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Firstly, an inequality for vector-valued meromorphic functions is established which extend a
corresponding inequality of Milloux for meromorphic scalar-valued function (1946). As an
application, the relationship between the characteristic function of a vector-valued meromorphic
function f and its derivative f ′ is studied, results are obtained to extend some related results for
meromorphic scalar-valued function of Weitsman (1969) and Singh and Gopalakrishna (1971).

1. Introduction of Vector-Valued Meromorphic Function

In 1980s, Ziegler [1] established Nevanlinna’s theory for the vector-valued meromorphic
function in finite dimensional spaces. After Ziegler some works related to vector-valued
meromorphic function were done in 1990s [2–4]. In this section, we shall introduce the
following fundamental notations and results of vector-valued Nevanlinna theory which were
quoted from Ziegler [1].

We denote by C
n the usual n dimensional complex Euclidean space with the

coordinates w = (w1, w2, . . . , wn), the Hermitian scalar product

〈v,w〉 = v1w1 + v2w2 + · · · + vnwn, (v,w ∈ C
n), (1.1)

and the distance

‖v −w‖ = +〈v −w,v −w〉1/2. (1.2)
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Let

w1 = f1(z), w2 = f2(z), . . . , wn = fn(z) (1.3)

be n ≥ 1 complex valued functions of the complex variable z, which are meromorphic and
not all constant in the Gaussian plane C

1 = C, or in a finite disc

CR = {|z| < R} ⊂ C, 0 < R < +∞. (1.4)

Thus in CR, 0 < R ≤ +∞ (we put C+∞ = C), a vector-valued meromorphic function

f(z) =
(
f1(z), f2(z), . . . , fn(z)

)
(1.5)

is given, which does not reduce to the constant zero vector 0 = (0, 0, . . . , 0). The jth derivative
j = 1, 2, . . . of f(z) are defined by

f (j)(z) =
(
f
(j)
1 (z), f (j)

2 (z), . . . , f (j)
n (z)

)
. (1.6)

For such a function, the notations “zero,” “pole,” and “multiplicity” are defined as
in the scalar case n = 1 of only one meromorphic function f1(z). More explicitly, in the
punctured vicinity of each point z0 ∈ CR, the vector function w = f(z) can developed into a
Laurent series

f(z) = ck0(z − z0)k0 + ck0+1(z − z0)k0+1 + · · · , (1.7)

where the coefficients are vectors

ck =
(
c1k, c

2
k, . . . , c

n
k

)
∈ C

n, ck0 /= (0, 0, . . . , 0). (1.8)

In order to introduce the Nevanlinna theory of vector-valued meromorphic function,
we will denote by ”∞” the ideal element of the Aleksandrov one-point compactification of
C

n (the two real infinities will be denoted by +∞ and −∞, resp.). Now, if k0 ≤ 0 in the above
Laurent expansion, then z0 will be called a pole or an ∞-point of f(z) of multiplicity −k0; in
such a point z0 at least one of the meromorphic component functions fj(z) has a pole of this
multiplicity in the ordinary sense of function theory, so that in z0 itself f(z) is not defined. If
k0 > 0 in Laurent expansion, then z0 is called a zero of f(z) of multiplicity k0; in such a point
z0, all component functions fj(z) vanish, each with at least this multiplicity.
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Let n(r, f) or n(r,∞) denote the number of poles of f(z) in |z| ≤ r and n(r, a) denote
the number of a-points of f(z) in |z| ≤ r, counting with multiplicities. Define the volume
function associated with vector-valued meromorphic function f(z),

V (r,∞) = V
(
r, f

)
=

1
2π

∫

Cr

log
∣∣
∣
∣
r

ξ

∣∣
∣
∣Δ log

∥
∥f(ξ)

