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An implicit iterative process is considered. Strong and weak convergence theorems of common
fixed points of a finite family of asymptotically pseudocontractive mappings in the intermediate
sense are established in a real Hilbert space.

1. Introduction and Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖. Let C be a nonempty closed convex subset of H and
T : C → C a mapping. We denote F(T) by the fixed point of the mapping T .

Recall that T is said to be uniformly L-lipschitz if there exists a positive constant L such
that

∥
∥Tnx − Tny

∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C, n ≥ 1. (1.1)

T is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.2)
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T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with
kn → 1 as n → ∞ such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x, y ∈ C, n ≥ 1. (1.3)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [1]
in 1972. It is known that if C is a nonempty bounded closed convex subset of a Hilbert space
spaceH , then every asymptotically nonexpansive mapping onC has a fixed point. Since 1972,
a host of authors have been studing strong and weak convergence problems of the iterative
processes for such a class of mappings.

T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous
and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.4)

Putting

ξn = max

{

0, sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
)

}

, (1.5)

we see that ξn → 0 as n → ∞. Then, (1.4) is reduced to the following:

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥x − y
∥
∥ + ξn, ∀x, y ∈ C, n ≥ 1. (1.6)

The class of asymptotically nonexpansivemappings in the intermediate sensewas introduced
by Kirk [2] (see also Bruck et al. [3]) as a generalization of the class of asymptotically
nonexpansive mappings. It is known [4] that if C is a nonempty bounded closed convex
subset of a Hilbert space space H , then every asymptotically nonexpansive mapping in the
intermediate sense on C has a fixed point.

T is said to be strictly pseudocontractive if there exists a constant κ ∈ [0, 1) such that

∥
∥Tx − Ty

∥
∥
2 ≤ ∥

∥x − y
∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2
, ∀x, y ∈ C. (1.7)

For such a case, T is also said to be a κ-strict pseudocontraction. The class of strict
pseudocontractions was introduced by Browder and Petryshyn [5] in 1967. It is clear that
every nonexpansive mapping is a 0-strict pseudocontraction.

T is said to be an asymptotically strict pseudocontraction if there exist a sequence
{kn} ⊂ [1,∞)with kn → 1 as n → ∞ and a constant κ ∈ [0, 1) such that

∥
∥Tnx − Tny

∥
∥
2 ≤ kn

∥
∥x − y

∥
∥
2 + κ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
, ∀x, y ∈ C, n ≥ 1. (1.8)

For such a case, T is also said to be an asymptotically κ-strict pseudocontraction. The class
of asymptotically strict pseudocontractions is introduced by Qihou [6] in 1996. It is clear that
every asymptotically nonexpansive mapping is an asymptotical 0-strict pseudocontraction.



Abstract and Applied Analysis 3

T is said to be an asymptotically strict pseudocontraction in the intermediate sense if
there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n → ∞ and a constant κ ∈ [0, 1) such
that

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥
2 − kn

∥
∥x − y

∥
∥
2 − κ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
)

≤ 0. (1.9)

For such a case, T is also said to be an asymptotically κ-strict pseudocontraction in the
intermediate sense. Putting

ξn = max

{

0, sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥
2 − kn

∥
∥x − y

∥
∥
2 − κ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
)
}

, (1.10)

we see that ξn → 0 as n → ∞. Then, (1.9) is reduced to the following:

∥
∥Tnx − Tny

∥
∥
2 ≤ kn

∥
∥x − y

∥
∥
2 + κ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2 + ξn, ∀x, y ∈ C, n ≥ 1. (1.11)

The class of asymptotically strict pseudocontractions in the intermediate sense was
introduced by Sahu et al. [7] as a generalization of the class of asymptotically strict
pseudocontractions, see [7] for more details. We also remark that if kn = 1 for each n ≥ 1 and
κ = 0 in (1.9), then the class of asymptotically κ-strict pseudocontractions in the intermediate
sense is reduced to the class of asymptotically nonexpansive mappings in the intermediate
sense.

