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We study a general Gause-type predator-prey model with monotonic functional response
under Dirichlet boundary condition. Necessary and sufficient conditions for the existence and
nonexistence of positive solutions for this system are obtained by means of the fixed point index
theory. In addition, the local and global bifurcations from a semitrivial state are also investigated
on the basis of bifurcation theory. The results indicate diffusion, and functional response does help
to create stationary pattern.

1. Introduction

In this paper, we are interested in the following semilinear elliptic system with monotonic
functional response under Dirichlet boundary condition:

−d1Δu = ug(u) − p(u)v in Ω,

−d2Δv = −cv +m(x)p(u)v in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 1 is an integer) with a smooth boundary ∂Ω.
The two functions u and v represent the densities of the prey and predator, respectively. The
positive constants d1 and d2 are the diffusion coefficients of the corresponding species, c is
the death rate of the predator, andm(x), which is assumed to be space dependent, represents
the conversion rate of the prey to predators. The function g(u) denotes the growth rate of
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the prey species in the absence of predator. Throughout this paper, we impose the following
hypotheses on the function g(u).

(H1) g ∈ C1([0,∞)), g(0) > 0, −g̃ < gu(u) < 0 for all u ≥ 0 with a positive constant g̃;
there exists a unique positive constant K such that g(K) = 0.

Obviously, the classical Logistic growth rate g(u) = r(1 − (u/K)) satisfies (H1).
The function p(u) denotes the functional response of predators to prey. According
to different biology backgrounds, the functional response p(u) may have several
forms and many important results on the dynamics of predator-prey systems
with different functional response have been obtained (see [1–20] and references
therein). In many predator-prey interactions, the functional responses satisfies the
following hypotheses.

(H2) p ∈ C2([0,∞)), p(0) = 0, 0 < pu(u) < p̂ for all u > 0 with a positive constant p̂.

It is easy to see that Holling-type I, Holling-type II, Holling-type III, and Ivelev
functional response satisfy hypothesis (H2).

In this work, we aim to understand the influence of diffusion and functional response
on pattern formation, that is, the positive solutions of (1.1). Throughout this paper, a solution
(u, v) of (1.1) is called a positive solution if u(x) > 0, v(x) > 0 for all x ∈ Ω and
(∂w/∂νx), (∂v/∂νx) < 0 for all x ∈ ∂Ω, where ∂νx stand for the outward unit norm toΩ at x. As
a consequence, the results indicate the stationary pattern arises when the diffusion coefficient
enter into certain regions. In other words, we show that diffusion does help to create
stationary pattern and diffusion and functional response can become determining factors
in the formation pattern. Furthermore, we also investigate the properties of the nonconstant
positive solution by using local bifurcation theory introduced by Crandall and Rabinowitz
in [21] and global bifurcation theory introduced by López-Gómez and Molina-Meyer in
[22]. We remark that problem (1.1) with Neumann boundary conditions was discussed in
[5] recently. We point out that our results about the existence and nonexistence of positive
solutions are different from [5] (see Corollary 3.8 and Remark 3.9).

The rest of this paper is organized as follows. In Section 2, some necessary
preliminaries are introduced. In Section 3, we will give a priori upper bounds for positive
solutions and investigate the existence and nonexistence of positive solutions of (1.1). In
Section 4, the local bifurcations about parameter c are investigated. Finally, the results about
global bifurcations are obtained in Section 5.

2. Some Preliminaries

In order to give themain results and complete the corresponding proofs, we need to introduce
some necessary notations and theorems as the following.

For each h ∈ Cα(Ω) (0 < α < 1), let λ1(h) denote the principle eigenvalue of the
following eigenvalue problem:

−d1Δu + h(x)u = λu in Ω,

u = 0 on ∂Ω.
(2.1)
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Let λ∗1(h) denote the principle eigenvalue of the following eigenvalue problem:

−d2Δu + h(x)u = λu inΩ,

u = 0 on ∂Ω,
(2.2)

and denote λ1(0), λ∗1(0) by λ1, λ∗1 for simplicity. It is easy to know that λ1(h), λ∗1(h) is strictly
increasing (see [23, 24]).

In order to calculate the indexes at the trivial and semitrivial states by means of the
fixed point index theory, we also need to introduce the following theorem.

Theorem 2.1 (see [9, 13]). Assume h ∈ Cα(Ω) (0 < α < 1) and M is a sufficiently large number
such thatM > h(x) for all x ∈ Ω. Define a positive and compact operator L = (−d1Δ +M)−1(M −
h(x)). Denote the spectral radius of L by r(L).

