜⎜⎝

−φ1(0)φ1(−1) − s
3∑

i+j=2

Pij

i!j!
φi1(0)φ

j

2(0)

r
3∑

i+j=2

Pij

i!j!
φi1(0)φ

j

2(0)

⎞
⎟⎟⎟⎟⎠

+ h.o.t., (4.4)

for φ = (φ1, φ2)
T ∈ �, where h.o.t. denotes high order terms.
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Consider the linear equation

U̇(t) = τ̃DΔU(t) + L(τ̃)(Ut). (4.5)

From the discussion of Theorems 2.3 and 2.5 in Section 2, we know that the origin (0,0) is an
equilibrium of (4.2), and for τ = τ̃ , the characteristic equation of (4.5) has a pair of simple
purely imaginary eigenvalues

∧
0 = {iωk

+τ̃ ,−iωk
+τ̃}, (k = 0, k0).

Consider the ordinary functional differential equation

Ẋ(t) = −τ̃Dk2X(t) + L(τ̃)(Xt). (4.6)

By the Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, τ̃) (−1 ≤ θ ≤ 0),
whose entry is of bounded variation such that

−τ̃Dk2φ(0) + L(τ̃)(φ) =
∫0

−1
d
[
η(θ, τ̃)

]
φ(θ), (4.7)

for φ ∈ C([−1, 0], R2). In fact, we can choose

η(θ, τ̃) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ̃

⎛
⎝−d1k2 + 1 − u∗ − a1 −a2

b1 −d2k2 + b2 − d

⎞
⎠, θ = 0,

0, θ ∈ (−1, 0),

τ̃

⎛
⎝−u∗ 0

0 0

⎞
⎠, θ = −1.

(4.8)

Let A(τ̃) denote the infinitesimal generators of the semigroup induced by the solutions of
(4.6) and A∗ be the formal adjoint of A(τ̃) under the bilinear pairing

(
ψ, φ
)
= ψ(0)φ(0) −

∫0

−1

∫θ
ξ=0

ψ(ξ − θ)d[η(θ, τ̃)]φ(ξ)dξ, (4.9)

for φ ∈ C([−1, 0], R2), ψ ∈ (C[0, 1], R2). Then A(τ̃) and A∗ are a pair of adjoint operators.
From the discussion in Section 2, we know that A(τ̃) has a pair of simple purely imaginary
eigenvalues ±iωk

+τ̃ , and they are also eigenvalues ofA∗. Let P andQ be the center subspaces,
that is, the generalized eigenspace ofA(τ̃) andA∗ associated with

∧
0, respectively. ThenQ is

the adjoint space of P and dimP = dimQ = 2, see [17].
Direct computations give the following results.
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Lemma 4.1. Let

C = − iω
k
+ + d1k

2 − 1 + u∗ + a1 + u∗e−iω
k
+ τ̃

a2
, D =

−iωk
+ + d1k

2 − 1 + u∗ + a1 + u∗e−iω
k
+ τ̃

b1
.

(4.10)

Then,

p1(θ) = eiω
k
+ τ̃(1, C)T , p2(θ) = p1(θ), −1 ≤ θ ≤ 0 (4.11)

is a basis of P with
∧

0, and

q1(s) = (1, D)e−iω
k
+τ̃ , q2(s) = q1(s), 0 ≤ s ≤ 1 (4.12)

is a basis of Q with
∧

0.

Let Φ = (Φ1,Φ2) and Ψ∗ = (Ψ∗
1,Ψ

∗
2)
T with

Φ1(θ) =
p1(θ) + p2(θ)

2
=

⎛
⎝ Re

{
eiω

k
+ τ̃ θ
}

Re
{
Ceiω

k
+ τ̃ θ
}
⎞
⎠,

Φ2(θ) =
p1(θ) − p2(θ)

2i
=

⎛
⎝ Im

{
eiω

k
+ τ̃ θ
}

Im
{
Ceiω

k
+ τ̃ θ
}
⎞
⎠,

(4.13)

for θ ∈ [−1, 0], and

Ψ∗
1(s) =

q1(s) + q2(s)
2

=

⎛
⎝ Re

{
e−iω

k
+τkθ
}

Re
{
De−iω

k
+τ̃ θ
}
⎞
⎠,

Ψ∗
2(s) =

q1(s) − q2(s)
2i

=

⎛
⎝ Im

{
e−iω

k
+ τ̃ θ
}

Im
{
De−iω

k
+ τ̃ θ
}
⎞
⎠,

(4.14)

for s ∈ [0, 1].