∥
∥dx ∧ dy, ξ = x + iy

V (r, a) = V

(
r,

1
f − a

)
=

1
2π

∫

Cr

log
∣
∣
∣
∣
r

ξ

∣
∣
∣
∣Δ log

∥
∥f(ξ) − a

∥
∥dx ∧ dy, ξ = x + iy

(1.9)

and the counting function of finite or infinite a-points by

N
(
r, f

)
= n

(
0, f

)
log r +

∫ r

0

n
(
t, f

) − n
(
0, f

)

t
dt,

N(r,∞) = n(0,∞) log r +
∫ r

0

n(t,∞) − n(0,∞)
t

dt,

N(r, a) = n(0, a) log r +
∫ r

0

n(t, a) − n(0, a)
t

dt,

(1.10)

respectively. Next, we define

m(r,∞) = m
(
r, f

)
=

1
2π

∫2π

0
log+

∥∥∥f
(
reiθ

)∥∥∥dθ,

m(r, a) =
1
2π

∫2π

0
log+

1
∥∥f

(
reiθ

) − a
∥∥dθ,

T
(
r, f

)
= m

(
r, f

)
+N

(
r, f

)
.

(1.11)

Let n(r, f) or n(r,∞) denote the number of poles of f(z) in |z| ≤ r and n(r, a) denote the
number of a-points of f(z) in |z| ≤ r, ignoring multiplicities. Define the counting function of
finite or infinite a-points by

N
(
r, f

)
= n

(
0, f

)
log r +

∫ r

0

n
(
t, f

) − n
(
0, f

)

t
dt,

N(r,∞) = n(0,∞) log r +
∫ r

0

n(t,∞) − n(0,∞)
t

dt,

N(r, a) = n(0, a) log r +
∫ r

0

n(t, a) − n(0, a)
t

dt,

(1.12)

respectively.
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If f(z) is a vector-valued meromorphic function in the whole complex plane, then the
order and the lower order of f(z) are defined by

λ
(
f
)
= lim sup

r→∞

log T
(
r, f

)

log r
,

μ
(
f
)
= lim inf

r→∞
log T

(
r, f

)

log r
.

(1.13)

We call the vector-valued meromorphic function f admissible if

lim sup
r→+∞

T
(
r, f

)

log r
= +∞. (1.14)

Definition 1.1. For a meromorphic function f(z) (vector-valued or scalar-valued), we denote
by S(r, f) any quantity such that

S
(
r, f

)
= o

(
T
(
r, f

))
, r −→ +∞ (1.15)

without restriction if f(z) is of finite order and otherwise except possibly for a set of values
of r of finite linear measure.

Definition 1.1 quoted from [2]. In [1], Ziegler established the following first main
theorem, logarithmic derivative lemma, and deficient values theorem for meromorphic
vector function.

Theorem A. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be a meromorphic vector function in CR. Then for
0 < r < R ≤ +∞, a ∈ C

n, f(z)/≡a, then

T
(
r, f

)
= V (r, a) +N(r, a) +m(r, a) +O(1). (1.16)

Theorem B. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be a nonconstant meromorphic vector function in
C. Then

1
2π

∫2π

0
log+

∥∥f ′(reiθ
)∥∥

∥∥f
(
reiθ

) − a
∥∥dθ = S

(
r, f

)
, a ∈ C

n. (1.17)

By the second main theorem, Ziegler [1] studies the following deficiency theorem for
meromorphic vector function. For any vector a ∈ C

n, we define the number δ(a) = δ(a, f) by
putting

δ(a) = δ
(
a, f

)
= lim inf

r→+∞
m(r, a)
T
(
r, f

) = 1 − lim sup
r→+∞

V (r, a) +N(r, a)
T
(
r, f

) ,

δ(∞) = δ
(∞, f

)
= lim inf

r→+∞
m
(
r, f

)

T
(
r, f

) = 1 − lim sup
r→+∞

N
(
r, f

)

T
(
r, f

) ,

(1.18)
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and Θ(a) = Θ(a, f) by putting

Θ(a) = Θ
(
a, f

)
= 1 − lim sup

r→+∞

V (r, a) +N(r, a)
T
(
r, f

) ,

Θ(∞) = Θ
(∞, f

)
= 1 − lim sup

r→+∞

N
(
r, f

)

T
(
r, f

) ,

(1.19)

Theorem C. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function in
C. Then the set {a ∈ C

n ∪ {∞}, δ(a) > 0} is at most countable and summing over all such points we
have

∑

a

δ(a) ≤
∑

a

Θ(a) ≤ 2. (1.20)

2. A Fundamental Inequality of Meromorphic Vector Function

For meromorphic scalar-valued function f(z), Milloux [5] has proved the following theorem.

