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This paper is concerned with distribution of maps with transversal homoclinic orbits in a continu-
ousmap space, which consists of continuousmaps defined in a closed and bounded set of a Banach
space. By the transversal homoclinic theorem, it is shown that the map space contains a dense set
of maps that have transversal homoclinic orbits and are chaotic in the sense of both Li-Yorke and
Devaney with positive topological entropy.

1. Introduction

Distribution of a set of maps with some dynamical properties in some continuous map space
is a very interesting topic. In the 1960s, Smale [1] studied density of hyperbolicity. Some
scholars believed that hyperbolic systems are dense in spaces of all dimensions, but it was
shown that the conjecture is false in the late 1960s for diffeomorphisms on manifolds of
dimension ≥2. The problem whether hyperbolic systems are dense in the one-dimension case
was studied by many scholars. It was solved in the C1 topology by Jakobson [2], a partial
solution was given in the C2 topology by Blokh and Misiurewicz [3], and C2 density was
finally proved by Shen [4]. In 2007, Kozlovki et al. got the result in Ck topology; that is,
hyperbolic (i.e., Axiom A) maps are dense in the space of Ck maps defined in a compact
interval or circle, k = 1, 2, . . . ,∞, ω [5]. At the same time, some other scholars considered
the distribution of hyperbolic diffeomorphisms in Diff(M), where M is a manifold. Just
like the work of Smale, Palis [6, 7] gave the following conjecture: (1) any f ∈ Diff(M)
can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a
homoclinic bifurcation (tangency or cycle), (2) any diffeomorphism can be Cr approximated
by a Morse-Smale one or by one exhibiting transversal homoclinic orbit. Later, it was shown
that the conjecture (1) holds for C1 diffeomorphisms of surfaces [8]. And some good results
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have been obtained, such as any diffeomorphism can be C1 approximated by a Morse-Smale
one or by one displaying a transversal homoclinic orbit [9], any diffeomorphism can be C1

approximated by one that exhibits either a homoclinic tangency or a heterodimensional cycle
or by one that is essentially hyperbolic [10].

In 1963, Smale gave thewell-known Smale-Birkhoff homoclinic theorem for diffeomor-
phisms [11], from which one can easily know that if a diffeomorphism F on a manifold M

has a transversal homoclinic orbit, then there exists an integer k > 0 such that Fk is chaotic in
the sense of both Li-Yorke and Devaney. Later, in 1986, Hale and Lin introduced a generalized
definition of transversal homoclinic orbit for continuous maps and got the generalized Smale-
Birkhoff homoclinic theorem, that is, a transversal homoclinic orbit implies chaos in the sense
of both Li-Yorke and Devaney for continuous maps in Banach spaces [12]. In the meanwhile,
some scholars studied the density of maps which are chaotic in the sense of Li-Yorke or
Devaney. In particular, some results have been obtained in one-dimensional maps (cf. [13–
15]).

Since 2004, Shi, Chen, and Yu extended the result about turbulent maps for one-
dimensional maps introduced by Block andCoppel in 1992 [16] to maps inmetric spaces. This
map is termed by a new terminology: coupled-expanding map. Under certain conditions,
the authors showed that a strictly coupled-expanding map is chaotic [17, 18]. Applying
this coupled-expansion theory, they extended the criterion of chaos induced by snap-back
repellers for finite-dimensional maps, introduced by Marotto in 1978 [19], to maps in metric
spaces [17, 20, 21]. Recently, we studied the distribution of chaotic maps in continuous map
spaces, in which maps are defined in general Banach spaces and finite-dimensional normed
spaces, and obtained that the following several types of chaotic maps are dense in some con-
tinuous map spaces: (1)maps that are chaotic in the sense of both Li-Yorke and Devaney; (2)
maps that are strictly coupled-expanding; (3) maps that have nondegenerated and regular
snap-back repeller; (4) maps that have nondegenerate and regular homoclinic orbit to a
repeller [22].

In the present paper, we will construct a set of continuous chaotic maps with gener-
alized transversal homoclinic orbits, and show that the set is dense in the continuous map
space. The method used in the present paper is motivated by the idea in [22].