(i) λ1(h) > 0 if and only if r(L) < 1;

(ii) λ1(h) < 0 if and only if r(L) > 1;

(iii) λ1(h) = 0 if and only if r(L) = 1.

It is easy to see that the corresponding conclusions in Theorem 2.1 are also correct
if the positive and compact operator L = (−d1Δ +M)−1(M − h(x)) is replaced by L =
(−d2Δ +M)−1(M − h(x)).

From Theorem 2.1, we see that it is crucial to know the sign of the eigenvalue λ1,k(h)
to determine the spectral radius of L. The following theorem give some sufficient conditions
to determine the sign of the eigenvalue λ1,k(h).

Theorem 2.2 (see [7, 9, 10, 23, 24]). Let h(x) ∈ L∞(Ω) and ϕ ≥ 0, ϕ/≡ 0 in Ω with ϕ = 0 on ∂Ω.
Then one has

(i) if 0/≡ −Δϕ + h(x)ϕ ≤ 0, then λ1(h(x)) < 0;

(ii) if 0/≡ −Δϕ + h(x)ϕ ≥ 0, then λ1(h(x)) > 0;

(iii) if −Δϕ + h(x)ϕ ≡ 0, then λ1(h(x)) = 0.

Consider the following equation:

−d1Δϕ = ϕg
(

ϕ
)

in Ω,

ϕ = 0 on ∂Ω,
(2.3)

where Ω is a bounded domain in RN(N ≥ 1 is an integer) with a smooth boundary ∂Ω.

Theorem 2.3 (see [7, 23, 24]). Assume that the function g(ϕ) : Ω → R satisfies the following
hypotheses:

(i) g(ϕ) ∈ C1(Ω) and gϕ(ϕ) < 0 for all ϕ ≥ 0;

(ii) g(ϕ) ≤ 0 for ϕ ≥ C, where C is a positive constant.

Then, (2.3) has a unique positive solution if λ1(−g(0)) < 0.
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LetΘ(g(ϕ)) be the unique positive solution of (2.3)when the unique positive solution
exists. Denote Θ(g(0)) by Θ for simplicity.

Remark 2.4. It is easy to see that if the function g(ϕ) satisfies the hypothesis (H1), then it
must satisfies the conditions (i) and (ii) in Theorem 2.3. We also point out that the condition
λ1(−g(0)) < 0 holds if and only if g(0) > λ1. Therefore, if the function g(ϕ) satisfies the
hypothesis (H1) and g(0) > λ1, then (2.3) has a unique positive solution.

Now, we introduce the fixed point index theory which plays an important role in
finding the sufficient conditions for the existence of positive solutions of model (1.1).

Let E be a real Banach space and let W ⊂ E be the natural positive cone of E. W ⊂ E is
a closed convex set. W is called a total wedge if τW ⊂ W and W − W = E. For y ∈ W, define
Wy = {x ∈ E : y + γ ∈ W for some γ > 0} and Sy = {x ∈ Wy : −x ∈ Wy}. Then, Wy is a wedge
containing W, y, −y, while Sy is a closed subset of E containing y. Let T be a compact linear
operator on E which satisfies T(Wy) ⊂ Wy. We say that T has property α on Wy if there is a
t ∈ (0, 1) and an ω ∈ Wy \Sy such that (I − tT)ω ∈ Sy. LetA : W → W be a compact operator
with a fixed point y ∈ W and A, a Fréchet differentiable at y. Let L = A′(y) be the Fréchet
derivative ofA at y. Then, L maps Wy into itself. We denote by deg

W
(I −A,D) the degree of

I −A in D relative to W, indexW(A, y) the fixed point index ofA at y relative to W. Then, the
following theorem can be obtained.

Theorem 2.5 (see [5, 11, 13]). Assume that I − L is invertible on Wy.

(i) If L have property α on Wy, then indexW(A, y) = 0;

(ii) If L does not have property α on Wy, then indexW(A, y) = (−1)σ , where σ is the sum of
algebraic multiplicities of the eigenvalues of L which are greater than 1.

Finally, we introduce a result about global bifurcation, which was introduced by
López-Gómez and Molina-Meyer in [22] and we state here for convenience.