T is said to be pseudocontractive if

〈

Tx − Ty, x − y
〉 ≤ ∥

∥x − y
∥
∥
2
, ∀x, y ∈ C. (1.12)

It is easy to see that (1.12) is equivalent to

∥
∥Tx − Ty

∥
∥2 ≤ ∥

∥x − y
∥
∥2 +

∥
∥(I − T)x − (I − T)y

∥
∥2

, ∀x, y ∈ C. (1.13)

T is said to be asymptotically pseudocontractive if there exists a sequence {kn} ⊂ [1,∞)
with kn → 1 as n → ∞ such that

〈

Tx − Ty, x − y
〉 ≤ kn + 1

2
∥
∥x − y

∥
∥
2
, ∀x, y ∈ C. (1.14)

It is easy to see that (1.14) is equivalent to

∥
∥Tnx − Tny

∥
∥
2 ≤ kn

∥
∥x − y

∥
∥
2 +

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
, ∀x, y ∈ C, n ≥ 1. (1.15)

We remark that the class of asymptotically pseudocontractive mappings was introduced by
Schu [8] in 1991. For an asymptotically pseudocontractive mapping T , Zhou [9] proved that if
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T is also uniformly Lipschitz and uniformly asymptotically regular, then T enjoys a nonempty
fixed point set. Moreover, F(T) is closed and convex.

T is said to be an asymptotically pseudocontractive mapping in the intermediate sense
if there exists a sequence {kn} ⊂ [1,∞)with kn → 1 as n → ∞ such that

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥
2 − kn

∥
∥x − y

∥
∥
2 − ∥

∥(I − Tn)x − (I − Tn)y
∥
∥
2
)

≤ 0. (1.16)

It is easy to see that (1.16) is equivalent to

lim sup
n→∞

sup
x,y∈C

(
〈

Tnx − Tny, x − y
〉 − kn + 1

2
∥
∥x − y

∥
∥
2
)

≤ 0. (1.17)

Put

ξn = max

{

0, sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥
2 − kn

∥
∥x − y

∥
∥
2 − ∥

∥(I − Tn)x − (I − Tn)y
∥
∥
2
)
}

. (1.18)

Then, (1.16) is reduced to the following

∥
∥Tnx − Tny

∥
∥2 ≤ kn

∥
∥x − y

∥
∥2 +

∥
∥(I − Tn)x − (I − Tn)y

∥
∥2 + ξn, ∀n ≥ 1, x, y ∈ C. (1.19)

It is easy to see that (1.19) is equivalent to

〈

Tnx − Tny, x − y
〉 ≤ kn + 1

2
∥
∥x − y

∥
∥2 +

ξn
2
, ∀n ≥ 1, x, y ∈ C. (1.20)

The class of asymptotically pseudocontractive mappings in the intermediate sense which
includes the class of asymptotically pseudocontractive mappings and the class of asymp-
totically strict pseudocontractions in the intermediate sense as special cases was introduced
by Qin et al. [10].

In 2001, Xu and Ori [11], in the framework of Hilbert spaces, introduced the following
implicit iteration process for a finite family of nonexpansive mappings {T1, T2, . . . , TN} with
{αn} a real sequence in (0, 1) and an initial point x0 ∈ C:

x1 = α1x0 + (1 − α1)T1x1,

x2 = α2x1 + (1 − α2)T2x2,

...

xN = αNxN−1 + (1 − αN)TNxN,

xN+1 = αN+1xN + (1 − αN+1)T1xN+1,

...

(1.21)
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which can be written in the following compact form

xn = αnxn−1 + (1 − αn)Tnxn, ∀n ≥ 1, (1.22)

where Tn = Tn(modN) (here the modN takes values in {1, 2, . . . ,N}).
They obtained the following weak convergence theorem.

Theorem XO. Let H be a real Hilbert space, C a nonempty closed convex subset of H , and
T : C → C be a finite family of nonexpansive mappings such that F =

⋂N
i=1 F(Ti)/= ∅. Let {xn} be

defined by (1.22). If {αn} is chosen so that αn → 0 as n → ∞, then {xn} converges weakly to a
common fixed point of the family of {Ti}Ni=1.

Subsequently, fixed point problems based on implicit iterative processes have been
considered by many authors, see [9, 12–23]. In 2004, Osilike [18] considered the implicit
iterative process (1.22) for a finite family of strictly pseudocontractive mappings. To be more
precise, he proved the following theorem.

Theorem O. Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let
{Ti}Ni=1 be N strictly pseudocontractive self-maps of C such that F =

⋂N
i=1 F(Ti)/= ∅. Let x0 ∈ C and

let {αn} be a sequence in (0, 1) such that αn → 0 as n → ∞. Then, the sequence {xn} defined by
(1.22) converges weakly to a common fixed point of the mappings {Ti}Ni=1.

