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New characterizations of partial isometries and EP elements in Banach algebra are presented.

1. Introduction

Generalized inverses of matrices have important roles in theoretical and numerical methods
of linear algebra. The most significant fact is that we can use generalized inverses of matrices,
in the case when ordinary inverses do not exist, in order to solve some matrix equations.
Similar reasoning can be applied to linear (bounded or unbounded) operators on Banach and
Hilbert spaces. Then, it is interesting to consider generalized inverses of elements in Banach
and C∗-algebras, or more general, in rings with or without involution.

LetA be a complex unital Banach algebra. An element a ∈ A is generalized (or inner)
invertible, if there exists some b ∈ A such that aba = a holds. In this case b is a generalized (or
inner) inverse of a. If aba = a, then take c = bab to obtain the following: aca = a and cac = c.
Such c is called a reflexive (or normalized) generalized inverse of a. Finally, if aba = a, then
ab and ba are idempotents. In the case of the C∗-algebra, we can require that ab and ba are
Hermitian. We arrive at the definition of the Moore-Penrose inverse in C∗-algebras.

Definition 1.1. Let A be a unital C∗-algebra. An element a ∈ A is Moore-Penrose invertible if
there exists some b ∈ A such that

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba, (1.1)

hold. In this case b is the Moore-Penrose inverse of a, usually denoted by a†.
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If a is Moore-Penrose invertible in a C∗-algebra, then a† is unique, and the notation is
justified.

More general, if A is a unital Banach algebra, we have the following definition of
Hermitian elements.

Definition 1.2. An element a ∈ A is said to be Hermitian if ‖ exp(ita)‖ = 1 for all t ∈ R.

The set of all Hermitian elements of A will be denoted by H(A). Now, it is natural to
consider the following definition of the Moore-Penrose inverse in Banach algebras ([1, 2]).

Definition 1.3. LetA be a complex unital Banach algebra and a ∈ A. If there exists b ∈ A such
that

aba = a, bab = b, ab, ba are Hermitian, (1.2)

then the element b is the Moore-Penrose inverse of a, and it will be denoted by a†.

The Moore-Penrose inverse of a is unique in the case when it exists.
Although the Moore-Penrose inverse has many nice approximation properties, the

equality aa† = a†a does not hold in general. Hence, it is interesting to distinguish such
elements.

Definition 1.4. An element a of a unital Banach algebraA is said to be EP if there exists a† and
aa† = a†a.

The name EP will be explained latter. There is another kind of a generalized inverse
that commutes with the starting element.

Definition 1.5. Let A be a unital Banach algebra and a ∈ A. An element b ∈ A is the group
inverse of a, if the following conditions are satisfied:

aba = a, bab = b, ab = ba. (1.3)

The group inverse of a will be denoted by a# which is uniquely determined (in the
case when it exists).

Let X be a Banach space and L(X) the Banach algebra of all linear bounded operators
on X. In addition, if T ∈ L(X), then N(T) and R(T) stand for the null space and the range of
T , respectively. The ascent of T is defined as asc(T) = inf{n ≥ 0 : N(Tn) = N(Tn+1)}, and the
descent of T is defined as dsc(T) = inf{n ≥ 0 : R(Tn) = R(Tn+1)}. In both cases the infimum of
the empty set is equal to∞. If asc(T) < ∞ and dsc(T) < ∞, then asc(T) = dsc(T).

Necessary and sufficient for T# to exist is the fact that asc(T) = dsc(T) ≤ 1. If T ∈
L(X) is a closed range operator, then T# exists if and only if X = N(T) ⊕ R(T) (see [3]).
Obviously, R((T#)n) = R(T#) = R(T) = R(Tn) and N((T#)n) = N(T#) = N(T) = N(Tn), for
every nonnegative integer n. Now the name follows: EP means “equal projections” on R(Tk)
parallel toN(Tk) for all positive integers k.

Finally, if a ∈ A is an EP element, then clearly a# exists. In fact, a# = a†. On the other
hand, if a exists, then necessary and sufficient for a to be EP is that aa# is a Hermitian element
of A. Furthermore, in this case a# = a†.
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The left multiplication by a ∈ A is the mapping La : A → A, which is defined as
La(x) = ax for all x ∈ A. Observe that, for a, b ∈ A, Lab = LaLb and that La = Lb implies
a = b. If a ∈ A is both Moore-Penrose and group invertible, then La† = (La)† and La# = (La)#

in the Banach algebraL(A). According to [4, Remark 12], a necessary and sufficient condition
for a ∈ A to be EP is that La ∈ L(A) is EP.