LetU be an ordered Banach space whose positive cone P is normal and has nonempty
interior, and consider the nonlinear abstract equation:

F(λ, u) = L(λ)u + R(λ, u), (2.4)

where

(HL) L(λ) := IU − N(λ) ∈ L(U), λ ∈ R, is a compact and continuous operator pencil
with a discrete set of singular values, denoted by G.

(HR) R ∈ C(R ×U;U) is compact on bounded sets and

lim
u→ 0

R(c, u)
‖u‖C(Ω)

= 0 (2.5)

uniformly on compact intervals of R.

(HP) The solutions of (2.4) satisfy the strong maximum principle in the sense that

(c, u) ∈ R × (P \ {0}), F(c, u) = 0 =⇒ u ∈ IntP, (2.6)

where IntP stands for the interior of the cone P .
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Define the parity mapping C : G 
→ {−1, 0, 1} by

C(σ) :=
1
2
lim
ε 
→0

[Ind(0,N(σ + ε)) − Ind(0,N(σ − ε))], σ ∈ G. (2.7)

Then, thanks to [25, Theorem 6.2.1], 2.4 possesses a component emanating from (λ, 0) at λ0 if
C(λ0) ∈ {−1, 1}. Such a component will be subsequently denoted by Cλ0 . Then, the following
abstract result hold.

Theorem 2.6. Suppose that λ0 ∈ G satisfies C(λ0)/= 0,

N[L(λ0)] = span
[

ϕ0
]

, ϕ0 ∈ P \ {0}, (2.8)

and N(λ0) is strongly positive in the sense that

N(λ0)(P \ {0}) ⊂ IntP. (2.9)

Then, there exists a subcomponent CP
λ0
of Cλ0 in R × IntP such that (λ0, 0) ∈ C

P

λ0 .
Moreover, if λ0 is the unique singular value for which 1 is an eigenvalue of N(λ) to a positive

eigenvector, then CPλ0 must be unbounded in R ×U.

Remark 2.7. When we are working in a product-ordered Banach space, the conditions (2.6)
and (2.9) can be modified as

(c, u, v) ∈ [R × (P \ {0}) × (P \ {0})], F(c, u, v) = 0 =⇒ (u, v) ∈ IntP × IntP,

N(c)([P \ {0}] × [P \ {0}]) ⊂ IntP × IntP.
(2.10)

For the technical details, one can refer to [25, Theorem 7.2.2] and [26, Proposition 2.2]. To
avoid a repetition, we omitted it herein.

3. Existence and Nonexistence of Stationary Pattern

At first, we introduce the following lemma which gives the necessary condition for (1.1) to
have positive solutions.

Lemma 3.1. If problem (1.1) has a positive solution, then g(0) > λ1 and −λ∗1 < c < −λ∗1(−mp(Θ)).

Proof. Assume (u, v) is a positive solution of (1.1). Then, it is obvious that g(0) > λ1 and u < Θ
by maximum principle. Because (u, v) satisfies

−d2Δv = −cv +mp(u)v in Ω,

v = 0 on ∂Ω,
(3.1)
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we have

0 = λ∗1
(

c −mp(u)) > λ∗1
(

c −mp(Θ)
)

= c + λ∗1
(−mp(Θ)

)

,

0 = λ∗1
(

c −mp(u)) < λ∗1(c) = c + λ∗1.
(3.2)

So, −λ∗1 < c < −λ∗1(−mp(Θ)).

In the rest of this section, we shall prove that the necessary conditions in Lemma 3.1
are also sufficient conditions by means of the fixed point index theory. So, we need to obtain
a priori bound for the positive solutions of (1.1).

Theorem 3.2. Assume c > −λ∗1 and (u, v) is a positive solution of (1.1). Then, one has

u ≤ g(0), v ≤ g(0)
(

cd1m

d2
+mg(0)

)

∥

∥

∥

∥

∥

(

−Δ +
c

d2

)−1∥∥
∥

∥

∥

C(Ω)

. (3.3)

Proof. It is obvious that u(x) ≤ g(0) by the maximum principle. From (1.1), we can find that

−Δ(d1mu + d2v) = −cv +mp(u)v +mug(u) −mp(u)v
= −cv +mug(u)

= − c

d2
(d1mu + d2v) + u

(

cd1
d2

m +mg(u)
)

(3.4)

and hence

(

−Δ +
c

d2

)

(d1mu + d2v) = u
(

cd1
d2

m +mg(u)
)

. (3.5)

Therefore,

v ≤ 1
d2

(d2v + d1mu) ≤
(

−Δ +
c

d2

)−1 u
d2

(

cd1
d2

m +mg(u)
)

≤ g(0)
d2

(

cd1m

d2
+mg(0)

)(

−Δ +
c

d2

)−1
(1)

≤ g(0)
d2

(

cd1m

d2
+mg(0)

)

∥

∥

∥

∥

∥

(

−Δ +
c

d2

)−1∥∥
∥

∥

∥

C(Ω)

.