TheoremD. If f(z) is a nonconstant meromorphic scalar-valued function in Gaussian complex plane
C and if ai, i = 1, 2, . . . , q, are distinct elements of C (where q is any positive integer), then

qT
(
r, f

) ≤ T
(
r, f ′) +

q∑

i=1

N(r, ai) + S
(
r, f

)
. (2.1)

For some alternative proofs of Theorem D, see [6] or [7]. It is natural to consider
whether there exists a similar results if meromorphic scalar-valued function f(z) is replaced
by meromorphic vector-valued function f(z). In this section, the main contribution is to
extend Theorem D to vector-valued meromorphic function by referring the method of [1, 7].

Theorem 2.1. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function in
C and if a[j], j = 1, 2, . . . , q, are distinct elements of C

n (where q is any positive integer), then

qT
(
r, f

) ≤ T
(
r, f ′) +

q∑

j=1

(
N
(
r, a[j]

)
+ V

(
r, a[j]

))
+ S

(
r, f

)
. (2.2)

Proof. Put

F(z) =
q∑

j=1

1
∥∥f(z) − a[j]

∥∥ . (2.3)

We can get

1
2π

∫2π

0
log+F

(
reiθ

)
dθ ≤ m

(
r, 0, f ′) +

1
2π

∫2π

0
log+

{
F
(
reiθ

)∥∥∥f ′
(
reiθ

)∥∥∥
}
dθ. (2.4)
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Put

δ = min
i /= j

∥
∥
∥a[i] − a[j]

∥
∥
∥. (2.5)

Let for the moment μ ∈ {1, 2, . . . , q} be fixed. Then we get in every point where

∥
∥
∥f(z) − a[μ]

∥
∥
∥ <

δ

2q
≤ δ

4
, (2.6)

the inequality

∥
∥
∥f(z) − a[ν]

∥
∥
∥ ≥

∥
∥
∥a[μ] − a[ν]

∥
∥
∥ −

∥
∥
∥f(z) − a[μ]

∥
∥
∥ ≥ 3δ

4
, (2.7)

for μ/= ν. Therefore, the set of points on ∂Cr which is determined by (2.6) is either empty or
any two such sets for different μ have empty intersection. In any case,

1
2π

∫2π

0
log+F

(
reiθ

)
dθ ≥ 1

2π

q∑

μ=1

∫

‖f(z)−a[μ]‖<δ/2q, |z|=r
log+F

(
reiθ

)
dθ

≥ 1
2π

q∑

μ=1

∫

‖f(z)−a[μ]‖<δ/2q, |z|=r
log+

1
∥∥f

(
reiθ

) − a[μ]
∥∥dθ.

(2.8)

Because of

1
2π

∫

‖f(z)−a[μ]‖<δ/2q, |z|=r
log+

1
∥∥f

(
reiθ

) − a[μ]
∥∥dθ

= m
(
r, a[μ]

)
− 1
2π

∫

‖f(z)−a[μ]‖≥δ/2q, |z|=r
log+

1
∥∥f

(
reiθ

) − a[μ]
∥∥dθ

≥ m
(
r, a[μ]

)
− log+

2q
δ
,

(2.9)

it follows that

1
2π

∫2π

0
log+F

(
reiθ

)
dθ ≥

q∑

μ=1

m
(
r, a[μ]

)
− log+

2q
δ
, (2.10)

so that by (2.4)

q∑

μ=1

m
(
r, a[μ]

)
≤ m

(
r, 0, f ′) +

1
2π

∫2π

0
log+

{
F
(
reiθ

)∥∥∥f ′
(
reiθ

)∥∥∥
}
dθ + log+

2q
δ
. (2.11)
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Thus by Theorem B, we have

q∑

μ=1

m
(
r, a[μ]

)
≤ m

(
r, 0, f ′) + S

(
r, f

)
. (2.12)

