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We prove the Hyers-Ulam stability of the additive-cubic-quartic functional equation in multi-
Banach spaces by using the fixed point alternative method. The first results on the stability in
the multi-Banach spaces were presented in (Dales and Moslehian 2007).

1. Introduction

Stability is investigated when one is asking whether a small error of parameters in one
problem causes a large deviation of its solution. Given an approximate homomorphism,
is it possible to approximate it by a true homomorphism? In other words, we are looking
for situations when the homomorphisms are stable, that is, if a mapping is almost a
homomorphism, then there exists a true homomorphism near it with small error as much
as possible. This problem was posed by Ulam in 1940 (cf. [1]) and is called the stability of
functional equations. For Banach spaces, the problem was solved by Hyers [2] in the case
of approximately additive mappings. Later, Hyers’ result was generalized by Aoki [3] for
additive mappings and by Rassias [4] for linear mappings by allowing the Cauchy difference
to be unbounded. During the last decade, stability of functional equations was studied by
several mathematicians for mappings in various spaces including random normed spaces
and fuzzy Banach spaces (cf. [5, 6]). For various other results on the stability of functional
equations, one is referred to [7–26].

Most of the proofs of stability theorems in theHyers-Ulam context have appliedHyers’
direct method. The exact solution of the functional equation is explicitly constructed as the
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limit of a sequence, which is originating from the given approximate solution. In 2003, Radu
[27] proposed the fixed point alternative method for obtaining the existence of exact solutions
and error estimations and noticed that a fixed point alternative method is essential for the
solution of Ulam problem for approximate homomorphisms. Subsequently, some authors
[28, 29] applied the fixed alternative method to investigate the stability problems of several
functional equations.

The notion of multi-normed space was introduced by Dales and Polyakov [30] (or
see [31, 32]). This concept is somewhat similar to operator sequence space and has some
connections with operator spaces and Banach lattices. Motivations for the study of multi-
normed spaces and many examples were given in [30, 31]. In 2007, stability of mappings
on multi-normed spaces was first given in [31], and asymptotic aspect of the quadratic
functional equation in multi-normed spaces was investigated in [33].

In this paper, we consider the following functional equation derived from additive,
cubic, and quartic mappings:
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It is easy to see that the function f(x) = ax + bx3 + cx4 satisfies the functional equation
(1.1). Eshaghi Gordji et al. [34] established the general solution and proved the generalized
Hyers-Ulam stability for (1.1). The main purpose of this paper is to establish the Hyers-Ulam
stability of (1.1) in multi-Banach spaces by using the fixed point alternative method.

2. Preliminaries

In this section, some useful results are pointed out. We begin with the alternative of a fixed
point of Diaz and Margolis, which we will refer to as follows.

Lemma 2.1 (cf. [27, 35]). Let (X, d) be a complete generalized metric space and J : X → X be a
strictly contractive mapping, that is,

d
(
Jx, Jy

) ≤ Ld(x, y) ∀x, y ∈ X, (2.1)

for some L ≤ 1. Then, for each fixed element x ∈ X, either

d
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Jnx, Jn+1x

)
= +∞ ∀n ≥ 0, (2.2)

or

d
(
Jnx, Jn+1x

)
< +∞ ∀n ≥ n0, (2.3)
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for some natural number n0. Moreover, if the second alternative holds, then

(i) the sequence {Jnx} is convergent to a fixed point y∗ of J ;

(ii) y∗ is the unique fixed point of J in the set Y := {y ∈ X | d(Jn0x, y) < +∞} and d(y, y∗) ≤
1/(1 − L)d(y, Jy), for all , x, y ∈ Y .

Following [30, 31], we recall some basic facts concerning multi-normed spaces and
some preliminary results.

Let (E, ‖ · ‖) be a complex normed space, and let k ∈ N. We denote by Ek the linear
space E⊕ · · · ⊕E consisting of k-tuples (x1, . . . , xk), where x1, . . . , xk ∈ E. The linear operations
Ek are defined coordinatewise. The zero element of either E or Ek is denoted by 0. We denote
by Nk the set {1, 2, . . . , k} and by Sk the group of permutations on k symbols.