In 2008, Qin et al. [20] considered the following implicit iterative process for a finite
family of asymptotically strict pseudocontractions:

x1 = α1x0 + (1 − α1)T1x1,

x2 = α2x1 + (1 − α2)T2x2,

...

xN = αNxN−1 + (1 − αN)TNxN,

xN+1 = αN+1xN + (1 − αN+1)T2
1xN+1,

...

x2N = α2Nx2N−1 + (1 − α2N)T2
Nx2N,

x2N+1 = α2N+1x2N + (1 − α2N+1)T3
1x2N+1,

...

(1.23)

where x0 is an initial value, {αn} is a sequence in (0, 1). Since for each n ≥ 1, it can be written
as n = (h − 1)N + i, where i = i(n) ∈ {1, 2, . . . ,N}, h = h(n) ≥ 1 is a positive integer and
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h(n) → ∞ as n → ∞. Hence, the above table can be rewritten in the following compact
form:

xn = αnxn−1 + (1 − αn)T
h(n)
i(n) xn, ∀n ≥ 1. (1.24)

A weak convergence theorem of the implicit iterative process (1.24) for a finite family of
asymptotically strict pseudocontractions was established.

We remark that the implicit iterative process (1.24) has been used to study the
class of asymptotically pseudocontractive mappings by Osilike and Akuchu [19]. They
obtained strong convergence of the implicit iterative process (1.24), however, there is noweak
convergence theorem.

In this paper, motivated by the above results, we reconsider the implicit iterative
process (1.24) for asymptotically pseudocontractive mappings in the intermediate sense.
Strong and weak convergence theorems of common fixed points of a finite family of
asymptotically pseudocontractive mappings in the intermediate sense are established. The
results presented in this paper mainly improve and extend the corresponding results
announced in Chang et al. [24], Chidume and Shahzad [13], Górnicki [25], Osilike [18], Qin
et al. [20], Xu and Ori [11], and Zhou and Chang [23].

In order to prove our main results, we need the following conceptions and lemmas.
Recall that a space X is said to satisfy Opial’s condition [26] if, for each sequence {xn}

in X, the convergence xn → x weakly implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥, ∀y ∈ E

(

y /=x
)

. (1.25)

Recall that a mapping T : C → C is semicompact if any sequence {xn} in C satisfying
limn→∞‖xn − Txn‖ = 0 has a convergent subsequence.

Lemma 1.1 (see [27]). In a real Hilbert space, the following inequality holds

∥
∥ax + (1 − a)y

∥
∥
2 = a‖x‖2 + (1 − a)

∥
∥y

∥
∥
2 − a(1 − a)

∥
∥x − y

∥
∥
2
, ∀a ∈ [0, 1], x, y ∈ H. (1.26)

Lemma 1.2 (see [28]). Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the
following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0, (1.27)

where n0 is some nonnegative integer,
∑∞

n=1 bn < ∞ and
∑∞

n=1 cn < ∞. Then, the limit limn→∞an

exists.
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2. Main Results

Theorem 2.1. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping in the intermediate
sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 ≤ i ≤ N, where

N ≥ 1 is some positive integer. Let ξ(n,i) = max{0, supx,y∈C(‖Tn
i x − Tn

i y‖2 − k(n,i)‖x − y‖2 −
‖(I − Tn

i )x − (I − Tn
i )y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed point set F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.

Then, {xn} converges weakly to some point in F.

Proof. First, we show that the sequence {xn} generated in the implicit iterative process (1.24)
is well defined. Define mappings Rn : C → C by

Rn(x) = αnxn−1 + (1 − αn)T
h(n)
i(n) x, ∀x ∈ C, n ≥ 1. (2.1)

Notice that

∥
∥Rn(x) − Rn

(

y
)∥
∥ =

∥
∥
∥

(

αnxn−1 + (1 − αn)T
h(n)
i(n) x

)

−
(

αnxn−1 + (1 − αn)T
h(n)
i(n) y

)∥
∥
∥

≤ (1 − αn)L
∥
∥x − y

∥
∥

≤ (1 − a)L
∥
∥x − y

∥
∥, ∀x, y ∈ C.

