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We show that the following K0-monoid properties of C∗-algebras in the class Ω are inherited by
simple unital C∗-algebras in the class TAΩ: (1) pseudocancellation property, (2) weakly divisible,
(3) strongly separative, (4) separative, and (5) preminimal.

1. Introduction

The Elliott conjecture asserts that all nuclear, separable C∗-algebras are classified up to iso-
morphism by an invariant, called the Elliott invariant. A first version of the Elliott conjecture
might be said to have begun with the K-theoretical classification of AF-algebras in [1]. Since
then, many classes of C∗-algebras have been found to be classified by the Elliott invariant.
Among them, one important class is the class of simple unital AH-algebras. A very important
axiomatic version of the classification of AH-algebras without dimension growth was given
by H. Lin. Instead of assuming inductive limit structure, he started with a certain abstract
approximation property and showed that C∗-algebras with this abstract approximation
property and certain additional properties are AH-algebras without dimension growth. More
precisely, Lin introduced the class of tracially approximate interval algebras.

Following the notion of Lin on the tracial approximation by interval algebras, Elliott
and Niu in [2] considered tracial approximation bymore generalC∗-algebras. LetΩ be a class
of unital C∗-algebras. Then, the class of C∗-algebras which can be tracially approximated by
C∗-algebra in Ω, denoted by TAΩ, is defined as follows. A simple unital C∗-algebra A is said
to belong to the class TAΩ, if, for any ε > 0, any finite subset F ⊆ A, and any nonzero element
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a ≥ 0, there exist a nonzero projection p ∈ A and a C∗-subalgebra B of A with 1B = p and
B ∈ Ω, such that

(1) ‖xp − px‖ < ε for all x ∈ F,

(2) pxp ∈ εB for all x ∈ F,

(3) 1 − p is Murray-von Neumann equivalent to a projection in aAa.

The question of the behavior of C∗-algebra properties under passage from a class Ω to
the class TAΩ is interesting and sometimes important. In fact, the property of having tracial
states, the property of being of stable rank one, and the property that the strict order on
projections is determined by traces were used in the proof of the classification theorem in [2],
and [3] by Elliott and Niu.

In this paper, we show that the following K0-monoid properties of C∗-algebras in the
class Ω are inherited by simple unital C∗-algebras in the class TAΩ:

(1) pseudocancellation property,

(2) weakly divisible,

(3) strongly separative,

(4) separative,

(5) preminimal.

2. Preliminaries and Definitions

Let a and b be two positive elements in a C∗-algebraA. We write [a] ≤ [b] (cf. Definition 3.5.2
in [4]), if there exists a partial isometry v ∈ A∗∗ such that, for every c ∈ Her(a), v∗c, cv ∈ A,
vv∗ = Pa, where Pa is the range projection of a inA∗∗ and v∗cv ∈ Her(b). We write [a] = [b] if
v∗Her(a)v = Her(b). Let n be a positive integer. We write n[a] ≤ [b], if there are n mutually
orthogonal positive elements b1, b2, . . . , bn ∈ Her(b) such that [a] ≤ [bi], i = 1, 2, . . . , n.

Let 0 < σ1 < σ2 ≤ 1 be two positive numbers. Define

fσ2
σ1
(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if t ≥ σ2,

t − σ1

σ2 − σ1
, if σ1 ≤ t ≤ σ2,

0, if 0 < t ≤ σ1.

(2.1)

Let Ω be a class of unital C∗-algebras. Then, the class of C∗-algebras which can be
tracially approximated by C∗-algebras in Ω is denoted by TAΩ.