(3.6)
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Now, we introduce the following notations:

E =
{

C1
0

(

Ω
)

× C1
0

(

Ω
)}

,

N =
{

ϕ ∈ C1
0

(

Ω
)

: ϕ ≥ 0 in Ω
}

,

W = N × N,

D = {(u, v) ∈ W : u ≤ (K + 1), v ≤ (R + 1)},

(3.7)

where R = (g(0)/d2)((cd1m)/d2 + mg(0))‖(−Δ + (c/d2))
−1‖C(Ω). Take q sufficiently

large with q > max{g(0) + pu(0)R,−c + p(0)} such that ug(u)−p(u)v+qu and −cv+p(u)v+qv
are, respectively, monotone increasing with respect to u and v for all (u, v) ∈ [0, K] × [0, R].

Define a positive and compact operator R : E → E by

R(u, v) =

⎛

⎝

(−d1Δ + q
)−1[

ug(u) − p(u)v + qu
]

(−d2Δ + q
)−1[−cv + p(u)v + qv

]

⎞

⎠. (3.8)

Remark 3.3. (i) By the maximum principle, it is easy to see that v ≡ 0 if u ≡ 0 in Ω in system
(1.1). On the other hand, if v ≡ 0, then we have −d1Δu = ug(u) in Ω and u = 0 on ∂Ω. From
the assumption (H1), we see that (Θ, 0) is the only semitrivial solution of (1.1) if g(0) > λ1.
Moreover, (1.1) does not have any other constant solution except the trivial solution (0, 0).

(ii) Observe that (1.1) is equivalent to (u, v) = R(u, v). Then, it is sufficient to prove
that R has a nonconstant positive fixed point in D to show that (1.1) has a positive solution.

(iii) From the Remarks (i) and (ii), we can see that it is necessary to calculate the fixed
point index of R at (0, 0) and (Θ, 0). By Kronecker’s existence theorem [23], we also need to
calculate the topological degree ofR in D to prove that the necessary conditions in Lemma 3.1
are also sufficient.

At first, we shall calculate the topological degree of the operator R in D and the fixed
point index of the operator at (0, 0), that is, deg

W
(I −R,D) and indexW(R, (0, 0)). It is easy to

see that R has no fixed point on ∂D. Then, the deg
W
(I − R,D) is well defined.

For μ ∈ [0, 1], we define a positive and compact operator Rμ : E → E by

Rμ(u, v) =

⎛

⎝

(−d1Δ + q
)−1[

μ
(

ug(u) − p(u)v) + qu]
(−d2Δ + q

)−1[
μ
(−cv + p(u) v

)

+ qv
]

⎞

⎠. (3.9)

Observe that

R′(0, 0) =

⎛

⎝

(−d1Δ + q
)−1(

g(0) + q
)

0

0
(−d2Δ + q

)−1(−c + q)

⎞

⎠ (3.10)

and S(0,0) = (0, 0), W(0,0) = N × N; we can obtain the following lemma and we omit the proofs
because the calculations are standard.
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Lemma 3.4. Assume that g(0) > λ1 and c > −λ∗1. Then, one has

(i) deg
W
(I − R,D) = 1,

(ii) indexW(R, (0, 0)) = 0.

Now, we need to calculate the fixed point index of the operator R at (Θ, 0), that is,
indexW(R, (Θ, 0)).

Lemma 3.5. Assume that g(0) > λ1 and c > −λ∗1, Then, one has

(i) if −c > λ∗1(−mp(Θ)), then indexW(R, (Θ, 0)) = 0;

(ii) if −c < λ∗1(−mp(Θ)), then indexW(R, (Θ, 0)) = 1.

Proof. (i) Observe R(Θ, 0) = (Θ, 0). Let L = R′(Θ, 0). Then,

L = R′(Θ, 0) =

⎛

⎝

(−d1Δ + q
)−1(

g(Θ) + Θgu(Θ) + q
) (−d1Δ + q

)−1(−p(Θ)
)

0
(−d2Δ + q

)−1(−c +mp(Θ) + q
)

⎞

⎠.