A similar statement can be proved if we consider Ra ∈ L(A) instead of La ∈ L(A),
where the mapping Ra : A → A is the right multiplication by a, and defined as Ra(x) = xa
for all x ∈ A.

Let V(A) = H(A) + iH(A). Recall that according to [5, Hilfssatz 2(c)], for each a ∈
V(A) there exist necessary unique Hermitian elements u, v ∈ H(A) such that a = u + iv.
As a result, the operation a∗ = u − iv is well defined. Note that ∗ : V(A) → V(A) is not an
involution, in particular (ab)∗ does not in general coincide with b∗a∗, a, b ∈ V(A). However,
if A = V(A) and for every h ∈ H(A), h2 = u + iv with uv = vu, u, v ∈ H(A), then A is a
C∗-algebra whose involution is the just considered operation, see [5].

An element a ∈ V(A) satisfying aa∗ = a∗a is called normal. If a = u + iv ∈ V(A)
(u, v ∈ H(A)), it is easy to see that a is normal if and only if uv = vu. An element a ∈ V(A)
satisfying a = aa∗a is called a partial isometry [6].

Note that necessary and sufficient for a ∈ A to belong to H(A) is that La ∈ H(L(A)).
Therefore, a ∈ V(A) is normal if and only if La ∈ V(L(A)) is normal. Observe that if a ∈
V(A) then La ∈ V(L(A)) and La∗ = (La)∗.

Theorem 1.6 (see [7]). Let X be a Banach space and consider T ∈ L(X) such that T† exists and
T ∈ V(L(X)). Then the following statements hold:

(i) R(T∗) ⊆ R(T) if and only if T = TTT† ,

(ii) N(T) ⊆ N(T∗) if and only if T = T†TT .

In addition, if the conditions of statements (i) and (ii) are satisfied, then T is an EP operator.

Notice that R(T∗) ⊆ R(T) is equivalent to T∗ = TT†T∗, by R(T) = R(TT†) = N(I − TT†).
The condition N(T) ⊆ N(T∗) is equivalent to T∗ = T∗T†T , because N(T) = N(T†T) = R(I −
T†T) [7]. Hence, by Theorem 1.6, we deduce the following.

Corollary 1.7. Let X be a Banach space and consider T ∈ L(X) such that T† exists and T ∈
V(L(X)). Then the following statements hold:

(i) T∗ = TT†T∗ if and only if T = TTT†,

(ii) T∗ = T∗T†T if and only if T = T†TT .

There are many papers characterizing EP elements, partial isometries, or related
classes (such as normal elements). See, for example [4, 7–23]. Properties of theMoore-Penrose
inverse in various structures can be found in [1, 2, 24–28].

In [8] Baksalary et al. used an elegant representation of complex matrices to explore
various classes of matrices, such as partial isometries and EP. Inspired by [8], in paper [21]
we use a different approach, exploiting the structure of rings with involution to investigate
partial isometries and EP elements.

In this paper we characterize elements in Banach algebras which are EP and partial
isometries.
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2. Partial Isometry and EP Elements

Before the main theorem, we give some characterizations of partial isometries in Banach
algebras in the following theorem.

Theorem 2.1. Let A be a unital Banach algebra and consider a ∈ V(A) such that a† and a# exist.
Then the following statements are equivalent:

(i) a is a partial isometry,

(ii) a#a∗a = a#,

(iii) aa∗a# = a#.

Proof. (i) ⇒ (ii): If aa∗a = a, then

a#a∗a =
(
a#
)2
(aa∗a) =

(
a#
)2
a = a#. (2.1)

(ii) ⇒ (i): From a#a∗a = a#, it follows that

aa∗a = a2
(
a#a∗a

)
= a2a# = a. (2.2)

(i) ⇔ (iii): This part can be proved similarly.

In the following result we present equivalent conditions for an bounded linear
operator T on Banach space X to be a partial isometry and EP. Compare with [21, Theorem
2.3] where we studied necessary and sufficient conditions for an element a of a ring with
involution to be a partial isometry and EP.