(2.2)

From the restriction (a), we see that Rn is a contraction for each n ≥ 1. By Banach contraction
principle, we see that there exists a unique fixed point xn ∈ C such that

xn = αnxn−1 + (1 − αn)T
h(n)
i(n) xn, ∀n ≥ 1. (2.3)

This shows that the implicit iterative process (1.24) is well defined for uniformly Lipschitz
continuous and asymptotically pseudocontractive mappings in the intermediate sense. Let
kn = max{kn,i : 1 ≤ i ≤ N}. In view of the assumption, we see that

∑∞
n=1(kn − 1) < ∞. Fixing

p ∈ F, we see from Lemma 1.1 that

∥
∥xn − p

∥
∥
2 = αn

∥
∥xn−1 − p

∥
∥
2 + (1 − αn)

∥
∥
∥T

h(n)
i(n) xn − p

∥
∥
∥

2 − αn(1 − αn)
∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

2

≤ αn

∥
∥xn−1 − p

∥
∥
2 + (1 − αn)

(

kh(n)
∥
∥xn − p

∥
∥
2 +

∥
∥
∥T

h(n)
i(n) xn − xn

∥
∥
∥

2
+ ξn

)

− αn(1 − αn)
∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

2
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≤ αn

∥
∥xn−1 − p

∥
∥2 + (1 − αn)kh(n)

∥
∥xn − p

∥
∥2 + (1 − αn)

∥
∥
∥T

h(n)
i(n) xn − xn

∥
∥
∥

2

− αn(1 − αn)
∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

2
+ ξn

≤ αn

∥
∥xn−1 − p

∥
∥
2 + (1 − αn)kh(n)

∥
∥xn − p

∥
∥
2 − (1 − αn)2αn

∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

2
+ ξn.

(2.4)

From the restriction (a), we see that there exists some n0 such that

(1 − αn)kh(n) < Q < 1, ∀n ≥ n0, (2.5)

where Q = (1 − a)(1 + a/(2(1 − a))). It follows that

∥
∥xn − p

∥
∥2 ≤ αn

1 − (1 − αn)kh(n)

∥
∥xn−1 − p

∥
∥2 +

ξn
1 − (1 − αn)kh(n)

≤
(

1 +
kh(n) − 1
1 −Q

)
∥
∥xn−1 − p

∥
∥
2 +

ξn
1 −Q

, ∀n ≥ n0.

(2.6)

In view of the restriction (b), we obtain from Lemma 1.2 that limn→∞‖xn − p‖ exists. Hence,
the sequence {xn} is bounded. Reconsidering (2.4), we see from the restriction (a) that

(1 − b)2a
∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

2 ≤ αn

(∥
∥xn−1 − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2
)

+
(

kh(n) − 1
)∥
∥xn − p

∥
∥
2 + ξn.

(2.7)

This implies that

lim
n→∞

∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥ = 0. (2.8)

Notice that

‖xn − xn−1‖ ≤
∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥. (2.9)

It follows from (2.8) that

lim
n→∞

‖xn − xn−1‖ = 0. (2.10)

Observe that
∥
∥
∥xn−1 − T

h(n)
i(n) xn−1

∥
∥
∥ ≤

∥
∥
∥xn−1 − T

h(n)
i(n) xn

∥
∥
∥ +

∥
∥
∥T

h(n)
i(n) xn − T

h(n)
i(n) xn−1

∥
∥
∥

≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn

∥
∥
∥ + L‖xn − xn−1‖.

(2.11)
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In view of (2.8), and (2.10), we obtain that

lim
n→∞

∥
∥
∥xn−1 − T

h(n)
i(n) xn−1

∥
∥
∥ = 0. (2.12)

Since for any positive integer n > N, it can be written as n = (h(n) − 1)N + i(n), where
i(n) ∈ {1, 2, . . . ,N}. Observe that

‖xn−1 − Tnxn−1‖ ≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn−1

∥
∥
∥ +

∥
∥
∥T

h(n)
i(n) xn−1 − Tnxn−1

∥
∥
∥

≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn−1

∥
∥
∥ + L

∥
∥
∥T

h(n)−1
i(n) xn−1 − xn−1

∥
∥
∥

≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn−1

∥
∥
∥

+ L
(∥
∥
∥T

h(n)−1
i(n) xn−1 − T

h(n)−1
i(n−N)xn−N

∥
∥
∥ +

∥
∥
∥T

h(n)−1
i(n−N)xn−N − x(n−N)−1

∥
∥
∥

+
∥
∥x(n−N)−1 − xn−1

∥
∥

)

.

(2.13)

Since for each n > N, n = (n − N)(modN), on the other hand, we obtain from n = (h(n) −
1)N + i(n) that n −N = ((h(n) − 1) − 1)N + i(n) = (h(n −N) − 1)N + i(n −N). That is,

h(n −N) = h(n) − 1, i(n −N) = i(n). (2.14)

Notice that

∥
∥
∥T

h(n)−1
i(n) xn−1 − T

h(n)−1
i(n−N)xn−N

∥
∥
∥ =

∥
∥
∥T

h(n)−1
i(n) xn−1 − T

h(n)−1
i(n) xn−N

∥
∥
∥

≤ L‖xn−1 − xn−N‖,
∥
∥
∥T

h(n)−1
i(n−N)xn−N − x(n−N)−1

∥
∥
∥ =

∥
∥
∥T

h(n−N)
i(n−N) xn−N − x(n−N)−1

∥
∥
∥.

