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In 2002, Dierk Schleicher gave an explicit estimate of an upper bound for the number of iterations
of Newton’s method it takes to find all roots of polynomials with prescribed precision. In this
paper, we provide a method to improve the upper bound given by D. Schleicher. We give here
an iterative method for finding an upper bound for the distance between a fixed point z in an
immediate basin of a root α to α, which leads to a better upper bound for the number of iterations
of Newton’s method.

1. Introduction

Let P be a polynomial of degree d, and let Np(z) = z − P(z)/P ′(z) be the Newton map
induced by P . Let N be the set of positive integers. For each k ∈ N, letNk

p denote the k-iterate
of Np, that is, N1

p = Np,N
2
p = Np ◦ Np, and Nk

p = Nk−1
p ◦ Np. For a root α of P , we say

that a set U is the immediate basin of α if U is the largest connected open set containing α and
Nk

p (z) → α, as k → ∞, for all z ∈ U. Every immediate basin U is forward invariant, that is,
Np(U) = U, and is simply connected (see [1, 2]). In 2002, Schleicher [3] provided an upper
bound for the number of iterations of Newton’s method for complex polynomials of fixed
degree with a prescribed precision. More precisely, Schleicher proved that if all roots of P are
inside the unit disc and 0 < ε < 1, there is a constant n(d, ε) such that for every root α of P ,
there is a point z with |z| = 2 such that |Nn

p (z) − α| < ε for all n ≥ n(d, ε). Schleicher also
showed that n(d, ε) can be chosen so that

n(d, ε) ≤ 9πd4f2
d

ε2 log 2
+

∣
∣log ε

∣
∣ + log 13
log 2

+ 1 (1.1)
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with

fd :=
d2(d − 1)
2(2d − 1)

(
2d
d

)

. (1.2)

To obtain this estimate, Schleicher employed several rough estimates which cause
the bound far from an efficient upper bound. The main point that causes the extremely
inefficiency is the way Schleicher used to obtain fd which arose when he estimated an upper
bound for the distance of a point z to a root α. Schleicher showed that if z is in the immediate
basin of α and |Np(z) − z| = δ, then the distance between z and α is at most δfd.

In this paper, we give an algorithm to improve the value of fd. Even though, it is not
an explicit formula, it can be easily computed. The following is our main result.

Main Theorem. Let P(z) be a polynomial of degree d ≥ 3, and let y be a positive number larger than
4d − 3. If z0 is in an immediate basin of a root α and |Np(z0) − z0| = ε, then |z0 − α| ≤ εM(d, y),
whereM(d, y) := max{y,Ad +y(d− 1)/(y− 1)} andAd can be derived from the following iterative
algorithm.

Let b = y(y − d)/(y − 1), and

A2 =
y(d − 1)

[

2d
(

y − 2d + 3
) − 3y − 1

]

(

y − 1
)(

y − 4d + 3
) . (1.3)

For k = 2, . . . , d − 1, set ak = 1 +
∑k−1

j=2 (Ak/(Ak −Aj)).
If 2Ak < b then let

Ak+1 = Ak

(
(ak + d − k)Ak + b(k + 1 − ak − d)

Ak(ak + 1) − bak

)

. (1.4)

Otherwise let

Ak+1 = Ak
ak + d − k

ak
. (1.5)

Note that the value ofM(d, y) in themain theorem depends only on the constant y and
the degree d. Hence if we select y appropriately the value M(d, y) will be optimized under
this method. However this estimate is still far away from the best possible one. We believe
that this new upper bound M(d, y) is less than fd/2d/2 for all d ≥ 10 when y = d1.52(4d/3)−2.
We will discuss further about this matter in Section 4.

2. Preliminary Results

We will use B(a, r) for the open ball {z ∈ C : |z − a| < r} and B(a, r) for the closed ball
{z ∈ C : |z − a| ≤ r}, where C is the set of complex numbers. If S is a subset of C, we denote
the boundary of S by ∂S.

Lemma 2.1. Let P be a polynomial. Let β be a complex number and r > 0. Suppose that Re{(z −
β)P ′(z)/P(z)} ≥ 1/2 whenever |z − β| = r and P(z)/= 0. Let U be an immediate basin of a root α of
P . IfU ∩ B(β, r)/= ∅, then α is in B(β, r).