Definition 2.2 (cf. [30, 31]). A multi-norm on {Ek : k ∈ N} is a sequence (‖ ·‖k) = (‖ ·‖k : k ∈ N)
such that ‖ · ‖k is a norm on Ek for each k ∈ N, ‖x‖1 = ‖x‖ for each x ∈ E, and the following
axioms are satisfied for each k ∈ N with k ≥ 2:

(N1) ‖(xσ(1), . . . , xσ(k))‖k = ‖(x1, . . . , xk)‖k, for σ ∈ Sk, x1, . . . , xk ∈ E;
(N2) ‖(α1x1, . . . , αkxk)‖k ≤ (maxi∈Nk |αi|)‖(x1, . . . , xk)‖k, for α1, . . . , αk ∈ C, x1, . . . , xk ∈ E;
(N3) ‖(x1, . . . , xk−1, 0)‖k = ‖(x1, . . . , xk−1)‖k−1, for x1, . . . , xk−1 ∈ E;
(N4) ‖(x1, . . . , xk−1, xk−1)‖k = ‖(x1, . . . , xk−1)‖k−1, for x1, . . . , xk−1 ∈ E.

In this case, we say that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space.

Suppose that ((Ek, ‖ · ‖k) : k ∈ N) is a multi-normed space, and take k ∈ N. We need
the following two properties of multi-norms. They can be found in [30]

(a) ‖(x, . . . , x)‖k = ‖x‖, for x ∈ E,
(b) maxi∈Nk‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤ ∑k

i=1‖xi‖ ≤ kmaxi∈Nk‖xi‖, for x1, . . . , xk ∈ E.
It follows from (b) that if (E, ‖ · ‖) is a Banach space, then (Ek, ‖ · ‖k) is a Banach space

for each k ∈ N; in this case, ((Ek, ‖ · ‖k) : k ∈ N) is a multi-Banach space.

Lemma 2.3 (cf. [30, 31]). Suppose that k ∈ N and (x1, . . . , xk) ∈ Ek. For each j ∈ {1, . . . , k}, let
(xjn)n=1,2,... be a sequence in E such that limn→∞ x

j
n = xj . Then

limn→∞
(
x1
n − y1, . . . , xkn − yk

)
=
(
x1 − y1, . . . , xk − yk

)
(2.4)

holds for all (y1, . . . , yk) ∈ Ek.

Definition 2.4 (cf. [30, 31]). Let ((Ek, ‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence (xn)
in E is a multi-null sequence if for each ε > 0, there exists n0 ∈ N such that

sup
k∈N

‖(xn, . . . , xn+k−1)‖k ≤ ε (n ≥ n0). (2.5)

Let x ∈ E, we say that the sequence (xn) is multi-convergent to x in E and write
limn→∞ xn = x if (xn − x) is a multi-null sequence.
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3. Main Results

Throughout this section, let ε ≥ 0, E be a linear space, and let ((Fn, ‖ · ‖n) : n ∈ N) be a
multi-Banach space. For convenience, we use the following abbreviation for a given mapping
f : E → F:

Df
(
x, y

)
= 11

[
f
(
x + 2y

)
+ f

(
x − 2y

)] − 44
[
f
(
x + y

)
+ f

(
x − y)]

− 12f
(
3y

)
+ 48f

(
2y

) − 60f
(
y
)
+ 66f(x).

(3.1)

Before proceeding to the proof of the main results in this section, we shall need the following
two lemmas.

Lemma 3.1 (cf. [34]). If an even mapping f : X → Y satisfies (1.1), then f is quartic.

Lemma 3.2 (cf. [34]). If an odd mapping f : X → Y satisfies (1.1), then f is cubic-additive.

Theorem 3.3. Suppose that an even mapping f : E → F satisfies f(0) = 0 and

sup
k∈N

∥∥(Df
(
x1, y1

)
, . . . , Df

(
xk, yk

))∥∥
k ≤ ε (3.2)

for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique quartic mapping Q : E → F satisfying
(1.1) and

sup
k∈N

∥∥(f(x1) −Q(x1), . . . , f(xk) −Q(xk)
)∥∥

k ≤ 13
330

ε (3.3)

for all x1, . . . , xk ∈ E.

Proof. Letting x1 = · · · = xk = 0 in (3.2), we get

sup
k∈N

∥∥(−12f(3y1
)
+ 70f

(
2y1

) − 148f
(
y1
)
, . . . ,−12f(3yk

)
+ 70f

(
2yk

) − 148f
(
yk

))∥∥
k ≤ ε

(3.4)

for all y1, . . . , yk ∈ E. Replacing x1, . . . , xk with y1, . . . , yk in (3.2), we obtain

sup
k∈N

∥∥(−f(3y1
)
+ 4f

(
2y1

)
+ 17f

(
y1
)
, . . . ,−f(3yk

)
+ 4f

(
2yk

)
+ 17f

(
yk

))∥∥
k ≤ ε (3.5)

for all y1, . . . , yk ∈ E.
It follows from (3.4) and (3.5) that

sup
k∈N

∥∥(f(2x1) − 16f(x1), . . . , f(2xk) − 16f(xk)
)∥∥

k ≤ 13
22
ε (3.6)

for all x1, . . . , xk ∈ E.
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Let E := {gg : E → F, g(0) = 0}, and introduce the generalized metric d defined on E
by

d
(
g, h

)
= inf

{

c ∈ (0, ∞) | sup
k∈N

∥∥(g(x1) − h(x1), . . . , g(xk) − h(xk)
)∥∥

k ≤ c, ∀x1, . . . , xk ∈ E
}

.