Define

Ψ = (Ψ1,Ψ2)T =

⎛
⎝
(
Ψ∗

1,Φ1
) (

Ψ∗
1,Φ2

)
(
Ψ∗

2,Φ1
) (

Ψ∗
2,Φ2

)

⎞
⎠

−1

Ψ∗, (4.15)



14 Abstract and Applied Analysis

then Ψ construct a new basis for Q and (Ψ,Φ) = I2, see [17]. In addition, fk � (β1k, β
2
k), where

β1k =

(
cos kx

0

)
, β1k =

(
0

cos kx

)
. (4.16)

Let c · fk be defined by c · fk = c1β1k + c2β
2
k, c = (c1, c2)

T ∈ C([−1, 0], X).
Then the center subspace of linear equation (4.5) is given by PCN�, where

PCN�
(
φ
)
= Φ
(
Ψ,
〈
φ, fk

〉) · fk, φ ∈ �, (4.17)

and � = PCN� ⊕ Ps�, and Ps� denotes the complement subspace of PCN� in �.
Let Aτ̃ be the infinitesimal generator induced by the solution of (4.5). Then (4.2) can

be rewritten as the abstract form

U̇t = Aτ̃Ut + R
(
μ,Ut

)
, (4.18)

where

R
(
μ,Ut

)
=

⎧
⎨
⎩
0, θ ∈ [−1, 0),
F
(
Ut, μ

)
, θ = 0.

(4.19)

Using the decomposition � = PCN� ⊕ Ps� and (4.17), the solution of (4.2) can be written as

Ut = Φ

(
x1(t)

x2(t)

)
· fk + h

(
x1, x2, μ

)
, (4.20)

where
(
x1(t)
x2(t)

)
= (Ψ, 〈Ut, fk〉), and h(x1, x2, μ) ∈ Ps�, h(0, 0, 0) = 0, Dh(0, 0, 0) = 0. In particu-

lar, the solution of (4.2) on the center manifold is given by

Ut = Φ

(
x1(t)

x2(t)

)
· fk + h(x1, x2, 0). (4.21)

Let z = x1 − ix2 and Ψ(0) = (Ψ1(0),Ψ2(0))
T , and notice that p1 = Φ1 + iΦ2, then

Φ

(
x1(t)

x2(t)

)
· fk = (Φ1,Φ2)

⎛
⎜⎝

z + z
2

i(z − z)
2

⎞
⎟⎠ · fk =

1
2
(
p1z + p1z

) · fk. (4.22)
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Equation (4.21) can be transformed into

Ut =
1
2
(
p1z + p1z

) · fk +W(z, z) , (4.23)

whereW(z, z) = h(((z + z)/2), (i(z − z)/2), 0). Moreover, by [17], z satisfies

ż = iωk
+τ̃z + g(z, z), (4.24)

where

g(z, z) = (Ψ1(0) − iΨ2(0))
〈
f(Ut, 0), fk

〉
. (4.25)

Let

W(z, z) =W20
z2

2
+W11zz +W02

z2

2
+ h.o.t., (4.26)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ h.o.t. (4.27)

From (4.4) and (4.23), it follows that

〈
f(Ut, 0), fk

〉

=
τ̃

2

⎛
⎜⎜⎝

−e−iωk
+ τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎠

1
π

∫π
0
cos3kx dx

z2

2

+
τ̃

4

⎛
⎜⎝

−2 cosωk
+τ̃ − sP11

(
C + C

)
− sP20 − sP02CC

rP11
(
C + C

)
+ rP20 + rP02CC

⎞
⎟⎠ 1
π

∫π
0
cos3kx dxzz

+
τ̃

2

⎛
⎜⎜⎜⎝

−eiωk
+ τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎟⎠

1
π

∫π
0
cos3kx dx

z2

2
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+ τ̃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
〈(

W
(1)
20 (0)
2

eiω
k
+ τ̃ +W (1)

11 (0)e
−iωk

+ τ̃ +
W

(1)
20 (−1)
2

+W (1)
11 (−1)

)
cos kx, cos kx

〉

−sP11
〈(

W
(1)
20 (0)
2

C +W (1)
11 (0)C +W (2)