(3.11)

Assume L(ξ1, ξ2) = (ξ1, ξ2) for some (ξ1, ξ2) ∈ W(Θ,0) = C1
0(Ω) × N. Then,

−d1Δξ1 −
(

g(Θ) + Θgu(Θ)
)

ξ1 = −p(Θ)ξ2 in Ω,

−d2Δξ2 −mp(Θ)ξ2 = −cξ2 in Ω,

ξ1 = ξ2 = 0 on ∂Ω.

(3.12)

Taking account of ξ2 ∈ N, if ξ2 /= 0, then we can see from the second equation of (3.12) that
−c = λ∗1(−mp(Θ)). This contradicts −c /=λ∗1(−mp(Θ)). So, ξ2 = 0. Then, we can get from the
first equation of (3.12) that

−d1Δξ1 −
(

g(Θ) + Θgu(Θ)
)

ξ1 = 0 in Ω,

ξ1 = 0 on ∂Ω.
(3.13)

If ξ1 /= 0, then λ1(−g(Θ)−Θgu(Θ)) = 0. On the other hand, λ1(−g(Θ)−gu(Θ)Θ) > λ1(−g(Θ)) =
0, which is a contradiction. Therefore, (ξ1, ξ2) = (0, 0) and I − L is invertible on W(Θ,0).

We claim that L has property α on W(Θ,0). In fact, set

Ψ =
(−d2Δ + q

)−1(−c +mp(Θ) + q
)

. (3.14)
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Since −c > λ∗1(−mp(Θ)), we can see that r(Ψ) > 1 is an eigenvalue of Ψ with a corresponding
eigenfunction Φc > 0 by Theorem 2.1. Because S(Θ,0) = C1

0(Ω) × {0}, we know that (0, Φc) ∈
W(Θ,0) \ S(Θ,0). Then, we have

(

I − r−1c L

)

(

0

φc

)

=

(

0

φc

)

− r−1c

⎛

⎝

−(−d1Δ + q
)−1

p(Θ)φc
(−d2Δ + q

)−1(−c +mp(Θ) + q
)

φc

⎞

⎠

=

(−(−d1Δ + q
)−1

r−1c p(Θ)φc

0

)

∈ S(Θ,0).

(3.15)

This establishes our claim. Hence, indexW(R, (Θ, 0)) = 1.

(i) From Remark 3.3, we know that the unique nonnegative solutions of (1.1) are (0, 0)
and (Θ, 0) if −c < λ∗1(−mp(Θ)). Thus, we have

deg
W
(I − R, D) = indexW(R, (0, 0)) + indexW(R, (Θ, 0)). (3.16)

From Lemma 3.4, we know that deg
W
(I − R,D) = 1 and indexW(R, (0, 0)) = 0.

Therefore, we have indexW(R, (Θ, 0)) = 1.

Now, we can prove that g(0) > λ1 and −λ∗1 < c < −λ∗1(−mp(Θ)) are also the sufficient
conditions for model (1.1) to have a positive solution.

Lemma 3.6. If g(0) > λ1 and −λ∗1 < c < −λ∗1(−mp(Θ)), then model (1.1) has at least one positive
solution.

Proof. If g(0) > λ1 and −λ∗1 < c < −λ∗1(−mp(Θ)), by Lemmas 3.4 and 3.5, then we have

deg
W
(I − R,D) − indexW(R, (0, 0)) − indexW(R, (Θ, 0)) = 1. (3.17)

Hence, model (1.1) has at least one positive solution by Kronecker’s existence theorem [8].

From Lemmas 3.1 and 3.6, we can get the following theorem.

Theorem 3.7. Problem (1.1) has at least one positive solution if and only if g(0) > λ1 and −λ∗1 < c <
−λ∗1(−mp(Θ)).

Let λ0 denote the principle eigenvalue of the following eigenvalue problem:

−Δu = λu in Ω,

u = 0 on ∂Ω.
(3.18)

Then, it is easy to see that the condition g(0) > λ1 is equivalent to d1 < g(0)/λ0 and the condition
−λ∗1 < c < −λ∗1(−mp(Θ)) is equivalent to (λ∗1(−mp(Θ)) + mp(Θ))/λ0 < d2 < (λ∗1 + mp(Θ))/λ0.
Therefore, one can get the following corollary from Theorem 3.7.
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Corollary 3.8. Problem (1.1) has no positive solution if one of the following conditions hold:

(i) d1 > g(0)/λ0;

(ii) d2 > (λ∗1 +mp(Θ))/λ0;

(iii) d2 < (λ∗1(−mp(Θ)) +mp(Θ))/λ0.