(2.15)

Substituting (2.15) into (2.13), we arrive at

‖xn−1 − Tnxn−1‖ ≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn−1

∥
∥
∥

+ L
(

L‖xn − xn−N‖ +
∥
∥
∥T

h(n−N)
i(n−N) xn−N − x(n−N)−1

∥
∥
∥ +

∥
∥x(n−N)−1 − xn−1

∥
∥

)

.

(2.16)

In view of (2.8), (2.10), and (2.12), we obtain from (2.16) that

lim
n→∞

‖xn−1 − Tnxn−1‖ = 0. (2.17)
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Notice that

‖xn − Tnxn‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − Tnxn−1‖ + ‖Tnxn−1 − Tnxn‖

≤ (1 + L)‖xn − xn−1‖ + ‖xn−1 − Tnxn−1‖.
(2.18)

From (2.10) and (2.17), we arrive at

lim
n→∞

‖xn − Tnxn‖ = 0. (2.19)

Notice that

∥
∥xn − Tn+jxn

∥
∥ ≤ ∥

∥xn − xn+j
∥
∥ +

∥
∥xn+j − Tn+jxn+j

∥
∥ +

∥
∥Tn+jxn+j − Tn+jxn

∥
∥

≤ (1 + L)
∥
∥xn − xn+j

∥
∥ +

∥
∥xn+j − Tn+jxn+j

∥
∥, ∀j ∈ {1, 2, . . . ,N}.

(2.20)

It follows from (2.10) and (2.19) that

lim
n→∞

∥
∥xn − Tn+jxn

∥
∥ = 0, ∀j ∈ {1, 2, . . . ,N}. (2.21)

Note that any subsequence of a convergent number sequence converges to the same limit. It
follows that

lim
n→∞

‖xn − Trxn‖ = 0, ∀r ∈ {1, 2, . . . ,N}. (2.22)

Since the sequence {xn} is bounded, we see that there exists a subsequence {xni} ⊂ {xn}
such that {xni} converges weakly to a point x ∈ C. Choose α ∈ (0, 1/(1 + L)) and define
yα,m,r = (1 − α)x + αTm

r x for arbitrary but fixed m ≥ 1. Notice that

‖xni − Tm
r xni‖ ≤ ‖xni − Trxni‖ +

∥
∥
∥Trxni − T2

r xni

∥
∥
∥ + · · · +

∥
∥
∥Tm−1

r xni − Tm
r xni

∥
∥
∥

≤ [1 + (m − 1)L]‖xni − Trxni‖, ∀r ∈ {1, 2, . . . ,N}.
(2.23)

It follows from (2.22) that

lim
i→∞

‖xni − Tm
r xni‖ = 0, ∀r ∈ {1, 2, . . . ,N}. (2.24)
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Note that

〈

x − yα,m,r, yα,m,r − Tm
r yα,m,r

〉

=
〈

x − xni , yα,m,r − Tm
r yα,m

〉

+
〈

xni − yα,m,r, yα,m,r − Tm
r yα,m,r

〉

=
〈

x − xni , yα,m,r − Tm
r yα,m,r

〉

+
〈

xni − yα,m,r, T
m
r xni − Tm

r yα,m,r

〉

− 〈

xni − yα,m,r, xni − yα,m,r

〉

+
〈

xni − yα,m,r, xni − Tm
r xn

〉

≤ 〈

x − xni , yα,m,r − Tm
r yα,m,r

〉

+
1 + km

2

∥
∥xni − yα,m,r

∥
∥
2 +

ξm
2

− ∥
∥xni − yα,m,r

∥
∥
2 +

∥
∥xni − yα,m,r

∥
∥‖xni − Tm

r xn‖

=
〈

x − xni , yα,m,r − Tm
r yα,m,r

〉

+
km − 1

2
∥
∥xni − yα,m,r

∥
∥
2 +

ξm
2

+
∥
∥xni − yα,m,r

∥
∥‖xni − Tm

r xni‖, ∀r ∈ {1, 2, . . . ,N}.