20 (0)2 +W
(2)
11 (0)

)
cos kx, cos kx

〉

−s
〈[

P20

(
W

(1)
20 (0)
2

+W (1)
11 (0)

)
+ P02

(
W

(2)
20 (0)
2

C +W (2)
11 (0)C

)]
cos kx, cos kx

〉

−s
〈[

P21

(
C

8
+
C

4

)
+ P12

(
C2

8
+
CC

4

)]
cos3kx, cos kx

〉

−s
〈(

P30
8

+
P03C

2C

8

)
cos3kx, cos kx

〉

rP11

〈(
W

(1)
20 (0)
2

C +W (1)
11 (0)C +W (2)

20 (0)2 +W
(2)
11 (0)

)
cos kx, cos kx

〉

+ r

〈[
P20

(
W

(1)
20 (0)
2

+W (1)
11 (0)

)
+ P02

(
W

(2)
20 (0)
2

C +W (2)
11 (0)C

)]
cos kx, cos kx

〉

+ r

〈[
P21

(
C

8
+
C

4

)
+ P12

(
C2

8
+
CC

4

)]
cos3kx, cos kx

〉

+ r

〈(
P30
8

+
P03C

2C

8

)
cos3kx, cos kx

〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× z2z

2
+ h.o.t.,

(4.28)

where 〈W (n)
ij (θ), cos kx〉 = 1/π

∫π
0 W

(n)
ij (θ)(x) cos kx dx, i + j = 2, n = 1, 2.

Notice that
∫π
0 cos3kx dx = 0, for all k ∈N = {1, 2, . . .}.

Let (Ψ1,Ψ2) = Ψ1(0) − iΨ2(0). Then we can obtain the following quantities:

g20 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, k ∈N,

τ̃

2

[(
−e−iωk

+ τ̃ − sP11C − sP20
2

− sP02C
2

2

)
Ψ1

+

(
rP11C +

rP20
2

+
rP02C

2

2

)
Ψ2

]
, k = 0.

g11 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, k ∈N,

τ̃

4

[(
−2 cosωk

+τ̃ − sP11
(
C + C

)
− sP20 − sP02CC

)
Ψ1

+
(
rP11
(
C + C

)
+ rP20 + rP02CC

)
Ψ2

]
, k = 0.

g02 = g20,
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g21 = τ̃

[
−
〈(

W
(1)
20 (0)
2

eiω
k
+ τ̃ +W (1)

11 (0)e
−iωk

+ τ̃ +
W

(1)
20 (−1)
2

+W (1)
11 (−1)

)
cos kx, cos kx

〉

− sP11
〈(

W
(1)
20 (0)
2

C +W (1)
11 (0)C +W (2)

20 (0)2 +W
(2)
11 (0)

)
cos kx, cos kx

〉

− s
〈[

P20

(
W

(1)
20 (0)
2

+W (1)
11 (0)

)
+ P02

(
W

(2)
20 (0)
2

C +W (2)
11 (0)C

)]
cos kx, cos kx

〉

− s
〈[

P21

(
C

8
+
C

4

)
+ P12

(
C2

8
+
CC

4

)]
cos3kx, cos kx

〉

−s
〈(

P30
8

+
P03C

2C

8

)
cos3kx, cos kx

〉]
Ψ1

+ τ̃

[
rP11

〈(
W

(1)
20 (0)
2

C +W (1)
11 (0)C +W (2)

20 (0)2 +W
(2)
11 (0)

)
cos kx, cos kx

〉

+ r

〈[
P20

(
W

(1)
20 (0)
2

+W (1)
11 (0)

)
+ P02

(
W

(2)
20 (0)
2

C +W (2)
11 (0)C

)]
cos kx, cos kx

〉

+ r

〈[
P21

(
C

8
+
C

4

)
+ P12

(
C2

8
+
CC

4

)]
cos3kx, cos kx

〉

+ r

〈(
P30
8

+
P03C

2C

8

)
cos3kx, cos kx

〉]
Ψ2.