Theorem 2.2. Let X be a Banach space and consider T ∈ L(X) such that T† and T# exist and
T ∈ V(L(X)). Then the following statements are equivalent:

(i) T is a partial isometry and EP,

(ii) T is a partial isometry and normal,

(iii) T∗ = T#,

(iv) TT∗ = T†T and T = TTT†,

(v) T∗T = TT† and T = T†TT ,

(vi) TT∗ = TT# and T = TTT†,

(vii) T∗T = TT# and T = T†TT ,

(viii) T∗T† = T†T#,

(ix) T†T∗ = T#T†,

(x) T†T∗ = T†T# and T = TTT† ,

(xi) T∗T† = T#T† and T = T†TT ,

(xii) T∗T# = T#T† and T = T†TT ,
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(xiii) T∗T† = T#T# and T = T†TT ,

(xiv) T∗T# = T#T# and T = T†TT ,

(xv) TT∗T# = T† and T = T†TT ,

(xvi) T∗T2 = T and T = T†TT ,

(xvii) T2T∗ = T and T = TTT†,

(xviii) TT†T∗ = T# and T = TTT†,

(xix) T∗T†T = T# and T = T†TT .

Proof. (i)⇒ (ii): If T is EP, then T = TTT† and, by Corollary 1.7, T∗ = TT†T∗. Since T is a partial
isometry, we have

TT∗T# = (TT∗T)
(
T#

)2
= T

(
T#

)2
= T#,

T∗T#T = TT†T∗T#T = T†(TT∗T)T# = T†TT# = T#TT# = T#.

(2.3)

Thus, TT∗T# = T∗T#T and T = T†TT imply T is normal, by [7, Theorem 3.4(i)].
(ii) ⇒ (iii): The condition T is normal and [7, Theorem 3.4(vii)] imply T∗ = TT∗T#.

Because T is a partial isometry, we have

T∗ = TT∗T# = (TT∗T)
(
T#

)2
= T

(
T#

)2
= T#. (2.4)

(iii) ⇒ (i): Using the equality T∗ = T#, we get:

TT∗ = TT# = T#T = T∗T, TT∗T = TT#T = T. (2.5)

By [7, Theorem 3.3], T is normal gives T is EP. The condition (i) is satisfied.
(ii) ⇒ (iv): By [7, Theorem 3.4(ii)], T is normal gives TT∗T# = T#TT∗ and T = TTT† .

Now

TT∗ = T
(
T#TT∗

)
= T(TT∗)T# = (TT∗T)T# = TT#. (2.6)

Since T is normal implies T is EP, then TT∗ = T#T = T†T .
(iv) ⇒ (vi): Assume that TT∗ = T†T and T = TTT† . Then

T#(TT∗) = T#T†T =
(
T#

)2
TT†T = T#, (2.7)

implying

TT∗T# = T
(
T#TT∗

)
T# = TT#T# = T#, (2.8)
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and T#TT∗ = TT∗T#. By [7, Theorem 3.4(ii)], T is normal and, by [7, Theorem 3.3], T is EP.
Therefore, TT∗ = T†T = TT† = TT#.

(vi) ⇒ (ii): Let TT∗ = TT# and T = TTT† . Then

T(TT∗) = TTT# = T =
(
TT#

)
T = TT∗T, (2.9)

which yields that T is a partial isometry and normal by [7, Theorem 3.4(x)].
(ii) ⇒ (v) ⇒ (vii) ⇒ (ii): These implications can be proved in the same way as (ii) ⇒

(iv) ⇒ (vi) ⇒ (ii) using [7, Theorem 3.4(i)] and [7, Theorem 3.4(ix)].
(i) ⇒ (viii): From (i) follows (iii) T∗ = T# and T is EP which gives (viii).
(viii) ⇒ (xi): Suppose that T∗T† = T†T#. Then

TT# = T2
(
T#

)2
= TTT†T

(
T#

)2
= TT

(
T†T#

)
= TTT∗T†

= TT
(
T∗T†

)
TT† = TTT†T#TT† = TTT†TT#T† = TT†.

