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A systemic study of some families of the modified q-Bernoulli numbers and polynomials with
weight α is presented by using the p-adic q-integration Zp. The study of these numbers and
polynomials yields an interesting q-analogue related to Bernoulli numbers and polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper Zp,Qp,C, and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field, and the completion of the algebraic closure of Qp. Let vp be the normalized
exponential valuation of Cp with |p|p = p−vp(p) = 1/p. When one talks of q-extension, q is
variously considered as an indeterminate, a complex q ∈ C, or a p-adic number q ∈ Cp. If
q ∈ C, one normally assumes |q| < 1. If q ∈ Cp, then we assume |q − 1|p < p−1/(p−1) so that
qx = exp(x log q) for |x|p ≤ 1.

The q-number [x]q is defined by

[x]q =
1 − qx

1 − q
, (1.1)

see [1–10].
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We say that f is a uniformly differentiable function at a point a ∈ Zp and denote this
property by f ∈ UD(Zp), if the difference quotients

Ff

(
x, y
)
=

f(x) − f
(
y
)

x − y
(1.2)

have a limit l = f ′(a) as (x, y) → (a, a). c.f. [11].
For f ∈ UD(Zp,Cp) = {f | f : Zp → Cp is uniformly differentiable functions}, the

p-adic q-integral on Zp is defined by

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN
]
q

pN−1∑

x=0

f(x)qx, (1.3)

(see [3]).
From (1.3), we can easily derive the following:

qnIq
(
fn
)
= Iq
(
f
)
+
(
q − 1

)n−1∑

l=0

f(l)ql +
q − 1
log q

n−1∑

l=0

qlf ′(l), (1.4)

where fn(x) = f(x + n), (see [5, 12]).
In [1, 2], Carlitz defined a set of numbers Bk,q inductively by

B0,q = 1,
(
qBq + 1

)k − Bk, q =

⎧
⎨

⎩

1, if k = 1,

0, if k > 1,
(1.5)

with the usual convention about replacing Bk
q by Bk,q.

These numbers are the q-extension of ordinary Bernoulli numbers. But they do not remain
finite when q = 1. So, Carlitz modified (1.5) as follows:

β0,q = 1, q
(
qβ + 1

)k − βk,q =

⎧
⎨

⎩

1, if k = 1,

0, if k > 1,
(1.6)

with the usual convention of replacing βk by βk,q.
In [1], Carlitz also considered the extension of Carlitz’s q-Bernoulli numbers as follows:

βh0,q =
h

[h]q
, qh

(
qβh + 1

)k − βhk,q =

⎧
⎨

⎩

1, if k = 1,

0, if k > 1,
(1.7)

with the usual convention of replacing (βh)k by βh
k,q
.

In this paper, we construct the modified q-Bernoulli numbers with weight α, which
are different Carlitz’s q-Bernoulli numbers, by using p-adic q-integral equation. From (1.4),
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we derive some interesting identities and relations on the modified q-Bernoulli numbers and
polynomials.

2. The Modified q-Bernoulli Numbers and Polynomials with Weight α

In this section, we assume α ∈ Q. Now, we define the modified q-Bernoulli numbers with
weight α (= B̃

(α)
n,q ) as follows:

B̃
(α)
n,q =

∫

Zp

q−x[x]nqα dμq(x)

=
1

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l αl

[αl]q
.

(2.1)

Thus, by (2.1), we have

B̃
(α)
n,q =

1
(
1 − qα

)n
q − 1
log q

− n
α

[α]q

∞∑

m=0

qαm[m]n−1qα . (2.2)

Therefore, by (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+ = N ∪ {0}, one has

B̃
(α)
n,q =

α
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l l

[αl]q

=
1

(
1 − qα

)n
q − 1
log q

− n
α

[α]q

∞∑

m=0

qαm[m]n−1qα .