(4.29)

Since W20(θ) and W11(θ) for θ ∈ [−1, 0] appear in g21, we need to compute them. It follows
from (4.26) that

Ẇ(z, z) =W20zż +W11żz +W11z ż +W02z ż + h.o.t., (4.30)

Aτ̃W = Aτ̃W20
z2

2
+Aτ̃W11zz +Aτ̃W02

z2

2
+ h.o.t. (4.31)

In addition, by [17],W(z, z) satisfies

Ẇ = Aτ̃W +H(z, z), (4.32)

where

H(z, z) = H20
z2

2
+H11zz +H02

z2

2
+ h.o.t. = X0f(Ut, 0) −Φ

(
Ψ,
〈
X0f(Ut, 0), fk

〉) · fk.
(4.33)
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Thus, from (4.24), (4.27)–(4.33), we can obtain that

(
2iωk

+τ̃ −Aτ̃

)
W20 = H20,

−Aτ̃W11 = H11,

(
−2iωk

+τ̃ −Aτ̃

)
W02 = H02.

(4.34)

Noticing that Aτ̃ has only two eigenvalues ±iωk
+τ̃ ; therefore, (4.34) has a unique solutionWij

in Q given by

W20 = (2iωk
+τ̃ −Aτ̃)

−1
H20,

W11 = −A−1
τ̃ H11,

W02 = (−2iωk
+τ̃ −Aτ̃)

−1
H02.

(4.35)

From (4.33), we know that for −1 ≤ θ < 0,

H(z, z) = −Φ(θ)Ψ(0)
〈
f(Ut, 0), fk

〉 · fk

= −
(
p1(θ) + p2(θ)

2
,
p1(θ) − p2(θ)

2i

)
(Ψ1(0),Ψ2(0))

〈
f(Ut, 0), fk

〉 · fk

= −1
2
(
p1(θ)(Ψ1(0) − iΨ2(0))

)
+ p2(θ)(Ψ1(0) + iΨ2(0))

〈
f(Ut, 0), fk

〉 · fk

= −1
2
(
p1(θ)g20 + p2(θ)g02

) · fk z
2

2
− 1
2
(
p1(θ)g11 + p2(θ)g11

) · fkzz + h.o.t.

(4.36)

Therefore, for −1 ≤ θ < 0,

H20(θ) =

⎧
⎪⎨
⎪⎩

0, k ∈N,

−1
2
[
p1(θ)g20 + p2(θ)g02

] · f0, k = 0.
(4.37)

H11(θ) =

⎧
⎪⎨
⎪⎩

0, k ∈N,

−1
2
[
p1(θ)g11 + p2(θ)g11

] · f0, k = 0.
(4.38)
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H(z, z)(0) = f(Ut, 0) −Φ
(
Ψ,
〈
f(Ut, 0), fk

〉) · fk,

H20(0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ̃

2

⎛
⎜⎜⎝

−e−iωk
+τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎠cos2kx, k ∈N,

τ̃

2

⎛
⎜⎜⎝

−e−iωk
+τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎠

−1
2
[
p1(θ)g20 + p2(θ)g02

] · f0, k = 0.

H11(0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ̃

4

⎛
⎜⎝

−2 cosωk
+τ̃ − sP11

(
C + C

)
− sP20 − sP02CC

rP11
(
C + C

)
+ rP20 + rP02CC

⎞
⎟⎠cos2kx,

k ∈N,

τ̃

4

⎛
⎜⎝

−2 cosωk
+τ̃ − sP11

(
C + C

)
− sP20 − sP02CC

rP11
(
C + C

)
+ rP20 + rP02CC

⎞
⎟⎠

−1
2
[
p1(θ)g11 + p2(θ)g11

] · f0, k = 0.

(4.39)

By the definition of Aτ̃ , we have from (4.34),

Ẇ20(θ) = 2iωk
+τ̃W20(θ) +

1
2
[
p1(θ)g20 + p2(θ)g02

] · fk, −1 ≤ θ ≤ 0. (4.40)

Note that p1(θ) = p1(0)eiω
k
+ τ̃θ, −1 ≤ θ ≤ 0. Hence,

W20(θ) =
1
2

[
ig20p1(θ)

ωk
+τ̃

+
ig02p2(θ)

3ωk
+τ̃

]
· fk + E1e

2iωk
+ τ̃θ, (4.41)

E1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

W20, k ∈N,

W20(0) − 1
2

[
ig20p1(0)

ω0
+τ̃

+
ig02p2(0)

3ω0
+τ̃

]
· f0, k = 0.