Abstract and Applied Analysis 3

Proof. For |z − β| = r with P(z)/= 0, we have

Np(z) − β =
(

z − β
)
(

1 − 1
g(z)

)

, (2.1)

where g(z) = (z−β)P ′(z)/P(z). Hence, |Np(z)−β| ≤ |z−β| if and only if |(g(z)−1)/g(z)| ≤ 1
which holds if Re{g(z)} ≥ 1/2. It means that if z is a point in ∂B(β, r) and Re{g(z)} ≥ 1/2,
then the distance of Np(z) to β is at most the distance of z to β. In other words, the image of
z under the map Np also lies inside B(β, r).

Let α be a root of P and U be its immediate basin. Suppose that α /∈ B(β, r) and z ∈
U∩B(β, r). SinceU is forward invariant underNp,Np(z) still stays inU. SinceU is connected,
there is a curve γ0 connecting z to Np(z) and lying entirely in U. Since Nk

p (γ0) converges
uniformly to α as k → ∞, the set

⋃∞
k=1 N

k
p (γ0)∪ {α} forms a continuous curve γ joining z and

α. Note that γ is contained inU because Nk
p (γ0) lies inside U for all k ∈ N.

Let w be the last intersection point of γ with ∂B(β, r) (i.e., the part of the curve γ that
connects w to α stays outside B(β, r) except at w). So Np must send w to a point outside
B(β, r), otherwise β is a fixed point of Np, which is impossible because all fixed points of Np

are only the roots of P , and here P(z)/= 0 on |z − β| = r. From the first paragraph, however,
we also have Np(w) ∈ B(β, r). Hence we get a contradiction. Therefore if U ∩ B(β, r) is not
empty, then α is in B(β, r), as desired.

Remark that, from the proof of Lemma 2.1, if β is a root of P and Re{(z −
β)P ′(z)/P(z)} ≥ 1/2 for all |z − β| ≤ r, then the closed ball B(β, r) is contained in the
immediate basin of β.

Lemma 2.2. Let P be a polynomial of degree d ≥ 3. Let α1 be a root of P and α2 the nearest root to
α1. Let β = |α1 − α2|, and let m be the multiplicity of α1. Suppose that there is a root α of P such that
|α1 − α| ≥ b for some positive number b ≥ β. Then the closed ball {z ∈ C : |z − α1| ≤ δ} is contained
entirely in the immediate basin of α1, where

δ =
1

2(2d − 1)

[

(2m + 1)β + (2d − 3)b −
√

[

(2m + 1)β + b(2d − 3)
]2 − 4(2d − 1)(2m − 1)bβ

]

.

(2.2)

Proof. Without loss of generality, we assume that α1 = 0. From the previous remark, it suffices
to show that Re{zP ′(z)/P(z)} ≥ 1/2 for all |z| ≤ δ. Let P(z) = zm

∏d−m
k=2 (z − αk). We have

zP ′(z)
P(z)

= m +
d−m∑

k=2

z

z − αk
. (2.3)

Hence

Re
{
zP ′(z)
P(z)

}

= m +
d−m∑

k=2

Re
{

z

z − αk

}

≥ m +
r(d −m − 1)

r − β
+

r

r − b
, (2.4)
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where r = |z|. Note that β ≤ b. For r < β, we have

m +
r(d −m − 1)

r − β
+

r

r − b
≥ 1

2
, (2.5)

if r ≤ δ. This shows that Re{zP ′(z)/P(z)} ≥ 1/2 for all |z| ≤ δ, as needed.

Note that if we set b = β in Lemma 2.2, then the closed ball centered at α1 of radius
β(2m−1)/(2d−1) is contained in the immediate basin of α1. Furthermore, ifm = 1, the radius
of the ball is β/(2d − 1). (Schleicher [3, Lemma 4, page 938] made a small mistake about the
radius of the ball. Indeed, he should get β/(2d − 1) instead of β/2(d − 1)).

Lemma 2.3. Let P be a polynomial of degree d. For any complex number z and any positive number
y > 1, if |Np(z)− z| = ε and there is a root αd of P with |z− αd| ≥ yε, then there is a root α of P such
that |z − α| ≤ y(d − 1)ε/(y − 1).

Proof. Let α1, α2, . . . , αd be all roots of P . Suppose that |z−αd| ≥ yε. If |z−αj | > y(d− 1)ε/y − 1
for 1 ≤ j ≤ d − 1, then

∣
∣Np(z) − z

∣
∣ ≥

⎛

⎝

d∑

j=1

1
∣
∣z − αj

∣
∣

⎞

⎠

−1

>

(
y − 1

y(d − 1)ε
(d − 1) +

1
yε

)−1
= ε, (2.6)

a contradiction.