It follows from Theorem A that

m
(
r, 0, f ′) +N

(
r, 0, f ′) + V

(
r, 0, f ′) = T

(
r, f ′) +O(1). (2.13)

Thus from (2.12) and (2.13), we deduce

q∑

μ=1

m
(
r, a[μ]

)
≤ T

(
r, f ′) −N

(
r, 0, f ′) + S

(
r, f

)
. (2.14)

Adding
∑q

μ=1N(r, a[μ]) to both sides,

q∑

μ=1

T

(

r,
1

f − a[μ]

)

≤ T
(
r, f ′) +

q∑

μ=1

N
(
r, a[μ]

)
−N

(
r, 0, f ′) + S

(
r, f

)

= T
(
r, f ′) +

q∑

μ=1

N
(
r, a[μ]

)
−N0

(
r, 0, f ′) + S

(
r, f

)
,

(2.15)

where N0(r, 0, f ′) is formed with the zeros of f ′ which are not zeros of any of f − a[μ], (i =
1, 2, . . . , q). Since N0(r, 0, f ′) ≥ 0, we have

q∑

μ=1

T

(

r,
1

f − a[μ]

)

≤ T
(
r, f ′) +

q∑

μ=1

N
(
r, a[μ]

)
+ S

(
r, f

)
. (2.16)

Since

T

(

r,
1

f − a[μ]

)

+ V
(
r, a[μ]

)
= T

(
r, f

)
+O(1), (2.17)

it follows that

qT
(
r, f

) ≤ T
(
r, f ′) +

q∑

j=1

(
N
(
r, a[j]

)
+ V

(
r, a[j]

))
+ S

(
r, f

)
. (2.18)
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3. Characteristic Function of Derivative of
Meromorphic Vector Function

Let f(z) be a meromorphic scalar-valued function in C. The characteristic function of
derivative of f(z) with

∑
aδ(a) = 2 has been studied by Edrei [8], Shan and Singh [9], Singh

and Gopalakrishna [7], Singh and Kulkarni [10] and Weitsman [11]. For example, Edrei [8]
and Weitsman [11] have proved the following theorem.

Theorem E. Let f(z) be a transcendental meromorphic scalar-valued function of finite order and
assume

∑
a∈C

δ(a) = η ≥ 1 and δ(∞) = 2 − η. Then

T
(
r, f ′) ∼ ηT

(
r, f

)
, r −→ +∞. (3.1)

If
∑

aδ(a) = 2 is replaced by
∑

aΘ(a) = 2, Singh and Gopalakrishna [7] and Singh and
Kulkarni [10] have proved the following theorem.

Theorem F. Let f(z) be a transcendental meromorphic scalar-valued function of finite order and
assume

∑
aΘ(a) = 2. Then

lim
r→+∞

T
(
r, f ′)

T
(
r, f

) = 2 −Θ(∞),

lim
r→+∞

N(r, a)
T
(
r, f

) = 1 −Θ(a)

(3.2)

for every a ∈ C ∪ {∞}.

It is natural to consider whether there exists a similar results if meromorphic scalar-
valued function f(z) is replaced bymeromorphic vector-valued function f(z). In this section,
the main purpose is to extend the above theorems to vector-valued meromorphic function by
referring the method of [1, 7].

Theorem 3.1. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function of
finite order in C and assume

∑
aΘ(a) = 2. Then

lim
r→+∞

T
(
r, f ′)

T
(
r, f

) = 2 −Θ(∞),

lim
r→+∞

N
(
r, f

)

T
(
r, f

) = 1 −Θ(∞), lim
r→+∞

N(r, a) + V (r, a)
T
(
r, f

) = 1 −Θ(a)

(3.3)

for every a ∈ C
n.
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Proof. Now, basic estimates in vector-valued Nevanlinna theory [1] or [4] yields

T
(
r, f ′) = m

(
r, f ′) +N

(
r, f ′)

= m

(
r,
ff ′

f

)
+N

(
r, f ′)

≤ m

(
r,
f ′

f

)
+m

(
r, f

)
+N

(
r, f

)
+N

(
r, f

)

≤ T
(
r, f

)
+N

(
r, f

)
+m

(
r,
f ′

f

)
.