(4.42)
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Using the definition of Aτ̃ , and combining (4.34) and (4.41), we have

2iω0
+τ̃

[
−1
2

(
ig20p1(0)

ω0
+τ̃

+
ig02p2(0)

3ω0
+τ̃

· f0
)

+ E1

]
− τ̃DΔ

[
−1
2

(
ig20p1(0)

ω0
+τ̃

+
ig02p2(0)

3ω0
+τ̃

· f0
)

+ E1

]

−L(τ̃)
[
−1
2

(
ig20p1(θ)

ω0
+τ̃

+
ig02p2(θ)

3ω0
+τ̃

· f0
)

+ E1e
2iω0

+ τ̃θ

]

=
τ̃

2

⎛
⎜⎜⎝

−e−iωk
+τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎠ − 1

2
[
p1(θ)g20 + p2(θ)g02

] · f0.

(4.43)

Notice that

τ̃DΔ
[
p1(0) · f0

]
+ L(τ̃)

[
p1(θ) · f0

]
= iω0

+τ̃p1(0) · f0,

τ̃DΔ
[
p2(0) · f0

]
+ L(τ̃)

[
p2(θ) · f0

]
= −iω0

+τ̃p2(0) · f0.
(4.44)

Then, for k ∈N0,

2iω0
+τ̃E1 − τ̃DΔE1 − L(τ̃)(E1)e2iω

0
+ τ̃θ =

τ̃

2

⎛
⎜⎜⎝

−e−iωk
+ τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎠cos2kx.

(4.45)

From the above expression, we obtain that

E1 =
1
2
E

⎛
⎜⎜⎝

−e−iωk
+ τ̃ − sP11C − sP20

2
− sP02C

2

2

rP11C +
rP20
2

+
rP02C

2

2

⎞
⎟⎟⎠cos2kx, (4.46)

where

E =

(
2iωk

+ + d1k
2 − 1 + u∗ + a1 + u∗e−2iω

k
+ τ̃ a2

−b1 2iωk
+ + d2k

2 − b2 + d

)−1

. (4.47)

By the same way, we have

−Ẇ11(θ) = −1
2
[
p1(θ)g11 + p2(θ)g11

] · fk, −1 ≤ θ < 0,

W11(θ) =
1
2

[
−ig11p1(θ)

ωk
+τ̃

+
ig11p2(θ)

ωk
+τ̃

]
+ E2.

(4.48)
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Similar to the above, we can obtain that

E2 =
1
4
E0

⎛
⎝−2 cosωk

+τ̃ − sP11
(
C + C

)
− sP20 − sP02CC

rP11
(
C + C

)
+ rP20 + rP02CC

⎞
⎠cos2kx, (4.49)

where

E0 =

(
d1k

2 − 1 + 2u∗ + a1 a2

−b1 d2k
2 − b2 + d

)−1

. (4.50)

So far, W20(θ) and W11(θ) have been expressed by the parameters of the system (1.1). And,
hence, g21 can be expressed also. Thus, we can compute the following values:

c1(0) =
i

2ωk
+τ̃

(
g20g11 − 2

∣∣g11
∣∣2 − 1

3
∣∣g02
∣∣2
)
+
g21
2
,

μ2 = − Re{c1(0)}
Re
{
λ′
(
τkj

)} ,

β2 = 2Re{c1(0)},

T2 = −
Im{c1(0)} + μ2 Im

{
λ′
(
τkj

)}

ωk
+τ̃

,

(4.51)

where μ2 determines the direction of Hopf bifurcation, β2 determines the stability of bifur-
cating periodic solution, and T2 determines the period of the bifurcating periodic solution.
Hence, we have the following result.

Theorem 4.2. The signs of μ2, β2, T2 determine the properties of Hopf bifurcation described in The-
orems 2.4 and 2.7. If μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical (subcritical), and
the bifurcating periodic solutions exist (nonexist) for τ > τk (τ < τk). If β2 < 0 (β2 > 0), then the
bifurcating periodic solutions are stable (unstable). If T2 > 0 (T2 < 0), then the period of the bifurcating
periodic solutions of system (1.1) increases (decreases).

Remark 4.3. From the previous computable results, the expressions of E1 and E2 contain the
diffusion coefficient. According to the definition of g21, the values of g21 have related on E1

and E2. Therefore, the signs of β2 and μ2 which determine the stability and direction of spa-
tially inhomogeneous periodic solutions strictly depend on the diffusion coefficient of d1 and
d2.
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