Remark 3.9. From Corollary 3.8, we can see that if the prey diffuses so rapidly that d1 >
g(0)/λ0, then no positive solution exists. On the other hand, if the predator diffuses so rapidly
that d2 > (λ∗1 + mp(Θ))/λ0 or diffuses so slowly that d2 < (λ∗1(−mp(Θ)) + mp(Θ))/λ0, then
we can also observe the same phenomena. These results are different from the corresponding
results in paper [5]. In paper [5], if the predator diffuse so rapidly that d2 > ˜D(d1), where
˜D(d1) is a constant, then the corresponding model has at least one positive solution (see
[5], Theorem 3.8). How to explain these differences? The key point, we think, lies in the
boundary conditions. Different from the reflecting boundary conditions, that is, Neumann
boundary condition in [5], the prey and the predator in our model both face lethal boundary
conditions, that is, Dirichlet conditions in our model. Therefore, the more rapidly the prey
or the predator diffuses, the more possibly they encounter the lethal boundary and then the
more possibly they cannot coexist.

4. Local Bifurcation

In this subsection, we will employ the local bifurcation theory [21] to investigate the positive
solution branches of (1.1)which bifurcate from the semitrivial solution (Θ, 0) if g(0) > λ1. We
choose c as the bifurcation parameter and denote by Γu = {(c,Θ, 0) : c ∈ R} the semitrivial
solution set with the parameter c. The next proposition gives the local bifurcation branch of
positive solution of (1.1).

Theorem 4.1. Assume that g(0) > λ1. A branch of positive solutions of (1.1) bifurcates from Γu
if and only if c = −λ∗1(−mp(Θ)). More precisely, there exists a positive number δ such that when
0 < s < δ, the local bifurcation positive solutions (c(s), u(s), v(s)) from (−λ∗1(−mp(Θ)),Θ, 0) have
the following form:

c(s) = −λ∗1
(−mp(Θ)

)

+ c1s +O
(

s2
)

,

u(s) = Θ + sφ∗ +O
(

s2
)

,

v(s) = sψ∗ +O
(

s2
)

,

(4.1)

where ψ∗ = (−d1Δ − g(Θ) − gu(ξ)Θ)−1φ∗ with ξ between Θ and u and φ∗ is the positive
eigenfunction corresponding to c = −λ∗1(−mp(Θ)) of the following eigenvalue problem with

∫

Ω φ
2 = 1:

− d2Δφ −mp(Θ)φ = −cφ in Ω,

φ = 0 on ∂Ω.
(4.2)

Furthermore, the bifurcation is subcritical, that is, c′(0) < 0.
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Proof. Let us introduce the change of variablew = Θ− u, which shifts the semitrivial solution
(Θ, 0) to (0, 0).

Introduce an operator Φ : R × C2+α
0 × C2+α

0 
→ R × Cα
0 × Cα

0 as the following:

Φ(c,w, v) =

(

d1Δ +w
(

g(Θ) + gu(ξ)Θ − gu(ξ)w
)

+ p(Θ −w)v

d2Δ +
(−cv +mp(Θ −w)v

)

)

, (4.3)

where ξ is between Θ and u. We will seek for the degenerate point of the linearized operator
Φ(w,v) (c, 0, 0). By a simple calculation, we have

Φ(w,v)(c, 0, 0)

(

φ

ψ

)

=

(

d1Δφ +
(

g(Θ) + gu(ξ)Θ
)

φ + p(Θ)ψ

d2Δψ +
(−c +mp(Θ)

)

ψ

)

. (4.4)

When c = c∗ = −λ∗1(−mp(Θ)), it is easy to show that KerΦ(w,v)(c∗, 0, 0) = Span{(φ∗, ψ∗)},
where ψ∗ = (−d1Δ − g(Θ) − gu(ξ)Θ)−1φ∗ > 0 in Ω.

If ( ˜φ, ψ̃) ∈ RangeΦ(u,v)(c∗, 0, 0), then there exist (φ, ψ) ∈ C2+α
0 × C2+α

0 such that

d1Δφ +
(

g(Θ) + gu(ξ)Θ
)

φ + p(Θ)ψ = ˜φ in Ω,

d2Δψ +
(−c∗ +mp(Θ)

)

ψ = ψ̃ in Ω,

φ = ψ = 0 on ∂Ω.