This paper is organized as follows. In Section 2, we first introduce some notations
and basic concepts including the Li-Yorke and Devaney chaos, hyperbolic fixed point, and
transversal homoclinic orbit, and then give a useful lemma. In Section 3, we pay our attention
to distribution of maps with generalized transversal homoclinic orbits in a continuous map
space, in which every map is defined in a closed, bounded, and convex set or a closed
bounded set in a general Banach space. Constructing a continuous map with a generalized
transversal homoclinic orbit, we simultaneously show the density of maps which are chaotic
in the sense of both Li-Yorke and Devaney in the map space.

2. Preliminaries

In this section, some notations and basic concepts are first introduced, including Li-Yorke and
Devaney chaos, hyperbolic fixed point, and transversal homoclinic orbit. And then a useful
lemma is given.

First, we give two definitions of chaos which will be used in the paper.
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Definition 2.1 (see [23]). Let (X, d) be a metric space, f : X → X a map, and S a set of X with
at least two points. Then, S is called a scrambled set of f if, for any two distinct points x, y ∈ S,

lim inf
n→∞

d
(
fn(x), fn(y

))
= 0, lim sup

n→∞
d
(
fn(x), fn(y

))
> 0. (2.1)

The map f is said to be chaotic in the sense of Li-Yorke if there exists an uncountable scram-
bled set S of f .

Definition 2.2 (see [24]). Let (X, d) be a metric space. A map f : V ⊂ X → V is said to be cha-
otic on V in the sense of Devaney if

(i) the periodic points of f in V are dense in V ;

(ii) f is topologically transitive in V ;

(iii) f has sensitive dependence on initial conditions in V .

Now, we give the definition of hyperbolic fixed point.

Definition 2.3 (see [25]). Let X be a Banach space, U ⊂ X be a set, and F : U ⊂ X → X be
a map. Assume that z is a fixed point of F, F is continuously differentiable in some neigh-
borhood of z, and denote DF(z) the Fréchet derivative of F at z. The fixed point z is called
hyperbolic if σ(DF(z)) ∩ {λ ∈ C : |λ| = 1} = ∅, where σ(A) denotes the spectrum of a linear
operator A. The hyperbolic fixed point z is called a saddle point if σ(DF(z)) ∩ {λ ∈ C : |λ| >
1}/= ∅ and σ(DF(z)) ∩ {λ ∈ C : |λ| < 1}/= ∅.

If F is invertible, then for any p0 ∈ X, the setO+
F(p0) := {Fk(p0) : k ≥ 0} is said to be the

forward orbit of F from p0, the set O−
F(p0) := {Fk(p0) : k ≤ 0} is said to be the backward orbit

of F from p0. Since it is not required that F is invertible in this paper, a backward orbit of p0 is
a set O−

F(p0) = {pj : j ≤ 0} with pj+1 = F(pj), j ≤ −1, which may not exist, or exist but may not
be unique. A whole orbit of p0 is the union O+

F(p0) ∪ O−
F(p0), denoted by OF(p0) in the case

that it has a backward orbit O−
F(p0). The stable set W

s(z, F) and the unstable set Wu(z, F) of
a hyperbolic fixed point z of F are defined by

Ws(z, F) :=
{
p0 ∈ X: the forward orbit

{
pj
}+∞
j=0 of F from p0 such that,

pj −→ z as j −→ +∞
}
,

Wu(z, F) :=
{
p0 ∈ X: there exists a backward orbit

{
p−j

}+∞
j=0 of F

from p0 such that p−j −→ z as j −→ +∞
}
,

(2.2)

respectively. The local stable and unstable sets are defined by

Ws
loc(z,U, F) := Ws(z, F) ∩U, Wu

loc(z,U, F) := Wu(z, F) ∩U, (2.3)

respectively, where U is some neighborhood of z. If U = B(z, r) or B(z, r) for some r > 0,
then the corresponding local stable and unstable sets of F are denoted by Ws

loc(z, r, F)
and Wu

loc(z, r, F), respectively. By the Stable Manifold Theorem [26], if F is continuously
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differentiable in some neighborhood of a saddle point z, then there exists a neighborhood
U of z such that the corresponding local stable and unstable set of z are submanifolds of X,
respectively.