(3.7)

Then, it is easy to show that d is a complete generalized metric on E (see the proof in [36] or
[5]). We now define a function J1 : E → E by

J1g(x) =
1
16
g(2x), ∀x ∈ E. (3.8)

We assert that J1 is a strictly contractivemapping. Given g, h ∈ E, let c ∈ (0,∞) be an arbitrary
constant with d(g, h) ≤ c. From the definition of d, it follows that

sup
k∈N

∥∥(g(x1) − h(x1), . . . , g(xk) − h(xk)
)∥∥

k ≤ c (3.9)

for all x1, . . . , xk ∈ E. Therefore,

sup
k∈N

∥∥(J1g(x1) − J1h(x1), . . . , J1g(xk) − J1h(xk)
)∥∥

k

= sup
k∈N

∥∥∥∥

(
1
16
g(2x1) − 1

16
h(2x1), . . . ,

1
16
g(2xk) − 1

16
h(2xk)

)∥∥∥∥
k

≤ 1
16
c

(3.10)

for all x1, . . . , xk ∈ E. Hence, it holds that d(J1g , J1h) ≤ (1/16)c, that is, d(J1g, J1h) ≤
(1/16)d(g, h) for all g, h ∈ E.

By using (3.6), we have d(J1f, f) ≤ (13/352)ε. According to Lemma 2.1, we deduce
the existence of a fixed point of J1, that is, the existence of a mapping Q : X → Y such that
Q(2x) = 16Q(x) for all x ∈ E. Moreover, we have d(Jn1 f, Q) → 0, which implies that

Q(x) = lim
n→∞

(
Jn1 f

)
(x) = lim

n→∞
f(2nx)
16n

, ∀x ∈ E. (3.11)

Also, d(f, Q) ≤ 1/(1 − L)d(J1f, f) implies the inequality

d
(
f, Q

) ≤ 1
1 − (1/16)

d
(
J1f, f

) ≤ 13
330

ε. (3.12)
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Set x1 = · · · = xk = 2nx, y1 = · · · = yk = 2ny in (3.2), and divide both sides by 16n. Then,
using property (a), we obtain

∥∥DQ
(
x, y

)∥∥ = lim
n→∞

1
16n

∥∥Df
(
2nx, 2ny

)∥∥ ≤ lim
n→∞

ε

16n
= 0 (3.13)

for all x, y ∈ E. Hence, by Lemma 3.1, Q is quartic.
The uniqueness of Q follows from the fact that Q is the unique fixed point of J1 with

the property that there exists l ∈ (0, ∞) such that

sup
k∈N

∥∥(f(x1) −Q(x1), . . . , f(xk) −Q(xk)
)∥∥

k ≤ l (3.14)

for all x1, . . . , xk ∈ E. This completes the proof of the theorem.

Theorem 3.4. Suppose that an odd mapping f : E → F satisfies

sup
k∈N

∥∥(Df
(
x1, y1

)
, . . . , Df

(
xk, yk

))∥∥
k ≤ ε (3.15)

for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique additive mapping A : E → F and a
unique cubic mapping C : E → F satisfying (1.1) and

sup
k∈N

∥∥(f(2x1) − 8f(x1) −A(x1), . . . , f(2xk) − 8f(xk) −A(xk)
)∥∥

k ≤ 17
33
ε,

sup
k∈N

∥∥(f(2x1) − 2f(x1) − C(x1), . . . , f(2xk) − 2f(xk) − C(xk)
)∥∥

k ≤ 17
231

ε

(3.16)

for all x1, . . . , xk ∈ E.