(2.25)

Since xni ⇀ x and (2.24), we arrive at

〈

x − yα,m, yα,m − Tm
r yα,m

〉 ≤ km − 1
2

∥
∥xni − yα,m,r

∥
∥
2 +

ξm
2
, ∀r ∈ {1, 2, . . . ,N}. (2.26)

On the other hand, we have

〈

x − yα,m,r, (x − Tm
r x) − (

yα,m,r − Tm
r yα,m,r

)〉

≤ (1 + L)
∥
∥x − yα,m,r

∥
∥
2 = (1 + L)α2‖x − Tm

r x‖2, ∀r ∈ {1, 2, . . . ,N}.
(2.27)

Notice that

‖x − Tm
r x‖2 = 〈x − Tm

r x, x − Tm
r x〉

=
1
α

〈

x − yα,m,r, x − Tm
r x

〉

=
1
α

〈

x − yα,m,r, (x − Tm
r x) − (

yα,m,r − Tm
r yα,m,r

)〉

+
1
α

〈

x − yα,m,r, yα,m,r − Tm
r yα,m,r

〉

, ∀r ∈ {1, 2, . . . ,N}.

(2.28)

Substituting (2.26) and (2.27) into (2.28), we arrive at

α[1 − (1 + L)α]‖x − Tm
r x‖2 ≤ km − 1

2
∥
∥xni − yα,m,r

∥
∥
2 +

ξm
2
, ∀r ∈ {1, 2, . . . ,N}, m ≥ 1.

(2.29)
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Letting m → ∞ in (2.29), we see that Tm
r x → x for each 1 ≤ r ≤ N. Since Tr is uniformly

Lr-Lipschitz, we can obtain that x = Trx for each 1 ≤ r ≤ N. This means that x ∈ F.
Next we show that {xn} converges weakly to x. Supposing the contrary, we see that

there exists some subsequence {xnj} of {xn} such that {xnj} converges weakly to x∗ ∈ C,
where x∗ /=x. Similarly, we can show x∗ ∈ F. Notice that we have proved that limn→∞‖xn−p‖
exists for each p ∈ F. Assume that limn→∞‖xn − x‖ = d where d is a nonnegative number. By
virtue of the Opial property of H , we see that

d = lim inf
ni →∞

‖xni − x‖ < lim inf
ni →∞

‖xni − x∗‖

= lim inf
nj →∞

∥
∥
∥xnj − x∗

∥
∥
∥ < lim inf

nj →∞

∥
∥
∥xnj − x

∥
∥
∥ = d.

(2.30)

This is a contradiction. Hence x = x∗. This completes the proof.

For the class of asymptotically pseudocontractive mappings, we have, from
Theorem 2.1, the following results immediately.

Corollary 2.2. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping with the sequence
{kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞ for each 1 ≤ i ≤ N, whereN ≥ 1 is some positive integer.

Assume that the common fixed point set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in (1.24). Assume that the control sequence {αn} in [0, 1] satisfies the following restrictions
0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1. Then, {xn} converges
weakly to some point in F.

For the class of asymptotically nonexpansive mappings in the intermediate sense, we
can obtain from Theorem 2.1 the following results immediately.

Corollary 2.3. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti :
C → C be a uniformly Li-Lipschitz continuous and asymptotically nonexpansive mapping in
the intermediate sense for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Let ξ(n,i) =
max{0, supx,y∈C(‖Tn

i x − Tn
i y‖2 − ‖x − y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed

point set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the
control sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.

Then {xn} converges weakly to some point in F.

For the class of asymptotically nonexpansive mappings, we can conclude from
Theorem 2.1 the following results immediately.

Corollary 2.4. Let C be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be an
asymptotically nonexpansive mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞

for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Assume that the common fixed point set
F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control
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sequence {αn} in [0, 1] satisfies the following restriction 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where
L = max{supn≥1{kn,i} : 1 ≤ i ≤ N}, for all n ≥ 1. Then, {xn} converges weakly to some point in F.

Next, we give strong convergence theorems with the help of semicompactness.

Theorem 2.5. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping in the intermediate
sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 ≤ i ≤ N, where

N ≥ 1 is some positive integer. Let ξ(n,i) = max{0, supx,y∈C(‖Tn
i x − Tn

i y‖2 − k(n,i)‖x − y‖2 −
‖(I − Tn

i )x − (I − Tn
i )y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed point set F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.

If one of {T1, T2, . . . , TN} is semicompact, then the sequence {xn} converges strongly to some point in
F.