In the following, we first give the definition that two manifolds intersect transversally
and then give the definition of transversal homoclinic orbit for continuous maps.

Definition 2.4 (see [25]). Two submanifolds V and W in a manifold M are transverse (in M)
provided for any point q ∈ V ∩ W , we have that TqV + TqW = TqM, where TqV and TqW
denote the tangent spaces of V and W at q, respectively, and “+” means the sum of the two
subspaces (this allows for the possibility that V ∩W = ∅).

Remark 2.5. If M = Rn, then V and W in M are transverse (in M) provided for any point
q ∈ V ∩ W , we have that TqV + TqW = Rn. Obviously, if dim TqV + dim TqW = n, then the
sum of the two subspaces TqV and TqW is a direct one, denoted by ⊕.

Definition 2.6 (see [12]). LetX be a Banach space, F : X → X be a map, and z ∈ X be a saddle
point of F.

(i) An orbitOF(p0) = {pj}+∞j=−∞ is said to be a homoclinic orbit (asymptotic) to z if p0 /= z

and limj→+∞pj = limj→−∞pj = z.

(ii) A homoclinic orbit OF(p0) = {pj}+∞j=−∞ to z is said to be transversal if there exists
an open neighborhood U of z such that p−i ∈ Wu

loc(z,U, F) and pj ∈ Ws
loc(z,U, F)

for any sufficiently large integers i, j ≥ 0, and Fi+j sends a disc in Wu
loc(z,U, F)

containing p−i diffeomorphically onto its image that is transversal to Ws
loc(z,U, F)

at pj .

The following lemma is taken from Theorems 3.1 and 5.2, Corollary 6.1, and the result
in Section 7 of [12].

Lemma 2.7. Let F : Z → Z be a map, where Z = X × Y , and X and Y are Banach spaces.

(i) Let A and B be linear continuous maps in X and Y , respectively, with the absolute values
of the spectrum of A less than 1 and the absolute values of the spectrum of B larger than 1,
and ‖A‖, ‖B−1‖ ≤ λ0 for some constant 0 < λ0 < 1.

(ii) Assume that U is an open neighborhood of 0 in Z and f1 : U → X, f2 : U → Y are
Ck(k ≥ 1) maps with fi(0) = 0, Dfi(0) = 0, i = 1, 2. Further, assume that Df1, Df2 are
uniformly continuous in U, and satisfies that for some constants 0 < θ < 1 − λ0 and γ > 0,
‖Df1(x, y)‖, ‖Df2(x, y)‖ < θ for all (x, y) ∈ B(0, γ) ⊂ U.

(iii) Let F : U → Z be of the following form:

F
(
x, y

)
=
(
Ax + f1

(
x, y

)
, By + f2

(
x, y

))
, (2.4)

and have the local stable and unstable manifoldsWs
loc(0, U, F) = {(x, y) | (x, y) ∈ U, y =

0} andWu
loc(0, U, F) = {(x, y) | (x, y) ∈ U, x = 0}/= {0}.

(iv) Assume that O(p0) = {pi}∞i=−∞ is a homoclinic orbit of F with pi → 0 as i → ±∞, and
there exists an integerN > 0 such that p−N ∈ Wu

loc(0, U, F), pN ∈ Ws
loc(0, U, F), and
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(iv1) F2N sends a disc O1 ∩ Wu
loc(0, U, F) centered at p−N diffeomorphically onto O2 =

F2N(O1) containing pN ;

(iv2) O2 intersects Ws
loc(0, U, F) transversally at pN .

Then O(p0) is a transversal homoclinic orbit of F. Furthermore, there exists an integer k > 0 and a
subset Λ in a neighborhood of O(p0) such that Fk on Λ is topologically conjugate to the full shift map
on the doubly infinite sequence of two symbols. Consequently, F is chaotic in the sense of both Li-Yorke
and Devaney, and its topological entropy h(F) ≥ log 2/k.