Proof. Put x1 = · · · = xk = 0 in (3.15). Then, by the oddness of f , we have

sup
k∈N

∥∥(12f
(
3y1

) − 48f
(
2y1

)
+ 60f

(
y1
)
, . . . 12f

(
3yk

) − 48f
(
2yk

)
+ 60f

(
yk

))∥∥
k ≤ ε (3.17)

for all y1, . . . , yk ∈ E. Replacing x1, . . . , xk with 2y1, . . . , 2yk in (3.15), we obtain

sup
k∈N

∥∥(11f
(
4y1

) − 56f
(
3y1

)
+ 114f

(
2y1

) − 104f
(
y1
)
, . . . , 11f

(
4yk

) − 56f
(
3yk

)

+114f
(
2yk

) − 104f
(
yk

))∥∥
k ≤ ε

(3.18)

for all y1, . . . , yk ∈ E. By (3.17) and (3.18), we have

sup
k∈N

∥∥(f(4x1) − 10f(2x1) + 16f(x1), . . . , f(4xk) − 10f(2xk) + 16f(xk)
)∥∥

k ≤ 17
33
ε (3.19)
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for all x1, . . . , xk ∈ E. Putting α(x) := f(2x) − 8f(x) for all x ∈ E, we get

sup
k∈N

‖(α(2x1) − 2α(x1), . . . , α(2xk) − 2α(xk))‖k ≤ 17
33
ε (3.20)

for all x1, . . . , xk ∈ E.
Let the same definitions for E and d as in the proof of Theorem 3.3 such that (E, d)

becomes a complete generalized metric space. We now define a function J2 : E → E by

J2g(x) =
1
2
g(2x), ∀x ∈ E. (3.21)

Applying a similar technique as in the proof of Theorem 3.3, we obtain d(J2g, J2h) ≤ (1/2)c,
that is, d(J2g, J2h) ≤ (1/2)d(g, h) for all g, h ∈ E.

By (3.20), we have d(J2α, α) ≤ (17/66)ε. According to Lemma 2.1, we deduce the
existence of a fixed point of J2, that is, the existence of a mapping A : X → Y such that
A(2x) = 2A(x) for all x ∈ E. Moreover, we have d(Jn2 α,A) → 0, which implies that

A(x) = lim
n→∞

(
Jn2 α

)
(x) = lim

n→∞
α(2nx)
2n

, ∀x ∈ E. (3.22)

Also, d(α,A) ≤ 1/(1 − L)d(J2α, α) implies the inequality

d(α, A) ≤ 1
1 − (1/2)

d(J2α, α) ≤ 17
33
ε. (3.23)

Hence, it follows that

∥∥DA
(
x, y

)∥∥ = lim
n→∞

1
2n

∥∥Dα
(
2nx, 2ny

)∥∥

= lim
n→∞

1
2n

∥∥∥Df
(
2n+1x, 2n+1y

)
− 8Df

(
2nx, 2ny

)∥∥∥ ≤ lim
n→∞

ε

2n
= 0

(3.24)

for all x, y ∈ E. This means that A satisfies (1.1). Then, by Lemma 3.2, x �→ A(2x) − 8A(x) is
additive. Thus, by A(2x) = 2A(x), we conclude that A is additive.

Putting β(x) := f(2x) − 2f(x) for all x ∈ E, we get

sup
k∈N

∥∥(β(2x1) − 8β(x1), . . . , α(2xk) − 8β(xk)
)∥∥

k ≤ 17
33
ε (3.25)

for all x1, . . . , xk ∈ E. We now define a function J3 : E → E by

J3g(x) =
1
8
g(2x), ∀x ∈ E. (3.26)



8 Abstract and Applied Analysis

Applying a similar technique as in the proof of Theorem 3.3, we obtain d(J3g, J3h) ≤ (1/8)c,
that is, d(J3g, J3h) ≤ (1/8)d(g, h) for all g, h ∈ E.

By (3.25), we have d(J3β, β) ≤ (17/264)ε. According to Lemma 2.1, we deduce the
existence of a fixed point of J3, that is, the existence of a mapping C : X → Y such that
C(2x) = 8C(x) for all x ∈ E. Moreover, we have d(Jn3 β, C) → 0, which implies that

C(x) = lim
n→∞

(
Jn3 β

)
(x) = lim

n→∞
β(2nx)
8n

, ∀x ∈ E. (3.27)

Also, d(β, C) ≤ 1/(1 − L)d(J3β, β) implies the inequality

d
(
β, C

) ≤ 1
1 − (1/8)

d
(
J3β, β

) ≤ 17
231

ε. (3.28)

Then we have

∥∥DC
(
x, y

)∥∥ = lim
n→∞

1
8n

∥∥Dβ
(
2nx, 2ny

)∥∥

= lim
n→∞

1
8n

∥∥∥Df
(
2n+1x, 2n+1y

)
− 2Df

(
2nx, 2ny

)∥∥∥ ≤ lim
n→∞

ε

8n
= 0

(3.29)

for all x, y ∈ E. Hence, the mapping C satisfies (1.1). Therefore, by Lemma 3.2, x �→ C(2x) −
2C(x) is cubic. Thus, C(2x) = 8C(x) implies that the mapping C is cubic.