Definition 2.1 (see [2]). A simple unital C∗-algebra A is said to belong to the class TAΩ if, for
any ε > 0, any finite subset F ⊆ A, and any nonzero element a ≥ 0, there exist a nonzero
projection p ∈ A and a C∗-subalgebra B of A with 1B = p and B ∈ Ω, such that

(1) ‖xp − px‖ < ε for all x ∈ F,

(2) pxp ∈ εB for all x ∈ F,

(3) [1 − p] ≤ [a].
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Definition 2.2 (see [5]). Let Ω be a class of unital C∗-algebras. A unital C∗-algebra A is said to
have property (III) if, for any positive numbers 0 < σ3 < σ4 < σ1 < σ2 < 1, any ε > 0, any finite
subset F ⊆ A, any nonzero positive element a, and any integer n > 0, there exist a nonzero
projection p ∈ A, and a C∗-subalgebra B of A with B ∈ Ω and 1B = p, such that

(1) ‖xp − px‖ < ε for all x ∈ F,

(2) pxp ∈ εB for all x ∈ F, ‖pap‖ ≥ ‖a‖ − ε,

(3) n[fσ2
σ1 ((1 − p)a(1 − p))] ≤ [fσ4

σ3 (pap)].

Lemma 2.3 (see [2]). If the class Ω is closed under tensoring with matrix algebras or closed under
taking unital hereditary C∗-subalgebras, then TAΩ is closed under passing to matrix algebras or
unital hereditary C∗-subalgebras.

Theorem 2.4 (see [5]). Let Ω be a class of unital C∗-algebras such that Ω is closed under taking
unital hereditary C∗-subalgebras and closed taking finite direct sums. Let A be a simple unital C∗-
algebra. Then, the following are equivalent:

(1) A ∈ TAΩ,

(2) A has property (III).

Call projections p, q ∈ M∞(A) equivalent, denoted p ∼ q, when there is a partial
isometry v ∈ M∞(A) such that p = v∗v, q = vv∗. The equivalent classes are denoted by
[·], and the set of all these is

V (A) :=
{[

p
] | p = p∗ = p2 ∈ M∞(A)

}
. (2.2)

Addition in V (A) is defined by

[
p
]
+
[
q
]
:=

[
diag

(
p, q

)]
. (2.3)

V (A) becomes an abelian monoid, and we call V (A) the K0-monoid of A.
All abelian monoids have a natural preorder, the algebraic ordering, defined as follow:

if x, y ∈ M, we write x ≤ y if there is a z in M such that x + z = y. In the case of V (A), the
algebraic ordering is given by Murray-von Neumann subequivalence, that is, [p] ≤ [q] if and
only if there is a projection p′ ≤ q such that p ∼ p′. We also write, as is customary, p � q to
mean that p is subequivalent to q.

If x, y ∈ M, we will write x ≤∗ y if there is a nonzero element z in M, such that
x + z = y.

Let us recall that an element u in a monoid M is an order unit provided u/= 0, and, for
any x in M, there is n ∈ N such that x ≤ nu.

Let M be an order monoid and x, y ∈ M. We write x � y if and only if there exists an
integer n > 0 such that x ≤ ny. We write x � y if and only if x + y = y.

We say that a monoidM is conical if x + y = 0 only when x = y = 0. Note that, for any
C∗-algebra A, the monoid V (A) is conical.

We say that an order monoidM has the pseudocancellation property when it satisfies
the statement that, for any a, b, c, d with a + c ≤ b + c, there exists d � c such that a ≤ b + d.

Let M be a monoid. An element x in M will be termed weakly divisible if there exist
a and b in M such that x = 2a + 3b. We say that M is weakly divisible if every element
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is weakly divisible. We say that M has weak divisible for order units if every unit is weakly
divisible.

We say that an order monoid M is said to be strongly separative when it satisfies the
statement that, for any x, y ∈ M such that 2x = x + y, we have x = y.

Definition 2.5 (see [6]). We say that an order monoid M is preminimal when it satisfies both
following statements:

(1) a + d ≤ b + d for any a, b, c, d with a + c ≤ b + c and c ≤ d,

(2) a + d = b + d for any a, b, c, d with a + c = b + c and c ≤ d.