Note that it is not required that F is a diffeomorphism, even F may not be continuous
on the whole space Z in Lemma 2.7.

3. Distribution of Maps with Transversal Homoclinic Orbits

In this section, we first consider distribution of maps with transversal homoclinic orbits in
a continuous self-map space, which consists of continuous maps that transform a closed,
bounded, and convex set in a Banach space into itself. At the end of this section, we discuss
distribution of chaotic maps in a continuous map space, in which a map may not transform
its domain into itself.

Without special illustration, we always assume that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are
Banach spaces, andDX andDY are bounded, convex, and open sets in X and Y , respectively.
It is evident that D = DX × DY is a bounded, convex, and open set in Z = X × Y , where
the norm ‖ · ‖ on Z is defined by ‖(x, y)‖ = max{‖x‖X, ‖y‖Y}, for any (x, y) ∈ Z, where
x ∈ X, y ∈ Y . Introduce the following map space:

C0

(
D,D

)
:=

{
f : D −→ D is continuous and has a fixed point in D

}
. (3.1)

For any f ∈ C0(D,D), let

∥
∥f

∥
∥ := sup

{∥
∥f(x)

∥
∥ : x ∈ D

}
, (3.2)

and for any f, g ∈ C0(D,D), let

d
(
f, g

)
:=

∥∥f − g
∥∥. (3.3)

Then (C0(D,D), d) is a metric space. It may not be complete because a limit of a sequence of
maps in C0(D,D) is continuous and bounded, but may not have a fixed point in D. But in
the special case that Z is finite-dimensional, (C0(D,D), d) is a complete metric space by the
Schauder fixed point theorem.

In this section, we first study distribution of maps with transversal homoclinic orbits
in C0(D,D).
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For convenience, by (x, y) ∈ Z denote x ∈ X and y ∈ Y , by Fix(f) denote the set of
all the fixed points of f . For (x1, y1), (x2, y2) ∈ Z with (x1, y1)/= (x2, y2), by l((x1, y1), (x2, y2))
denote the straight half-line connecting (x1, y1) and (x2, y2):

l
((
x1, y1

)
,
(
x2, y2

))
:=

{
u =

(
x1, y1

)
+ t

((
x2, y2

) − (
x1, y1

))
: t ≥ 0

}
. (3.4)

Lemma 3.1 (see [22, Lemma 3.1]). For every map f ∈ C0(D,D) and any ε > 0, there exists a map
g ∈ C0(D,D) such that d(f, g) < ε, Fix(g) ∩ D/= ∅, and g is continuously differentiable in some
neighborhood of some point x∗ ∈ Fix(g) ∩D.

Lemma 3.2. For every map f ∈ C0(D,D) and every ε > 0, there exists a map F ∈ C0(D,D) with
d(f, F) < ε such that F has a transversal homoclinic orbit in D.

Proof. Fix any f ∈ C0(D,D). By Lemma 3.1, it suffices to consider the case that f has a fixed
point z = (z1, z2) ∈ D with z1 ∈ X, z2 ∈ Y , and is continuously differentiable in some neigh-
borhood of z.

For any ε > 0, there exists a positive constant r0 < ε/4 with B(z, r0) ⊂ D such that

∥
∥f

(
x, y

) − z
∥
∥ <

ε

4
,

(
x, y

) ∈ B(z, r0). (3.5)

Let r = r0/4, take two constants a, b with r < a < b < r0/3 and take two points
p1 = (x0, z2) ∈ B(z, r), p0 = (z1, y0) ∈ B(z, b) \ B(z, a), where x0 ∈ X, y0 ∈ Y .

The rest of the proof is divided into three steps.