(4.5)

By the Fredholm alternative theorem, it is easy to see that the first equation of (4.5) is solvable
if and only if

∫

Ω ψ̃ψ
∗dx = 0.

For such a solution, the first equation enables us to obtain φ = (−d1Δ − g(Θ) −
gu(ξ) Θ)−1(p(Θ)ψ − ˜φ). Therefore, we know that codim Range Φ(u,v)(c∗, 0, 0) = 1. In order
to use the local bifurcation theorem [21] at the degenerate point, we need to verify that
RangeΦ(w,v)c(c∗, 0, 0)(φ∗, ψ∗) /∈ RangeΦ(w,v)(c∗, 0, 0). Here, it can be calculated that

Φ(w,v)c(c∗, 0, 0)

(

φ∗

ψ∗

)

=

(

0

−ψ∗

)

. (4.6)

Suppose for contradiction thatΦ(w,v)c(c∗, 0, 0)(φ∗, ψ∗) ∈RangeΦw,v(c∗, 0, 0). By (4.4) and (4.6),
there exist (φ, ψ) ∈ E such that

d1Δφ +
(

g(Θ) + gu(ξ)Θ
)

φ + p(Θ)ψ = 0 in Ω,

d2Δψ +
(−c∗ +mp(Θ)

)

ψ = −ψ∗ in Ω,

φ = ψ = 0 on ∂Ω.

(4.7)

Then, multiplying the second equation of (4.7) by ψ∗ and integrating the resulting expression,
we obtain that

∫

Ω (ψ∗)2dx = 0, which obviously yields a contradiction. Consequently, we
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can apply the local bifurcation theorem to Φ at (c, 0, 0). Furthermore, by virtue of the Krein-
Rutman theorem, we know that the possibility of other bifurcation points except c = c∗ is
excluded.

In order to investigate the bifurcation direction from (−λ∗1(−mp(Θ)),Θ, 0), substituting
(c(s), u(s), v(s)) into the second equation of (1.1) and differentiating it with respect to s,
setting s = 0, we have

−d2Δvss(0) = 2c1φ + λ∗1
(−mp(Θ)

)

vss(0) − 2mpw(Θ)φψ +mp(Θ)vss(0). (4.8)

Multiplying (4.8) by φ and applying divergence theorem, we obtain

−
∫

Ω
2c1φ2dx =

∫

Ω

(

d2Δφ + λ∗1
(−mp(Θ)

)

φ +mp(Θ)φ
)

vss(0)dx −
∫

Ω
2mpu(Θ)φ2ψ dx. (4.9)

By (4.2), the terms including vss(0) in (4.10) can be dropped out. Then, we can get

c1 = −
∫

Ωmpu(Θ)φ2ψ dx
∫

Ω φ
2dx

= −
∫

Ω
mpu(Θ)φ2ψ dx. (4.10)

According to hypothesis (H2), we have pu(Θ) > 0 and c1 < 0. Then, we know that the
bifurcation direction from (−λ∗1(−mp(Θ)),Θ, 0) is subcritical.

Remark 4.2. According to the theory of Rabinowitz [27], we can see that there is a continuum
Cc∗ of the set of non-trivial solutions of (1.1) with (c∗, 0, 0) ∈ Cc∗ under the conditions of
Theorem 4.1 and the continuum Cc∗ consists of two subcontinua: C+

c∗ , filled in by coexistence
states, and C−

c∗ , filled in by component-wise negative solution pairs in a neighborhood
of (−λ∗1(−mp(Θ)),Θ, 0). However, this does not necessarily implies that the subcontinuum
C+
c∗ satisfies the global alternative of Rabinowitz [27] by the reasons already explained by

Dancer [12] and López-Gómez and molina-meyer [22]. Instead, the existence of a global
subcontinuum C+

c∗ of the set of positive solutions with (−λ∗1(−mp(Θ)),Θ, 0) ∈ C+
c∗ follows

by slightly adapting [22, Theorem 1.1]. Therefore, in the following subsection, we shall study
the global bifurcation from (Θ, 0) by using the global bifurcation theory of [22].