(2.3)

Let us define the generating function of the modified q-Bernoulli numbers with weight
α as follows:

F
(α)
q (t) =

∞∑

n=0

B̃
(α)
n,q

tn

n!
. (2.4)

Then, by (2.3) and (2.4), we get

F
(α)
q (t) =

q − 1
log q

e(1/(1−q
α))t − t

α

[α]q

∞∑

m=0

qαme[m]qα t. (2.5)
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In the viewpoint of (2.1), we define the modified q-Bernoulli numbers with weight α as
follows:

B̃
(α)
n,q(x) =

∫

Zp

q−y
[
x + y

]n
qα dμq

(
y
)

=
n∑

l=0

(
n

l

)

[x]n−lqα qαlxB̃
(α)
l,q

=
(
[x]qα + qαxB̃

(α)
q

)n
, for n ∈ Z+,

(2.6)

with the usual convention of replacing (B̃(α)
q )

n
by B̃

(α)
n,q .

From (2.6), we note that

B̃
(α)
n,q(x) =

α
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)lqαlx l

[αl]q

=
1

(
1 − qα

)n
q − 1
log q

− n
α

[α]q
qαx

∞∑

m=0

qαm[m + x]n−1qα .

(2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.2. For n ∈ Z+, one has

B̃
(α)
n,q(x) =

α
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)lqαlx l

[αl]q

=
1

(
1 − qα

)n
q − 1
log q

− n
α

[α]q
qαx

∞∑

m=0

qαm[m + x]n−1qα .

(2.8)

Let F
(α)
q (t, x) =

∑∞
n=0B̃

(α)
n,q(x)(tn/n!) be the generating function of the modified q-

Bernoulli polynomials with weight α.
Then, by (2.7), we get

F
(α)
q (t, x) =

q − 1
log q

e(1/(1−q
α))t − t

α

[α]q

∞∑

m=0

qα(m+x)e[m+x]qα t . (2.9)

Therefore, by (2.9), we obtain the following corollary

Corollary 2.3. Let F(α)
q (t, x) =

∑∞
n=0B̃

(α)
n,q(x)(tn/n!). Then one has

F
(α)
q (t, x) =

q − 1
log q

e(1/(1−q
α))t − t

α

[α]q

∞∑

m=0

qα(m+x)e[m+x]qα t. (2.10)

In particular, F(α)
q (t, 0) = F

(α)
q (t).
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From Corollary 2.3, we can derive the following equation:

Fα
q (t, 1) − Fα

q (t) = t
α

[α]q
. (2.11)

By (2.5) and (2.11), we get

B̃
(α)
0,q =

q − 1
log q

, B̃
(α)
n,q(1) − B̃

(α)
n,q =

⎧
⎨

⎩

α

[α]q
, if n = 1,

0, if n > 1.
(2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, one has

B̃
(α)
0,q =

q − 1
log q

, B̃
(α)
n,q(1) − B̃

(α)
n,q =

⎧
⎨

⎩

α

[α]q
, if n = 1,

0, if n > 1.
(2.13)

By using (2.6), we obtain the following corollary.

Corollary 2.5. For n ∈ Z+, one has

B̃
(α)
0,q =

q − 1
log q

,
(
qαB̃

(α)
q + 1

)n − B̃
(α)
n,q =

⎧
⎨

⎩

α

[α]q
, if n = 1,

0, if n > 1.
(2.14)

with the usual convention of replacing (B̃(α)
q )

n
by B̃(α)

n,q .

From (1.4), we can derive the following equation:

∫

Zp

f(x + n)q−x dμq(x) =
∫

Zp

f(x)q−x dμq(x) +
q − 1
log q

n−1∑

l=0

f ′(l). (2.15)

Thus, by (1.6), (2.6), and (2.15), we get

B̃
(α)
m,q(n) − B̃

(α)
m,q =

α

[α]q
m

n−1∑

l=0

[l]m−1
qα qαl, n ∈ N, m ∈ Z+. (2.16)

Therefore, by (2.16), we obtain the following theorem.

