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We show that there exists a regular E-J generalized Hausdorff matrix which has no zero elements
on the main diagonal and which is not of typeM and establish several other related theorems.

1. Introduction

The convergence domain of an infinite matrix A = (ank) (n, k = 0, 1, . . .) will be denoted
by (A) and is defined by (A) := {x = {xn} | An(x) ∈ c}, where c denotes the space
of convergence sequences and An(x) :=

∑∞
k=0 ankxk. If for two matrices A and B, we have

the relation (A) ⊂ (B), we say that B is not weaker than A. The necessary and sufficient
conditions of Silverman and Toeplitz for a matrix to be conservative (some authors use the
word convergence-preserving instead of conservative) are as limn→∞ank = ak exists for each
k, limn→∞

∑∞
k=0 ank = t exists, follows: ||A|| := supn

∑∞
k=0 |ank| < ∞. A conservative matrix A

is called multiplicative if each ak = 0 and regular if, in addition, t = 1. If A is a conservative
matrix, then χ(A) = limn

∑
k ank −

∑
k limnank is called the characteristic ofA. A conservative

matrixA is called coregular if χ(A)/= 0 and conull if χ(A) = 0. Regular matrices are coregular,
since χ(A) = 1.

A matrix A = (ank) (n, k = 0, 1, . . .) is called triangular if ank = 0 for all k > n, and it is
called a normal if it is, triangular and ann /= 0 for all n.

Let A = (ank) (n, k = 0, 1, . . .) denote an infinite matrix. Then A is said to be of typeM
if the conditions ∞∑

n=0
|αn| < ∞,

∞∑

n=0

αnank = 0 k = 0, 1, 2, . . . (1.1)

always imply αn = 0(n = 0, 1, 2, . . .).
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Matrices of typeM were first introduced by Mazur [1] and named by Hill [2]. Hill [2]
developed several sufficient conditions for a Hausdorff matrix to be of Type M. He showed
that there exists a regular Hausdorffmatrix which has a zero on themain diagonal, not of type
M. He also posed the following question: does there exist a regular Hausdorff matrix which
has no zero elements on themain diagonal andwhich is not of typeM? Rhoades [3] answered
the above question in the affirmative and established several other related theorems. In this
paper, we answer the above question for E-J generalized Hausdorff matrices.

We use the words finite sequence to describe a sequence which is containing only a
finite number of nonzero terms. It is clear that a triangular matrix which is not a normal
cannot be of type M, since a finite sequence can be found satisfying (1.1). Also, if a matrix
is a normal, there can be no finite sequence as a solution of (1.1). All diagonal matrices with
nonzero diagonal elements are of type M.

Hausdorff matrices were shown by Hurwitz and Silverman [4] to be the class of
triangular matrices that commute with C, the Cesáro matrix of order one. Hausdorff [5]
reexamined this class, in the process of solving the moment problem over a finite interval,
and developed many of the properties of the matrices that now bear his name.

Several generalizations of Hausdorffmatrices have beenmade. In this paper wewill be
concerned with the generalized Hausdorffmatrices as defined independently by Endl ([6, 7])
and Jakimovski [8]. A generalized HausdorffmatrixH(α) is a lower triangular infinite matrix
with entries

h
(α)
nk =

(
n + α

n − k

)

Δn−kμk, 0 ≤ k ≤ n, (1.2)

where α is real number, (μn) is a real sequence, and Δ is forward difference operator defined
by Δμk = μk − μk+1,Δn+1μk = Δ(Δnμk). We will consider here only nonnegative α. For α = 0
one obtains an ordinary Hausdorff matrix.

From [6] or [8], a generalized Hausdorff matrix (for α > 0) is regular if and only if
there exists a function χ ∈ BV [0, 1] with χ(1) − χ(0+) = 1 such that

μ
(α)
n =

∫1

0
tn+αdχ(t), (1.3)

in which case (μ(α)
n ) is called the moment sequence for H(α) and χ is called the moment

generating function, or mass function, forH(α).
For ordinary Hausdorff summability (see, e.g., [9]), the necessary and sufficient

conditions for regularity are that the function χ ∈ BV [0, 1], χ(1) − χ(0) = 1, χ(0+) = χ(0) = 0,
and (1.3) is satisfied with α = 0.

The purpose of this paper is to show that there exists a regular E-J generalized
Hausdorff matrix which has no zero elements on the main diagonal and which is not of type
M and establish several other related theorems.