Definition 2.6 (see [6]). We say that an order monoid M is separative when it satisfies both
following statements:

(1) a ≤ b for any a, b, c with a + c ≤ b + c and c � b,

(2) a = b for any a, b, c with a + c = b + c and c � a, b.

3. The Main Results

Theorem 3.1. Let Ω be a class of unital C∗-algebras such that for any B ∈ Ω the K0-monoid V (B)
has the pseudocancellation property. Then, the K0-monoid V (A) has the pseudocancellation property
for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that there exists d � c such that a ≤ b+d for any a, b, c, d ∈ V (A)with
a+ c ≤ b + c. By Lemma 2.3, we may assume that a = [p], b = [q], c = [e] for some projections
p, q, e ∈ proj(A). For F = {p, q, e}, any ε > 0, since A ∈ TAΩ, there exist a projection r ∈ A
and a C∗-subalgebra B ⊆ Awith B ∈ Ω, 1B = r such that

(1) ‖xr − rx‖ < ε for all x ∈ F,

(2) rxr ∈ εB for all x ∈ F.

By (1) and (2), there exist projections p1, q1, e1 ∈ B and p2, q2, e2 ∈ (1 − r)A(1 − r) such
that

∥
∥p − p1 − p2

∥
∥ < ε,

∥
∥q − q1 − q2

∥
∥ < ε, ‖e − e1 − e2‖ < ε. (3.1)

Therefore, we have

[
p
]
=
[
p1
]
+
[
p2
]
,

[
q
]
=
[
q1
]
+
[
q2
]
, [e] = [e1] + [e2],

[
p1
]
+ [e1] ≤

[
q1
]
+ [e1],

[
p2
]
+ [e2] ≤ [e2] +

[
q2
]
.

(3.2)

Since B ∈ Ω and V (B) has the pseudocancellation property, we may assume that there
exists a projection f ∈ A such that [f] � [e1] and [p1] ≤ [q1] + [f] in V (B).

For G = {p2, q2, e2, f}, any ε > 0, since A ∈ TAΩ, there exist a projection s ∈ A and a
C∗-subalgebra C ⊆ A with C ∈ Ω, 1C = s such that

(1′) ‖xs − sx‖ < ε for all x ∈ G,
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(2′) sxs ∈ εC for all x ∈ G,

(3′) [1 − s] ≤ [f].

By (1′) and (2′), there exist projections p3, q3, e3 ∈ C and p4, q4, e4 ∈ (1− s)A(1− s) such
that

∥
∥p2 − p3 − p4

∥
∥ < ε,

∥
∥q2 − q3 − q4

∥
∥ < ε, ‖e2 − e3 − e4‖ < ε. (3.3)

Therefore, we have

[
p2
]
=
[
p3
]
+
[
p4
]
,

[
q2
]
=
[
q3
]
+
[
q4
]
, [e2] = [e3] + [e4],

[
p3
]
+ [e3] ≤ [e3] +

[
q3
]
,

[
p4
]
+ [e4] ≤ [e4] +

[
q4
]
.

(3.4)

Since C ∈ Ω and V (C) has the pseudocancellation property, we may assume that there
exists a projection g ∈ A such that [g] � [e3] and [p3] ≤ [q3] + [g] in V (C).

By (3′), we have [e4] ≤ [1 − s] ≤ [f], there exists a partial isometry v ∈ A such that
vv∗ = e4, v∗v ≤ f .

Therefore, we have

[
p
]
=
[
p1
]
+
[
p3
]
+
[
p4
]

≤ [
q1
]
+
[
f
]
+
[
q3
]
+
[
g
]
+
[
p4
]

≤ [
q1
]
+
[
f − v∗v

]
+ [vv∗] +

[
q3
]
+
[
g
]
+
[
p4
]

≤ [
q1
]
+
[
f − v∗v

]
+
[
q4
]
+ [e4] +

[
g
]
+
[
q3
]

≤ [
q1
]
+
[
f
]
+
[
q3
]
+
[
q4
]
+
[
g
]

≤ [
q
]
+
[
f
]
+
[
g
]
.