Step 1. Construct a map F that is locally controlled near z.
Define

F
(
x, y

)
=

⎧
⎨

⎩

(
λ(x − z1) + z1, μ

(
y − z2

)
+ z2

)
,

(
x, y

) ∈ B(z, r),
(
x + (x0 − z1), y − (

y0 − z2
))
,

(
x, y

) ∈ B(z, b) \ B(z, a),
(3.6)

where x ∈ X, y ∈ Y , and λ and μ are real parameters and satisfy

|λ| < 1,
b

r
<
∣∣μ
∣∣ <

r0
r
. (3.7)

Note that |μ| > 1 since r < b.
For any (x, y) ∈ B(z, a) \ B(z, r), F(x, y) is defined as follows. Let (x′

1, y
′
1) and

(x′
2, y

′
2) be the intersection points of the straight line l(z, (x, y)) with ∂B(z, r) and ∂B(z, a),

respectively, (see Figure 1). Set

F
(
x, y

)
= F

(
x′
1, y

′
1

)
+ t

(
x, y

)(
F
(
x′
2, y

′
2
) − F

(
x′
1, y

′
1

))
, (3.8)

where t(x, y) ∈ (0, 1) is determined as follows;

(
x, y

)
=
(
x′
1, y

′
1

)
+ t

(
x, y

)((
x′
2, y

′
2

) − (
x′
1, y

′
1

))
. (3.9)
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X

Y

O

z2 z p1

r

a
b

p0(x′
2, y

′
2)

(x, y)

(x′
1, y

′
1)

z1

Figure 1

It is noted that when (x, y) continuously varies inB(z, a)\B(z, r), so do the intersection points
(x′

1, y
′
1) and (x′

2, y
′
2). Consequently, t(x, y) and then F(x, y) are continuous in B(z, a)\B(z, r).

Next, define F(x, y) = f(x, y) for (x, y) ∈ D \ B(z, r0). Finally, for any (x, y) ∈
B(z, r0) \ B(z, b), suppose that (x′′

1, y
′′
1) and (x′′

2, y
′′
2) are the intersection points of the straight

line l(z, (x, y)) with ∂B(z, b) and ∂B(z, r0), respectively. Define F(x, y) as that in (3.8), where
t(x, y) is determined by (3.9) with (x′

1, y
′
1) and (x′

2, y
′
2) replaced by (x′′

1, y
′′
1) and (x′′

2, y
′′
2),

respectively. Hence, F(x, y) is continuous in B(z, r0) \ B(z, b).
Obviously, z is a saddle fixed point of F, and

{(
x, y

)
: x = z1,

∥∥y − z2
∥∥
Y
< b

} ⊂ Wu
loc(z, b, F),

{(
x, y

)
: y = z2, ‖x − z1‖X < r

} ⊂ Ws
loc(z, r, F).

(3.10)

Step 2. F ∈ C0(D,D) and satisfies that d(f, F) < ε.
From the definition of F, it is easy to know that F is continuous on D and has a fixed

point z ∈ D, that is, F ∈ C0(D,D).
Next, we will prove that d(f, F) < ε. For (x, y) ∈ D\B(z, r0), ‖F(x, y)−f(x, y)‖ = 0 < ε.

For (x, y) ∈ B(z, r), it follows from (3.5) and (3.6) that

∥∥F
(
x, y

) − f
(
x, y

)∥∥ ≤ ∥∥F
(
x, y

) − z
∥∥ +

∥∥f
(
x, y

) − z
∥∥ ≤ r0 +

ε

4
< ε. (3.11)

For (x, y) ∈ B(z, a) \ B(z, r), it follows from (3.5), (3.6), and (3.8) that

∥∥F
(
x, y

) − f
(
x, y

)∥∥ =
∥∥F

(
x′
1, y

′
1

)
+ t

(
x, y

)(
F
(
x′
2, y

′
2
) − F

(
x′
1, y

′
1

)) − f
(
x, y

)∥∥

≤ ∣
∣1 − t

(
x, y

)∣∣
∥
∥F

(
x′
1, y

′
1

) − z
∥
∥ +

∣
∣t
(
x, y

)∣∣
∥
∥F

(
x′
2, y

′
2
) − z

∥
∥ +

∥
∥f

(
x, y

) − z
∥
∥

≤ r0 + 2b +
ε

4
< ε.