We are now ready to prove our main theorem.

3. Proof of Main Theorem

Let α1, α2, . . . , αd be all roots of P such that α1 is the nearest root to z0 and |α1 −αk| ≤ |α1 −αk+1|
for k = 2, . . . , d − 1. Suppose that |z0 − αd| ≥ yε. By Lemma 2.3, we have |z0 − α1| ≤ y(d −
1)ε/(y − 1). Note that |α1 − αd| ≥ bε. If α = α1, we are done. Otherwise, z is not in the
immediate basin of α1; thus by Lemma 2.2 with m = 1, we get that |z0 − α1| > δ, where δ is
defined in Lemma 2.2, that is,

δ =
3r2 + bε(2d − 3) −

√

[3r2 + bε(2d − 3)]2 − 4(2d − 1)bεr2
2(2d − 1)

, (3.1)

where r2 = |α1 − α2|. Thus z0 satisfies the inequalities

δ < |z0 − α1| ≤
y(d − 1)ε
y − 1

, (3.2)

which holds if |α1 − α2| < A2ε. If α = α2, we are done. Suppose next that α/=α2.
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Table 1: Examples of values of M(d, y) compared to fd when y = d1.524d/3−2.

d = M(d, y) is less than fd is greater than fd/2d/2M(d, y) is greater than
10 1.3385 × 105 4.3758 × 106 1.0216
20 1.0131 × 1010 1.343 × 1013 1.2946
30 4.4559 × 1014 2.6158 × 1019 1.7915
40 1.5878 × 1019 4.2458 × 1025 2.5502
50 5.0059 × 1023 6.2420 × 1031 3.7162
60 1.1486 × 1028 8.6222 × 1037 5.4054
70 4.2054 × 1032 1.1410 × 1044 7.8967
80 1.1429 × 1037 1.4634 × 1050 11.6467
90 3.0424 × 1041 1.8327 × 1056 17.1212
100 7.9376 × 1045 2.2523 × 1062 25.2027
110 2.0274 × 1050 2.7262 × 1068 37.3244
120 5.1302 × 1054 3.2588 × 1074 55.0978
130 1.2839 × 1059 3.8546 × 1080 81.3792
140 3.1697 × 1063 4.5186 × 1086 120.7511
150 7.7889 × 1067 5.2563 × 1092 178.6315
160 1.8954 × 1072 6.0735 × 1098 265.0635
170 4.5932 × 1076 6.9764 × 10104 392.6175
180 1.1074 × 1081 7.9718 × 10110 581.5469
190 2.6450 × 1085 9.0669 × 10116 863.7282
200 6.3268 × 1089 1.0269 × 10123 1280.4536

Now let |α1 − αk| = εrk. If |z − α1| = A2ε and r3 > A3, then

Re
{
(z − α1)P ′(z)

P(z)

}

≥ 1 +
A2

A2 + r2
+
A2(d − 3)
A2 − r3

+
A2

A2 − rd

> 1 +
1
2
+
A2(d − 3)
A2 − r3

+
A2

A2 − b
>

1
2
.

(3.3)

hence by Lemma 2.1α must be either α1 or α2 which is not the case. Therefore r3 ≤ A3, and
if α is α3 we are done. Otherwise, let |z − α1| = A3ε and suppose r4 > A4; then Re{(z −
α1)P ′(z)/P(z)} > 1/2, and by Lemma 2.1 we get a contradiction. Thus we obtain r4 ≤ A4,
and if α is α4 we are done. Continuing this process, finally we get rd ≤ Ad which gives
|z0 − αd| ≤ ε(Ad + y(d − 1)/(y − 1)).

Note that if Ad < b, it is a contradiction to the fact that εrd = |α1 − αd| ≥ bε, which
implies that assumption |z0 − αd| ≥ yε is false. Hence in this case we have |z0 − αd| < yε. The
proof is now complete.

4. Discussion

For a fixed d, M(d, y) depends on only y. If we choose y too large (for instance, y ≥ fd), the
value of M(d, y) is useless when it is compared to fd. So we have to choose y carefully so
thatM(d, y) is minimal as possible. We do not know yet whether there is an explicit formula
for the value y that minimizes M(d, y). Table 1 below shows the values of M(d, y) where
we set y = d1.524d/3−2. It seems that this method can reduce upper bounds for the distance of
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z0 to the root it converges to at least 2d/2 times compared to fd. If we replace fd in (1.1) by
M(d, y), we derive a new upper bound for the number of iterations.
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