(3.4)

By Theorem B and the above inequality, we have

lim sup
r→+∞

T
(
r, f ′)

T
(
r, f

) ≤ 2 −Θ(∞). (3.5)

Let {a[j]} be a sequence of distinct vector in C
n containing all the vector of δ(a[j]) > 0.

From Theorem 2.1, for any positive integer q, we have

qT
(
r, f

) ≤ T
(
r, f ′) +

q∑

j=1

(
N
(
r, a[j]

)
+ V

(
r, a[j]

))
+ S

(
r, f

)
. (3.6)

Hence

q ≤ lim inf
r→+∞

T
(
r, f ′)

T
(
r, f

) +
q∑

j=1

lim sup
r→+∞

N
(
r, a[j]) + V

(
r, a[j])

T
(
r, f

) + lim sup
r→+∞

S
(
r, f

)

T
(
r, f

)

= lim inf
r→+∞

T
(
r, f ′)

T
(
r, f

) +
q∑

j=1

{
1 −Θ

(
a[j]

)}
+ lim sup

r→+∞

S
(
r, f

)

T
(
r, f

) .

(3.7)

Thus

lim inf
r→+∞

T
(
r, f ′)

T
(
r, f

) ≥
q∑

j=1

Θ
(
a[j]

)
. (3.8)

Since q was arbitrary, we have

2 −Θ(∞) =
∑

a∈Cn

Θ(a) ≤ lim inf
r→+∞

T
(
r, f ′)

T
(
r, f

) . (3.9)
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This and (3.5) yield

lim
r→+∞

T
(
r, f ′)

T
(
r, f

) = 2 −Θ(∞). (3.10)

Let a ∈ C
n ∪ {∞} and {a[i]}+∞i=1 an infinite sequence of distinct elements of C

n ∪ {∞}
which includes every b ∈ C

n ∪ {∞} satisfying b /=a and Θ(b) > 0. Then

+∞∑

i=1

Θ
(
a[i]

)
=

∑

b∈Cn∪{∞}, b /=a

Θ(b) = 2 −Θ(a). (3.11)

Let q be any integer ≥ 3. From Generalized Second Main Theorem (see [1], Page 126),
we have

(
q − 2

)
T
(
r, f

)
=

q−1∑

i=1

(
N
(
r, a[i]

)
+ V

(
r, a[i]

))
+N

(
r, f

)
+ S

(
r, f

)
. (3.12)

Hence

q − 2 ≤
q−1∑

i=1

{
1 −Θ

(
a[i]

)}
+ lim inf

r→+∞
N
(
r, f

)

T
(
r, f

) . (3.13)

Thus

q−1∑

i=1

Θ
(
a[i]

)
− 1 ≤ lim inf

r→+∞
N
(
r, f

)

T
(
r, f

) . (3.14)

Since this holds for all q ≥ 3, letting q → +∞ and combining (3.11), we get

1 −Θ(∞) =
+∞∑

i=1

Θ
(
a[i]

)
− 1 ≤ lim inf

r→+∞
N
(
r, f

)

T
(
r, f

) ≤ lim sup
r→+∞

N
(
r, f

)

T
(
r, f

) = 1 −Θ(∞). (3.15)

So

lim
r→+∞

N
(
r, f

)

T
(
r, f

) = 1 −Θ(∞). (3.16)

For every a ∈ C
n, Let q be any integer ≥ 3. From Generalized Second Main Theorem

(see [1], Page 126), we have

(
q − 2

)
T
(
r, f

)
=

q−2∑

i=1

(
N
(
r, a[i]

)
+ V

(
r, a[i]

))
+
(
N(r, a) + V (r, a)

)
+N

(
r, f

)
+ S

(
r, f

)
.