The uniqueness of A and C can be proved in the same reasoning as in the proof of
Theorem 3.3. This completes the proof of the theorem.

Theorem 3.5. Suppose that an odd mapping f : E → F satisfies

sup
k∈N

∥∥(Df
(
x1, y1

)
, . . . , Df

(
xk, yk

))∥∥
k ≤ ε (3.30)

for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique additive mapping A : E → F and a
unique cubic mapping C : E → F such that

sup
k∈N

∥∥(f(x1) −A(x1) − C(x1), . . . , f(xk) −A(xk) − C(xk)
)∥∥

k ≤ 68
693

ε (3.31)

for all x1, . . . , xk ∈ E.

Proof. By Theorem 3.4, there exist an additive mapping A0 : E → F and a cubic mapping
C0 : E → F such that

sup
k∈N

∥∥(f(2x1) − 8f(x1) −A0(x1), . . . , f(2xk) − 8f(xk) −A0(xk)
)∥∥

k ≤ 17
33
ε,

sup
k∈N

∥∥(f(2x1) − 2f(x1) − C0(x1), . . . , f(2xk) − 2f(xk) − C0(xk)
)∥∥

k ≤ 17
231

ε

(3.32)
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for all x1, . . . , xk ∈ E. Combining the above two equations in (3.32) yields that

sup
k∈N

∥∥(6f(x1) +A0(x1) − C0(x1), . . . , f(6xk) +A0(xk) − C0(xk)
)∥∥

k ≤ 136
231

ε (3.33)

for all x1, . . . , xk ∈ E. So we obtain (3.31) by letting A = −A0/6 and C = C0/6.
To prove the uniqueness of A and C, let A1, C1 : E → F be other additive and cubic

mappings satisfying (3.31). Let A′ = A − A1 and C′ = C − C1. Then, using property (a), we
obtain

∥∥A′(x) + C′(x)
∥∥ ≤ ∥∥f(x) −A(x) − C(x)∥∥ +

∥∥f(x) −A1(x) − C1(x)
∥∥ ≤ 136

693
ε (3.34)

for all x ∈ E, then (3.34) implies that

lim
n→∞

1
8n

∥∥A′(2nx) + C′(2nx)
∥∥ = 0 (3.35)

for all x ∈ E. Therefore, C′(x) = 0 for all x ∈ E. By (3.34), we have A′(x) = 0 for all x ∈ E. This
completes the proof of the theorem.

Theorem 3.6. Suppose that a mapping f : E → F satisfies f(0) = 0 and

sup
k∈N

∥∥(Df
(
x1, y1

)
, . . . , Df

(
xk, yk

))∥∥
k ≤ ε (3.36)

for all x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique additive mapping A : E → F, a unique
cubic mapping C : E → F, and a unique quartic mapping Q : E → F such that

sup
k∈N

∥∥(f(x1) −A(x1) − C
(
x1 −Q(x1), . . . , f(xk) −A(xk) − C(xk) −Q(xk)

)∥∥
k ≤ 953

6930
ε (3.37)

for all x1, . . . , xk ∈ E.

Proof. Let fo(x) = (1/2)(f(x) − f(−x)) for all x ∈ E, then fo(0) = 0, fo(−x) = −fo(x) and

sup
k∈N

∥∥(Dfo
(
x1, y1

)
, . . . , Dfo

(
xk, yk

))∥∥
k ≤ ε (3.38)

for all x1, . . . , xk, y1, . . . , yk ∈ E. From Theorem 3.5, it follows that there exists a unique
additive mapping A : E → F and a unique cubic mapping C : E → F satisfying (3.31).

Let fe(x) = (1/2)(f(x) + f(−x)) for all x ∈ E, then fe(0) = 0, fe(−x) = fe(x) and

sup
k∈N

∥∥(Dfe
(
x1, y1

)
, . . . , Dfe

(
xk, yk

))∥∥
k ≤ ε (3.39)
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for all x1, . . . , xk, y1, . . . , yk ∈ E. By Theorem 3.3, there exists a unique quartic mapping
Q : E → F satisfying (3.3). Now it is obvious that (3.37) holds for all x1, . . . , xk ∈ E. This
completes the proof of the theorem.
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