Theorem 2.6. For n ∈ N, m ∈ Z+, one has

B̃
(α)
m,q(n) − B̃

(α)
m,q =

α

[α]q
m

n−1∑

l=0

[l]m−1
qα qαl. (2.17)
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From (2.6), we note that

B̃
(α)
n,q(x) =

∫

Zp

[
x + y

]n
qαq

−y dμq

(
y
)

= lim
N→∞

1
[
pN
]
q

pN−1∑

y=0

[
x + y

]n
qα

=
1 − q

1 − qd

d−1∑

a=0

lim
N→∞

1
[
pN
]
qd

pN−1∑

y=0

[
a + x + dy

]n
qα

=
[d]nqα

[d]q

d−1∑

a=0

∫

Zp

[a + x

d
+ y
]n

qαd
q−dy dμqd

(
y
)

=
[d]nqα

[d]q

d−1∑

a=0

B̃
(α)
n,qd

(x + a

d

)
.

(2.18)

Therefore, by (2.18), we obtain the following distribution relation for the modified q-
Bernoulli polynomials with weight α.

Theorem 2.7. For d ∈ N, n ∈ Z+, one has

B̃
(α)
n,q(x) =

[d]nqα

[d]q

d−1∑

a=0

B̃
(α)
n,qd

(x + a

d

)
. (2.19)

To derive the relation of reflection symmetry of the modified q-Bernoulli polynomials
with weight α, we evaluate the following p-adic q-integral on Zp:

B̃
(α)
n,q−1(1 − x) =

∫

Zp

[1 − x + x1]nq−αq
x1 dμq−1(x1)

=
1

(
1 − q−α

)n
n∑

l=0

(
n

l

)

(−1)lqαlx−1 αl

[αl]q

=
(−1)n
q

qαn
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)lqαlx αl

[αl]q

= qαn−1(−1)nB̃(α)
n,q(x).

(2.20)

Therefore, by (2.20), we obtain the following reflection symmetry relation of the
modified q-Bernoulli polynomials with weight α.

Theorem 2.8. For n ∈ Z+, one has

B̃
(α)
n,q−1(1 − x) = qαn−1(−1)nB̃(α)

n,q(x). (2.21)
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From (1.3), we note that

1
q

∫

Zp

[1 − x]nq−αq
−x dμq(x) = (−1)nqαn−1

∫

Zp

[x − 1]nqαq
−x dμq(x)

= (−1)nqαn−1B̃(α)
n,q(−1)

= B̃
(α)
n,q−1(2),

(2.22)

and, by (2.6), we get

B̃
(α)
n,q(2) =

(
q2αB̃

(α)
q + [2]qα

)n
=
(
qα
(
qαB̃

(α)
q + 1

)
+ 1
)n

=
n∑

l=0

(
n

l

)

qαl
(
qαB̃

(α)
q + 1

)l

= B̃
(α)
0,q + nqα

(
qαB̃

(α)
q + 1

)1
+

n∑

l=2

(
n

l

)

qαl
(
qαB̃

(α)
q + 1

)l

=

(
q − 1

)

log q
+ nqα

(
α

[α]q
+ B̃

(α)
1,q

)

+
n∑

l=2

(
n

l

)

qαlB̃
(α)
l,q

= nqα
α

[α]q
+

n∑

l=0

(
n

l

)

qαlB̃
(α)
l,q .

(2.23)

Let n ∈ N with n ≥ 2. Then, by (2.12) and (2.23), we obtain the following theorem.

Theorem 2.9. For n ∈ N with n ≥ 2, one has

B̃
(α)
n,q(2) − nqα

α

[α]q
=
(
qαB̃

(α)
q + 1

)n
= B̃

(α)
n,q . (2.24)

In particular,

1
q

∫

Zp

[1 − x]nq−αq
−x dμq(x) = B̃

(α)
n,q−1(2) =

n

q

α

[α]q
+ B̃

(α)
n, q−1 . (2.25)
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