(3.17)
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Hence

q − 2 ≤
q−2∑

i=1

{
1 −Θ

(
a[i]

)}
+ (1 −Θ(∞)) + lim inf

r→+∞
N(r, a) + V (r, a)

T
(
r, f

) . (3.18)

Thus

q−2∑

i=1

Θ
(
a[i]

)
+ Θ(∞) − 1 ≤ lim inf

r→+∞
N(r, a) + V (r, a)

T
(
r, f

) . (3.19)

Since this holds for all q ≥ 3, letting q → +∞ and combining (3.11), we get

1 −Θ(a) =
+∞∑

i=1

Θ
(
a[i]

)
− 1 ≤ lim inf

r→+∞
N(r, a) + V (r, a)

T
(
r, f

)

≤ lim sup
r→+∞

N(r, a) + V (r, a)
T
(
r, f

) = 1 −Θ(a).

(3.20)

So

lim
r→+∞

N(r, a) + V (r, a)
T
(
r, f

) = 1 −Θ(a). (3.21)

From Theorem 3.1, we have the following corollary

Corollary 3.2. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function of
finite order in C and assume

∑
a∈CnΘ(a) = 2. Then

T
(
r, f ′) ∼ 2T

(
r, f

)
, r −→ +∞. (3.22)

Corollary 3.3. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function of
finite order in C and assume

∑
a∈CnΘ(a) = η ≥ 1 and δ(∞) = 2 − η. Then

T
(
r, f ′) ∼ ηT

(
r, f

)
, r −→ +∞. (3.23)

Corollary 3.4. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function of
finite order in C and assume

∑
aδ(a) = 2. Then

lim
r→+∞

T
(
r, f ′)

T
(
r, f

) = 2 − δ(∞),

lim
r→+∞

N
(
r, f

)

T
(
r, f

) = 1 − δ(∞), lim
r→+∞

N(r, a) + V (r, a)
T
(
r, f

) = 1 − δ(a)

(3.24)

for every a ∈ C
n.
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Proof. Since δ(a) ≤ Θ(a) for every a ∈ C
n ∪{∞} and Theorem C, it follows that, if

∑
aδ(a) = 2,

then
∑

aΘ(a) = 2 and δ(a) = Θ(a) for every a ∈ C
n ∪ {∞}. Hence

lim
r→+∞

T
(
r, f ′)

T
(
r, f

) = 2 − δ(∞) (3.25)

follows by Theorem 3.1.
Now, for every a ∈ C

n,

lim
r→+∞

N(r, a) + V (r, a)
T
(
r, f

) = 1 −Θ(a) = 1 − δ(a). (3.26)

Further

N(r, a) ≤ N(r, a). (3.27)

Hence

1 − δ(a) ≤ lim
r→+∞

N(r, a) + V (r, a)
T
(
r, f

)

≤ lim inf
r→+∞

N(r, a) + V (r, a)
T
(
r, f

)

≤ lim sup
r→+∞

N(r, a) + V (r, a)
T
(
r, f

)

= 1 − δ(a).

(3.28)

Similarly,

lim
r→+∞

N
(
r, f

)

T
(
r, f

) = 1 −Θ(∞) = 1 − δ(∞). (3.29)

Further

N(r,∞) ≤ N(r,∞). (3.30)

Hence

1 − δ(∞) ≤ lim
r→+∞

N(r,∞)
T
(
r, f

) ≤ lim inf
r→+∞

N(r,∞)
T
(
r, f

) ≤ lim sup
r→+∞

N(r,∞)
T
(
r, f

) = 1 − δ(∞). (3.31)

From Corollary 3.4, we have the following corollary.
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Corollary 3.5. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function of
finite order in C and assume

∑
a∈Cnδ(a) = 2. Then

T
(
r, f ′) ∼ 2T

(
r, f

)
, r −→ +∞. (3.32)

Corollary 3.6. Let f(z) = (f1(z), f2(z), . . . , fn(z)) be an admissible meromorphic vector function of
finite order in C and assume

∑
a∈Cnδ(a) = η ≥ 1 and δ(∞) = 2 − η. Then

T
(
r, f ′) ∼ ηT

(
r, f

)
, r −→ +∞. (3.33)
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[5] H. Milloux, “Les dérivées des fonctions méromorphes et la théorie des défauts,” Annales Scientifiques
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