(3.5)

Since [f] + [g] + [e1] + [e3] = [e1] + [e3], therefore [f] + [g] + [e] = [e], that is,
[f] + [g] � [e].

Theorem 3.2. Let Ω be a class of unital C∗-algebras such that, for any B ∈ Ω, the K0-monoid V (B)
is weakly divisible. Then, the K0-monoid V (A) is weakly divisible for any simple unital C∗-algebra
A ∈ TAΩ.

Proof. We need to show that there exist a and b in V (A) such that x = 2a + 3b for any
x ∈ V (A). By Lemma 2.3, we may assume that x = [p] for some projection p ∈ proj(A). For
F = {p}, any ε > 0, since A ∈ TAΩ, there exist a projection r ∈ A and a C∗-subalgebra B ⊆ A
with B ∈ Ω, 1B = r such that

(1) ‖pr − rp‖ < ε,

(2) rpr ∈ εB.

By (1) and (2), there exist projections p1 ∈ B and p2 ∈ (1 − r)A(1 − r) such that

∥
∥p − p1 − p2

∥
∥ < ε. (3.6)



6 Abstract and Applied Analysis

Therefore, we have
[
p
]
=
[
p1
]
+
[
p2
]
. (3.7)

Since B ∈ Ω and V (B) is weakly divisible, we may assume that there exist projections
e, f ∈ B such that [p1] = 2[e] + 3[f] in V (B).

For G = {p2, e, f}, any ε > 0, since A ∈ TAΩ, there exist a projection s ∈ A and a
C∗-subalgebra C ⊆ A with C ∈ Ω, 1C = s such that

(1′) ‖xs − sx‖ < ε for all x ∈ G,

(2′) sxs ∈ εC for all x ∈ G,

(3′) 3[1 − s] ≤ [e].

By (1′) and (2′), there exist projections p3 ∈ C and p4 ∈ (1 − s)A(1 − s) such that
∥
∥p2 − p3 − p4

∥
∥ < ε. (3.8)

Therefore, we have

[
p2
]
=
[
p3
]
+
[
p4
]
. (3.9)

Since C ∈ Ω and V (C) is weakly divisible, we may assume that there exist projections
g, h ∈ B such that [p3] = 2[g] + 3[h] in V (C).

By (3′), we have 3[p4] ≤ [e], and there exist a partial isometry v ∈ A such that vv∗ = p4,
v∗v ≤ e.

Therefore, we have
[
p
]
=
[
p1
]
+
[
p3
]
+
[
p4
]

= 2[e] + 3
[
f
]
+ 2

[
g
]
+ 3[h] +

[
p4
]

= 2[e − v∗v] + 2[v∗v] + [vv∗] + 3
[
f
]
+ 2

[
g
]
+ 3[h]

= 2[e − v∗v] + 3[v∗v] + 3
[
f
]
+ 2

[
g
]
+ 3[h]

= 2
(
[e − v∗v] +

[
g
])

+ 3
(
[v∗v] +

[
f
]
+ [h]

)
.

(3.10)

Theorem 3.3. Let Ω be a class of unital C∗-algebras such that, for any B ∈ Ω, the K0-monoid V (B)
is strongly separative. Then, the K0-monoid V (A) is strongly separative for any simple unital C∗-
algebra A ∈ TAΩ.

Proof. We need to show that x = y for any x, y ∈ V (A) with 2x = x + y. By Lemma 2.3, we
may assume that x = [p], y = [q] for some projections p, q ∈ proj(A). For F = {p, q}, any
ε > 0, any positive numbers 0 < σ3 < σ4 < σ1 < σ2 < 1, since A ∈ TAΩ, by Theorem 2.4, there
exist a projection r ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that

(1) ‖xr − rx‖ < ε for all x ∈ F,

(2) rxr ∈ εB for all x ∈ F,

(3) [fσ2
σ1 ((1 − r)p(1 − r))] ≤ [fσ4

σ3 (rpr)].
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By (1) and (2), there exist projections p1, q1 ∈ B and p2, q2 ∈ (1 − r)A(1 − r) such that