(3.12)
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For (x, y) ∈ B(z, b) \ B(z, a), from (3.5) and (3.6), one has

∥∥F
(
x, y

) − f
(
x, y

)∥∥ ≤ ∥∥F
(
x, y

) − z
∥∥ +

∥∥f
(
x, y

) − z
∥∥ < 2b +

ε

4
< ε. (3.13)

For (x, y) ∈ B(z, r0) \ B(z, b), from (3.5), (3.6), and (3.8), one has

∥∥F
(
x, y

) − f
(
x, y

)∥∥ =
∥∥F

(
x′′
1, y

′′
1

)
+ t

(
x, y

)(
F
(
x′′
2, y

′′
2
) − F

(
x′′
1, y

′′
1

)) − f
(
x, y

)∥∥

≤ ∣∣1 − t
(
x, y

)∣∣∥∥F
(
x′′
1, y

′′
1

) − z
∥∥ +

∣∣t
(
x, y

)∣∣∥∥F
(
x′′
2, y

′′
2
) − z

∥∥ +
∥∥f

(
x, y

) − z
∥∥

≤ r0 +
ε

4
+
ε

4
< ε.

(3.14)

Therefore, from the above discussion, d(f, F) = ‖F − f‖ < ε.

Step 3. F has a transversal homoclinic orbit in D.
It follows from (3.6) that F(p−1) = p0 and F(p0) = p1, where p−1 = (z1, μ−1(y0−z2)+z2) ∈

B(z, r) by (3.7). So, by (3.10) one has that p−1 ∈ Wu
loc(z, r, F), p1 ∈ Ws

loc(z, r, F). Hence,O(p0) =
{pj}∞j=−∞ satisfies that limj→∞pj = limj→−∞pj = z. Thus, O(p0) ⊂ D and is a homoclinic orbit
of F.

Set a positive constant δ satisfying

δ < min
{
b − ∥

∥y0 − z2
∥
∥
Y
,
∥
∥y0 − z2

∥
∥
Y
− a,

∣
∣μ
∣
∣−1b, r − ∣

∣μ
∣
∣−1b

}
. (3.15)

Then 0 < δ < r by (3.7), and consequently it follows from (3.10) that the disc

O0 :=
{(
x, y

)
: x = z1,

∥
∥y − y0

∥
∥
Y ≤ δ

} ⊂
(
B(z, b) \ B(z, a)

)
∩Wu

loc(z, b, F). (3.16)

Further, set the discs

O−1 :=
{(

x, y
)
: x = z1,

∥∥
∥y −

(
μ−1(y0 − z2

)
+ z2

)∥∥
∥
Y
≤ ∣∣μ

∣∣−1δ
}
,

O1 :=
{(
x, y

)
: x = x0,

∥∥y − z2
∥∥
Y ≤ δ

}
.

(3.17)

Then O−1 ⊂ Wu
loc(z, r, F), O0 = F(O−1), and O1 = F(O0) (see Figure 2).

It is evident thatO1 intersectsWs
loc(z, r, F) transversally at point p1. In addition, by the

definition of F in B(z, b), one can get that F2 : O−1 → O1 is a diffeomorphism. Therefore,
O(p0) is a transversal homoclinic orbit asymptotic to z of F by Definition 2.6, whereN = 1.

The entire proof is complete.

Theorem 3.3. Let X and Y be Banach spaces, Z = X × Y , and D be a bounded, convex, and open
set in Z. Then, for every map f ∈ C0(D,D) and for any ε > 0, there exists a map F ∈ C0(D,D)
satisfying
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X

Y

O

Ws
loc(z, r, F)

Wu
loc(z, r, F)

z

O−1
O1

O0

p−1

p1

p0

Figure 2

(1) d(f, F) < ε;

(2) F has a transversal homoclinic orbit in D;

(3) F is chaotic in the sense of both Li-Yorke and Devaney;

(4) the topological entropy h(F) > 0.