Proof. Without loss of generality, we may assume that T1 is semicompact. From (2.22), we
see that there exists a subsequence {xni} of {xn} that converges strongly to x ∈ C. For each
r ∈ {1, 2, . . . ,N}, we get that

‖x − Trx‖ ≤ ‖x − xni‖ + ‖xni − Trxni‖ + ‖Trxni − Trx‖. (2.31)

Since Tr is Lipschitz continuous, we obtain from (2.22) that x ∈ ⋂N
r=1 F(Tr) = F. In view

of Theorem 2.1, we obtain that limn→∞‖xn − x‖ exists. Therefore, we can obtain the desired
conclusion immediately.

For the class of asymptotically pseudocontractive mappings, we have from
Theorem 2.5 the following results immediately.

Corollary 2.6. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping with the sequence
{kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞ for each 1 ≤ i ≤ N, whereN ≥ 1 is some positive integer.

Assume that the common fixed point set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in (1.24). Assume that the control sequence {αn} in [0, 1] satisfies the following restrictions:
0 < 1−1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1. If one of {T1, T2, . . . , TN}
is semicompact, then the sequence {xn} converges strongly to some point in FF.

For the class of asymptotically nonexpansive mappings in the intermediate sense, we
can obtain from Theorem 2.5 the following results immediately.

Corollary 2.7. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti :
C → C be a uniformly Li-Lipschitz continuous and asymptotically nonexpansive mapping in
the intermediate sense for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Let ξ(n,i) =
max{0, supx,y∈C(‖Tn

i x − Tn
i y‖2 − ‖x − y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed
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point set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the
control sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.
If one of {T1, T2, . . . , TN} is semicompact, then the sequence {xn} converges strongly to some point in
F.

For the class of asymptotically nonexpansive mappings, we can conclude from
Theorem 2.5 the following results immediately.

Corollary 2.8. Let C be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be an
asymptotically nonexpansive mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞

for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Assume that the common fixed point set
F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restriction: 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where
L = max{supn≥1{kn,i} : 1 ≤ i ≤ N}, for all n ≥ 1. If one of {T1, T2, . . . , TN} is semicompact, then the
sequence {xn} converges strongly to some point in F.

In 2005, Chidume and Shahzad [13] introduced the following conception. Recall that
a family {Ti}Ni=1 : C → C with F =

⋂N
i=1 F(Ti)/= ∅ is said to satisfy Condition (B) on C if there

is a nondecreasing function f : [0,∞) → [0,∞)with f(0) = 0 and f(m) > 0 for allm ∈ (0,∞)
such that for all x ∈ C

max
1≤i≤N

{‖x − Tix‖} ≥ f(d(x,F)). (2.32)

Next, we give strong convergence theorems with the help of Condition (B).

Theorem 2.9. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping in the intermediate
sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 ≤ i ≤ N, where

N ≥ 1 is some positive integer. Let ξ(n,i) = max{0, supx,y∈C(‖Tn
i x − Tn

i y‖2 − k(n,i)‖x − y‖2 −
‖(I − Tn

i )x − (I − Tn
i )y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed point set F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.
If {T1, T2, . . . , TN} satisfies Condition (B), then the sequence {xn} converges strongly to some point
in F.

Proof. In view of Condition (B), we obtain from (2.22) that f(d(xn,F)) → 0, which implies
d(xn,F) → 0. Next, we show that the sequence {xn} is Cauchy. In view of (2.6), for any
positive integersm,n, wherem > n > n0, we obtain that

∥
∥xm − p

∥
∥ ≤ B

∥
∥xn − p

∥
∥ + B

∞∑

i=n+1

ξi
1 −Q

+
ξm

1 −Q
, (2.33)
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where B = exp{∑∞
n=1((kh(n) − 1)/(1 −Q))}. It follows that

‖xn − xm‖ ≤ ∥
∥xn − p

∥
∥ +

∥
∥xm − p

∥
∥ ≤ (1 + B)

∥
∥xn − p

∥
∥ + B

∞∑

i=n+1

ξi
1 −Q

+
ξm

1 −Q
. (2.34)

It follows that {xn} is a Cauchy sequence in C,so {xn} converges strongly to some q ∈ C.
Since Tr is Lipschitz for each r ∈ {1, 2, . . . ,N}, we see that F is closed. This in turn implies
that q ∈ F. This completes the proof.

For the class of asymptotically pseudocontractive mappings, we have from
Theorem 2.9 the following results immediately.

Corollary 2.10. Let C be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping with the sequence
{kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞ for each 1 ≤ i ≤ N, whereN ≥ 1 is some positive integer.