∥
∥p − p1 − p2

∥
∥ < ε,

∥
∥q − q1 − q2

∥
∥ < ε. (3.11)

Therefore, we have

[
p
]
=
[
p1
]
+
[
p2
]
,

[
q
]
=
[
q1
]
+
[
q2
]
,

[
p1
]
+
[
p1
]
=
[
p1
]
+
[
q1
]
,

[
p2
]
+
[
p2
]
=
[
p2
]
+
[
q2
]
.

(3.12)

Since B ∈ Ω and V (B) is strongly separative, we have [p1] = [q1] in V (B).
By (3), we have [p2] ≤ [p1], there exists a partial isometry v ∈ A such that v∗v = p2,

vv∗ ≤ p1. Therefore, we have

[
p
]
=
[
p1
]
+
[
p2
]

=
[
p1 − vv∗] + [vv∗] +

[
p2
]

=
[
p1 − vv∗] +

[
p2
]
+
[
p2
]

=
[
p1 − vv∗] +

[
p2
]
+
[
q2
]

=
[
p1
]
+
[
q2
]

=
[
q1
]
+
[
q2
]

=
[
q
]
.

(3.13)

Theorem 3.4. Let Ω be a class of unital C∗-algebras such that, for any B ∈ Ω, the K0-monoid V (B)
is separative. Then, the K0-monoid V (A) is separative for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We prove this theorem by two steps.
Firstly, we need to show that a ≤ b for any a, b, c ∈ V (A)with a+c ≤ b+c and c � b. By

Lemma 2.3, we may assume that a = [p], b = [q], c = [t] for some projections p, q, t ∈ proj(A).
For F = {p, q, t}, any ε > 0, since A ∈ TAΩ, there exist a projection r ∈ A and a C∗-subalgebra
B ⊆ Awith B ∈ Ω, 1B = r such that

(1) ‖xr − rx‖ < ε for all x ∈ F,

(2) rxr ∈ εB for all x ∈ F.

By (1) and (2), there exist projections p1, q1, t1 ∈ B and p2, q2, t2 ∈ (1 − r)A(1 − r) such
that

∥
∥p − p1 − p2

∥
∥ < ε,

∥
∥q − q1 − q2

∥
∥ < ε, ‖t − t1 − t2‖ < ε. (3.14)
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Therefore, we have

[
p
]
=
[
p1
]
+
[
p2
]
,

[
q
]
=
[
q1
]
+
[
q2
]
, [t] = [t1] + [t2],

[
p1
]
+ [t1] ≤

[
q1
]
+ [t1],

[
p2
]
+ [t2] ≤ [t2] +

[
q2
]
,

[t1] �
[
q1
]
, [t2] �

[
q2
]
.

(3.15)

Since B ∈ Ω and V (B) is separative, we have [p1] ≤ [q1] in V (B).
For G = {p1, p2, q2, t2}, any ε > 0, since A ∈ TAΩ, there exist a projection w ∈ A and a

C∗-subalgebra C ⊆ A with C ∈ Ω, 1C = w such that

(1′) ‖xw −wx‖ < ε for all x ∈ G,

(2′) wxw ∈ εC for all x ∈ G,

(3′) 2[1 −w] ≤ [p1].

By (1′) and (2′), there exist projections p3, q3, t3 ∈ C and p4, q4, t4 ∈ (1 − w)A(1 − w)
such that

∥
∥p2 − p3 − p4

∥
∥ < ε,

∥
∥q2 − q3 − q4

∥
∥ < ε, ‖t2 − t3 − t4‖ < ε. (3.16)

Therefore, we have

[
p2
]
=
[
p3
]
+
[
p4
]
,

[
q2
]
=
[
q3
]
+
[
q4
]
, [t2] = [t3] + [t4],

[
p3
]
+ [t3] ≤ [t3] +

[
q3
]
,

[
p4
]
+ [t4] ≤ [t4] +

[
q4
]
,

[t3] �
[
q3
]
, [t4] �

[
q4
]
.