The following is a consequence of [10, Theorem 3.2.1(d)].

Theorem 1.1 (see [10]). If A is a normal, conservative and coregular, then A is of type M if and
only if c = (A).

The following is a consequence of [11, Theorem 1((a) and (c))].
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Theorem 1.2 (see [11]). Let A be conservative. c is closed in (A) if and only if A sums no bounded
divergent sequences.

Theorem 1.3. Let

μ
(α)
n =

b(n − a)
−(a + α)(n + b + α)

a > 0, b > 0, α ≥ 0 (n = 0, 1, 2 . . .). (1.4)

Then the corresponding regular E-J generalized Hausdorff matrix is not of type M.

Proof. If a is a positive integer, then H
(α)
μ is not of type M as remarked above, since it has a

zero on its diagonal.
Assume a is not a positive integer. From [12], the convergence domains for E-J

generalized Hausdorff matrices with moment generating sequence as defined above are
(H(α)

μ ) = c ⊕ x(α), where

x
(α)
n =

Γ(n + α + 1)
Γ(n − a + 1)

. (1.5)

Since H
(α)
μ sums no bounded divergent sequences, from Theorem 1.2, c is closed in (H(α)

μ ).

From Theorem 1.1, since c is not dense in the convergence domain of eachH
(α)
μ , none of them

is of type M.

Let A be a conservative matrix. If c is dense in (A) then A is called perfect. For certain
classes of matrices, perfectness and type M are closely related. Note that, from Theorem 1.1,
type M and perfectness are equivalent for normal, conservative, and coregular matrices.

If one examines the sequences of Theorem 1.3 for a an integer, then one notes that the
corresponding matrices are not normal. It remains to determine if each such matrix is perfect.

Theorem 1.4. Let

μ
(α)
n =

b(n − r)
−(r + α)(n + b + α)

, r is a positive integer, b > 0, α ≥ 0 (n = 0, 1, 2 . . .). (1.6)

Then the corresponding regular E-J generalized Hausdorff matrix is not perfect.

Proof. In [12], it is proved that H
(α)
μ is a regular E-J generalized Hausdorff matrix with

(H(α)
μ ) = c ⊕ x(α), where

x
(α)
n =

Γ(n + α + 1)
Γ(n − r + 1)

. (1.7)

As mentioned in the proof of Theorem 1.3, c is not dense in the convergence domain of each
H

(α)
μ . Hence each H

(α)
μ is not perfect.

Theorem 1.5 (see [2]). The product AB ≡ C of two triangular perfect methods A and B is also a
triangular perfect method.
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Theorem 1.6 (see [2]). If the product AB ≡ C of two triangular convergence-preserving methods A
and B is of type M, then A must be of type M.

Theorem 1.7 (see [2]). If A is normal and B is triangular, then B is not weaker than A if and only
if BA−1 is convergence preserving.

Theorem 1.8. If H(α)
μ is normal, conservative, and not of type M, and if H(α)

λ is not weaker than

H
(α)
μ , thenH

(α)
λ

is not of type M.

Proof. By Theorem 1.7, H
(α)
ϕ = H

(α)
λ

(H(α)
μ )−1 is conservative. From the definition of E-J

generalized Hausdorff matrix, it is easily shown that multiplication of an E-J generalized
Hausdorffmatrix is commutative and the result is again an E-J generalized Hausdorffmatrix.
Also the inverse of a normal E-J generalized Hausdorffmatrix is also a normal E-J generalized
Hausdorff matrix. Thus H(α)

ϕ = (H(α)
μ )−1H(α)

λ
and H

(α)
λ

= H
(α)
μ H

(α)
ϕ , and the result follows at

once from Theorem 1.6.

Theorem 1.9. IfH(α)
λ

is normal and conservative and ifH(α)
μ is of typeM and not weaker thanH

(α)
λ

,

thenH
(α)
λ is of type M.

Proof. As in the previous theorem we haveH(α)
ϕ = H

(α)
μ (H(α)

λ
)−1 = (H(α)

λ
)−1H(α)

μ , whereH(α)
ϕ is

conservative. ThenH
(α)
μ = H

(α)
λ H

(α)
ϕ , and the conclusion follows again from Theorem 1.6.

From Theorem 1.5 and the multiplication facts of E-J generalized Hausdorff matrix,
we obtain the following theorem.

Theorem 1.10. The product of a finite number of perfect E-J generalized Hausdorffmethods is likewise
a perfect E-J generalized Hausdorff method.
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