Proof. Let F be defined as in Lemma 3.2. Then (1) and (2) hold by Lemma 3.2.
Let F, r, λ, μ, andU be specified in the proof of Lemma 3.2. Without loss of generality,

suppose that the fixed point z of F is the origin.
Set U = B(0, r), A = λI, B = μI, f1|U = 0, f2|U = 0. So A and B satisfy assumption

(i) in Lemma 2.7, where λ0 = max{|λ|, |μ|−1} < 1. Take θ = (1 − λ0)/2. Then ‖Df1(x, y)‖ =
‖Df2(x, y)‖ = 0 < θ < 1 − λ0 for (x, y) ∈ B(0, r). Further,

Wu
loc(0, r, F) =

{(
x, y

)
: x = 0,

∥
∥y

∥
∥
Y
< r

}
,

Ws
loc(0, r, F) =

{(
x, y

)
: y = 0, ‖x‖X < r

}
.

(3.18)

Hence, F satisfies assumptions (ii) and (iii) in Lemma 2.7 with γ = r.
By the discussions in Step 3 in the proof of Lemma 3.2, F satisfies assumption (iv) in

Lemma 2.7, where O(p0), O−1, O0, and O1 are the same as those in the proof of Lemma 3.2
andN = 1. So, all the assumptions in Lemma 2.7 are satisfied. Consequently, (3) and (4) hold
by Lemma 2.7. The proof is complete.

When it is not required that a map transforms its domain D into itself, the convexity
of domain D can be removed and all the corresponding results to Lemmas 3.1 and 3.2 and
Theorem 3.3 still hold. In detail, let S be a bounded open set in Z and

C0

(
S,Z

)
:=

{
f : S −→ Z is continuous and bounded, and has a fixed point in S

}
. (3.19)

Then (C0(S,Z), d) is a metric space, where d is defined the same as that in (3.3). The results
of Lemma 3.2 and Theorem 3.3 hold, where C0(D,D) is replaced by C0(S,Z). Their proofs
are similar.

Now, we only present the detailed result corresponding to Theorem 3.3.
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Theorem 3.4. Let X and Y be Banach spaces, Z = X×Y , and S be a bounded open set inZ. Then, for
every map f ∈ C0(S,Z) and for any ε > 0, there exists a map F ∈ C0(S,Z) satisfying the following

(1) d(f, F) < ε;

(2) F has a transversal homoclinic orbit in S;

(3) F is chaotic in the sense of both Li-Yorke and Devaney;

(4) the topological entropy h(F) > 0.

Remark 3.5. A general Banach space Z may not be discomposed into a product of two Banach
spaces with dimension greater than or equal to 1. However, it is true for Z = Rn with n ≥ 2.
So Theorem 3.3 holds for each n-dimensional space Rn with n ≥ 2. In addition, if D is a
bounded and convex set in Rn, every continuous map f : D → D has a fixed point in D by
the Schauder fixed point theorem. In this case one has that

C0

(
D,D

)
= C

(
D,D

)
=
{
f : D −→ D is continuous

}
. (3.20)

Remark 3.6. (1) As we all know, under C1 perturbation, the hyperbolicity of a map is pre-
served. But it is obvious that the conclusion does not hold in the C0 sense.

(2) In the C0 topology, Theorems 3.3 and 3.4 show the density of distributions of
maps with transversal homoclinic orbits, and consequently in the sense of both Li-Yorke and
Devaney. However, it is not true in the C1 topology. For example, consider the map

f
(
x, y

)
=
(x
2
,
y

2

)
,

(
x, y

) ∈ I2 = [0, 1] × [0, 1]. (3.21)

Clearly, f ∈ C0(I2, I2) and z = 0 is a globally asymptotically stable fixed point of f in I2. By
Theorem 3.3, for each ε > 0, there exists a map F ∈ C0(I2, I2) with ‖F − f‖ < ε such that F is
chaotic in the sense of both Li-Yorke and Devaney. But, in the C1 topology, for each positive
constant ε < 1/2 and for every map F ∈ C1(I2, I2) with

∥
∥F − f

∥
∥
C1 :=max

{∥∥F − f
∥
∥,

∥
∥F ′ − f ′∥∥} < ε, (3.22)

F is globally asymptotically stable in I2, and so is not chaotic in any sense.
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