(3.17)

Since C ∈ Ω and V (C) is separative, we have [p3] ≤ [q3] in V (C).
By (3′), we have [t4] ≤ [1 − w]<∗[p1], there exists a partial isometry v ∈ A such that

vv∗ = t4, v∗v ≤ p1.
Therefore, we have

[
p
]
=
[
p1
]
+
[
p3
]
+
[
p4
]

≤ [
p1 − v∗v

]
+ [vv∗] +

[
p3
]
+
[
p4
]

≤ [
p1 − v∗v

]
+
[
q4
]
+
[
p3
]
+ [t4]

≤ [
p1
]
+
[
q3
]
+
[
q4
]

≤ [
q1
]
+
[
q3
]
+
[
q4
]

=
[
q
]
.

(3.18)

Secondly, with the same methods and technique, we can show that a = b for any
a, b, c ∈ V (A)with a + c = b + c and c � a, b.
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Theorem 3.5. Let Ω be a class of unital C∗-algebras such that, for any B ∈ Ω, the K0-monoid V (B)
is a preminimal monoid. Then, the K0-monoid V (A) is a preminimal monoid for any simple unital
C∗-algebra A ∈ TAΩ.

Proof. We prove this theorem by two steps.
Firstly, we need to show that a + d ≤ b + d for any a, b, c, d ∈ V (A) with a + c ≤ b + c

and c ≤ d. By Lemma 2.3, we may assume that a = [p], b = [q], c = [e], d = [f] for some
projections p, q, e, f ∈ proj(A). For F = {p, q, e, f}, any ε > 0, since A ∈ TAΩ, there exist a
projection r ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that

(1) ‖xr − rx‖ < ε for all x ∈ F,

(2) rxr ∈ εB for all x ∈ F.

By (1) and (2), there exist projections p1, q1, e1, f1 ∈ B and p2, q2, e2, f2 ∈ (1 − r)A(1 − r)
such that

∥
∥p − p1 − p2

∥
∥ < ε,

∥
∥q − q1 − q2

∥
∥ < ε,

‖e − e1 − e2‖ < ε,
∥
∥f − f1 − f2

∥
∥ < ε.

(3.19)

Therefore, we have

[
p
]
=
[
p1
]
+
[
p2
]
,

[
q
]
=
[
q1
]
+
[
q2
]
,

[e] = [e1] + [e2],
[
f
]
=
[
f1
]
+
[
f2
]
,

[
p1
]
+ [e1] ≤

[
q1
]
+ [e1],

[
p2
]
+ [e2] ≤ [e2] +

[
q2
]
,

[e1] ≤
[
f1
]
, [e2] ≤

[
f2
]
.

(3.20)

Since B ∈ Ω and V (B) is preminimal, we have [p1] + [f1] ≤ [q1] + [f1] in V (B).
Since [e2] ≤ [f2], there exists a partial isometry v ∈ A such that vv∗ = e2, v

∗v ≤ f2.
Therefore, we have

[
p
]
+
[
f
]
=
[
p1
]
+
[
p2
]
+
[
f1
]
+
[
f2
]

=
[
p1
]
+
[
p2
]
+
[
f1
]
+
[
f2 − v∗v

]
+ [v∗v]

≤ [
p1
]
+
[
q2
]
+
[
f1
]
+
[
f2 − v∗v

]
+ [e2]

≤ [
p1
]
+
[
q2
]
+
[
f1
]
+
[
f2
]

≤ [
q1
]
+
[
q2
]
+
[
f1
]
+
[
f2
]

=
[
q
]
+
[
f
]
.

(3.21)

Secondly, with the same methods and technique, we can show that a + c = b + c for any
a, b, c, d ∈ V (A) with a + d = b + d and c ≤ d.
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