(2.10)

Hence, TT# is Hermitian and T is EP. Now condition (xi) is satisfied by

T∗T† = T†T# = T#T†, T†TT = TT†T = T. (2.11)

(xi) ⇒ (xvi): The assumptions T∗T† = T#T† and T = T†TT give, by Corollary 1.7,

T∗T2 =
(
T∗T†

)
TT2 = T#T†TT2 =

(
T#

)2
TT†TT2 = T. (2.12)

(xvi) ⇒ (xiv): Multiplying T∗T2 = T by (T#)3 from the right side, we get T∗T# = T#T#.
Hence, T satisfies condition (xiv).

(xiv) ⇒ (xii): If T∗T# = T#T# and T = T†TT , then we see that T∗T = (T∗T#)T2 =
T#T#T2 = T#T . Thus, by (vii) ⇔ (i), we get that T is EP, and

T∗T# = (T∗T)
(
T#

)2
= T#T

(
T#

)2
=
(
T#

)2
= T#T†. (2.13)

(xii) ⇒ (vii): Applying T∗T# = T#T† and T = T†TT , we obtain the condition (vii):

T∗T =
(
T∗T#

)
T2 = T#

(
T†T2

)
= T#T. (2.14)

(i) ⇒ (ix) ⇒ (x) ⇒ (xvii): Similarly as (i) ⇒ (viii) ⇒ (xi) ⇒ (xvi).
(xvii) ⇒ (vi): Suppose that T2T∗ = T and T = TTT†. Then TT∗ = T#T2T∗ = T#T and the

condition (vi) is satisfied.
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(xiii) ⇒ (xi): Multiplying the equality T∗T† = T#T# by TT† from the right side, we
obtain T∗T† = T#T†. So, we deduce that condition (xi) holds.

(xi) ⇒ (xiii): By (xi), we have that T is EP and condition (xiii) is satisfied.
(xv)⇒ (i): Let TT∗T# = T† and T = T†TT . Now, we observe that

TT∗T =
(
TT∗T#

)
T2 = T†TT = T,

T† = TT∗T# = T#T(TT∗T)
(
T#

)2
= T#TT

(
T#

)2
= T#.

(2.15)

Therefore, T is a partial isometry and EP.
(i) ⇒ (xv): The hypothesis T is EP gives T = T†TT and, because (i) implies (iii),

TT∗T# = TT#T# = T# = T†. (2.16)

(xviii) ⇒ (iii): By the assumption TT†T∗ = T# and T = TTT†, we obtain T∗ = TT†T∗ =
T#.

(iii) ⇒ (xviii): From T∗ = T#, we get

TT†T∗ = TT†T# = TT†T
(
T#

)2
= T#, (2.17)

and T is EP implying T = TTT† .
(iii) ⇔ (xix): Analogy as (iii) ⇔ (xviii).

Now, we return to a general case, that is, A is a complex unital Banach algebra, and
a ∈ A is both Moore-Penrose and group invertible.

Corollary 2.3. Theorem 2.2 holds if we changeL(X) for an arbitrary complex Banach algebraA, and
one changes T by an a ∈ A such that a† and a# exist.

Proof. If a ∈ A satisfies the hypothesis of this theorem, then La ∈ L(A) satisfies the
hypothesis of Theorem 2.2. Now, if any one of statements (i)–(xix) holds for a, then the same
statement holds for La. Therefore, La is a partial isometry and EP in L(A). By [4, Remark
12], it follows that a is EP in A. It is well-known that if a ∈ V(A) then La ∈ V(L(A)) and
La∗ = (La)∗. Since La is a partial isometry, LaLa∗La = La, that is, Laa∗a = La. So, we deduce that
aa∗a = a and a a partial isometry in A.

A similar statement can be proved if we consider Ra ∈ L(A) instead of La ∈ L(A).

The cancellation property and the identity (ab)∗ = b∗a∗ are important when we proved
the equivalent statements characterizing the condition of being a partial isometry and EP in a
ring with involution R in [21]. Since ∗ : V(A) → V(A) is not in general an involution, and it
is not clear if the cancellation property holds for Moore-Penrose invertible elements of V(A),
in most statements of Theorem 2.2 an additional condition needs to be considered.
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[13] D. S. Djordjević and J. J. Koliha, “Characterizing Hermitian, normal and EP operators,” Filomat, vol.
21, no. 1, pp. 39–54, 2007.
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