Assume that the common fixed point set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in (1.24). Assume that the control sequence {αn} in [0, 1] satisfies the following restrictions:
0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1. If {T1, T2, . . . , TN}
satisfies Condition (B), then the sequence {xn} converges strongly to some point in F.

For the class of asymptotically nonexpansive mappings in the intermediate sense, we
can obtain from Theorem 2.9 the following results immediately.

Corollary 2.11. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be
a uniformly Li-Lipschitz continuous and asymptotically nonexpansive mapping in the intermediate
sense for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Let ξ(n,i) = max{0,
supx,y∈C(‖Tn

i x − Tn
i y‖2 − ‖x − y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed point

set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the
control sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.

If {T1, T2, . . . , TN} satisfies Condition (B), then the sequence {xn} converges strongly to some point
in F.

For the class of asymptotically nonexpansive mappings, we can conclude from
Theorem 2.9 the following results immediately.

Corollary 2.12. LetC be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be an
asymptotically nonexpansive mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞

for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Assume that the common fixed point set
F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restriction: 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where
L = max{supn≥1{kn,i} : 1 ≤ i ≤ N}, for all n ≥ 1. If {T1, T2, . . . , TN} satisfies Condition (B), then
the sequence {xn} converges strongly to some point in F.
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Finally, we give the following strong convergence criteria.

Theorem 2.13. Let C be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping in the intermediate
sense with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i − 1) < ∞ for each 1 ≤ i ≤ N, where

N ≥ 1 is some positive integer. Let ξ(n,i) = max{0, supx,y∈C(‖Tn
i x − Tn

i y‖2 − k(n,i)‖x − y‖2 −
‖(I − Tn

i )x − (I − Tn
i )y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed point set F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.

Then, the sequence {xn} converges strongly to some point inF if and only if lim infn→∞d(xn,F) = 0.

Proof. The necessity is obvious. We only show the sufficiency. Assume that

lim inf
n→∞

d(xn,F) = 0. (2.35)

In view of Lemma 1.2, we can obtain from (2.6) that limn→∞d(xn,F) = 0. The desired results
can be obtain from Theorem 2.9 immediately.

For the class of asymptotically pseudocontractive mappings, we have from
Theorem 2.13 the following results immediately.

Corollary 2.14. Let C be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be a
uniformly Li-Lipschitz continuous and asymptotically pseudocontractive mapping with the sequence
{kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞ for each 1 ≤ i ≤ N, whereN ≥ 1 is some positive integer.

Assume that the common fixed point set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence
generated in (1.24). Assume that the control sequence {αn} in [0, 1] satisfies the following restrictions
0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1. Then, the sequence
{xn} converges strongly to some point in F if and only if lim infn→∞d(xn,F) = 0.

For the class of asymptotically nonexpansive mappings in the intermediate sense, we
can obtain from Theorem 2.13 the following results immediately.

Corollary 2.15. Let C be a nonempty closed convex subset of a Hilbert space H . Let Ti : C → C be
a uniformly Li-Lipschitz continuous and asymptotically nonexpansive mapping in the intermediate
sense for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Let ξ(n,i) = max{0,
supx,y∈C(‖Tn

i x − Tn
i y‖2 − ‖x − y‖2)} for each 1 ≤ i ≤ N. Assume that the common fixed point

set F =
⋂N

i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the
control sequence {αn} in [0, 1] satisfies the following restrictions:

(a) 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where L = max{Li : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 ξn < ∞, where ξn = max{ξ(n,i) : 1 ≤ i ≤ N}.

Then, the sequence {xn} converges strongly to some point inF if and only if lim infn→∞d(xn,F) = 0.
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For the class of asymptotically nonexpansive mappings, we can conclude from
Theorem 2.13 the following results immediately.

Corollary 2.16. LetC be a nonempty closed convex subset of a Hilbert spaceH . Let Ti : C → C be an
asymptotically nonexpansive mapping with the sequence {kn,i} ⊂ [1,∞) such that

∑∞
n=1(kn,i−1) < ∞

for each 1 ≤ i ≤ N, where N ≥ 1 is some positive integer. Assume that the common fixed point set
F =

⋂N
i=1 F(Ti) is nonempty. Let {xn}∞n=0 be a sequence generated in (1.24). Assume that the control

sequence {αn} in [0, 1] satisfies the following restriction: 0 < 1 − 1/L < a ≤ αn ≤ b < 1, where
L = max{supn≥1{kn,i} : 1 ≤ i ≤ N}, for all n ≥ 1. Then, the sequence {xn} converges strongly to
some point in F if and only if lim infn→∞d(xn,F) = 0.
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