5. Global Bifurcation

In this subsection, basing on the results in Theorem 4.1, we can obtain the following results
about global bifurcation from (Θ, 0) by using the global bifurcation theory introduced by
López-Gómez, Molina-Meyer in [22].

Theorem 5.1. Assume that g(0) > λ1. Then, if one chooses c as the main continuation parameter of
(1.1), there exists an unbounded component C+

c∗ ⊂ R × E of the set of positive solutions of (1.1) such
that

(c, u, v) =
(−λ∗1

(−mp(Θ)
)

,Θ, 0
) ∈ C+

c∗ , PcC+
c∗ =

(−λ∗1,−λ∗1
(−mp(Θ)

))

, (5.1)

where Pc stands for the projection operator into the c-component of the tern. Moreover, C+
c∗ must

bifurcate from infinity at c = −λ∗1.
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Proof. Let w = Θ − u. Then, (1.1) is equivalent to the following problem:

−d1Δw = w
(

g(Θ) + gu(ξ)Θ − gu(ξ)w
)

+ p(Θ −w)v in Ω,

−d2Δv = −cv +mp(Θ −w)v in Ω,

w = v = 0 on ∂Ω,

(5.2)

where ξ is between Θ and u. Introduce an operator F : R × E 
→ E as the following:

F(c,w, v) =

(

w

v

)

−
(

(−d1Δ)−1
[

w
(

g(Θ) + gu(ξ)Θ − gu(ξ)w
)

+ p(Θ −w)v
]

−(d2Δ)−1
[−cv +mp(Θ −w)v

]

)

(5.3)

for every c ∈ R and (w,v) ∈ E. Obviously, F(c, 0, 0) = 0 for all c ∈ R and by elliptic regularity
F(c,w, v) = 0 ⇔ (w,v) is a classic solution of (5.2).

Subsequently, for every (w,v) ∈ E, we consider

L(c)

(

w

v

)

=

(

w

v

)

−
(

(−d1Δ)−1
(

g(Θ) + Θgu(ξ)
)

(−d1Δ)−1p(Θ)

0 (−d2Δ)−1
(−c +mp(Θ)

)

)(

w

v

)

R(c,w, v) =

(−(−d1Δ)−1
[−gu(ξ)w2 + p(Θ −w)v − p(Θ)v

]

−(−d2Δ)−1
[

mp(Θ −w)v − p(Θ)v
]

)

.

(5.4)

It is easy to see that R(c, 0, 0) = 0 and D(w,v)R(c, 0, 0) = (0, 0). Then, we have

L(c) = D(w,v)F(c, 0, 0),

F(c,w, v) = L(c)

(

w

v

)

+ R(c,w, v).
(5.5)

Define an operator

N(c)

(

w

v

)

=

(

(−d1Δ)−1
(

g(Θ) + Θgu(ξ)
)

(−d1Δ)−1p(Θ)

0 (−d2Δ)−1
(−c +mp(Θ)

)

)(

w

v

)

. (5.6)

By the Ascoli-Arzelá theorem and the classical Schauder estimates, we know that (5.6) is a
compact linear operator. Owing to L(c) = I −N(c), we can see that L(c) is Fredholm of index
zero.

In order to complete the proof of Theorem 5.1, we shall use [22, Theorem 1.1]. So, it is
necessary to check the assumptions in Theorem 2.6.
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Proof of (HL). Since L(c) is Fredholm of index zero, we know that c∗ ∈ C if and only if c∗ is
an eigenvalue of L(c), that is, if dimN[L(c∗)] ≥ 1. Note that dimN[L(c)] ≥ 1 if and only if
there exists (w,v) ∈ E \ {(0, 0)} such that

−d1Δw =
(

g(Θ) + Θgu(ξ)
)

w − p(Θ)v in Ω,

−d2Δv = mp(Θ)v − cv in Ω,

w = v = 0 on ∂Ω.

(5.7)

If v = 0, then

−d1Δw =
(

g(Θ) + Θgu(ξ)
)

w in Ω,

w = 0 on ∂Ω
(5.8)

and hence w = 0 (if w/= 0, then we have 0 = λ1(−g(Θ) − gu(ξ)) > λ1(−g(Θ)) = 0, a
contradiction). Then, we must have v /= 0. So, dimN[L(c∗)] ≥ 1 if and only if −c is an
eigenvalue of −d2Δ −mp(Θ) in Ω. Consequently, the set of singular values of L(c) is indeed
discrete and hence the assumption (HL) is fulfilled.

Proof of (HR). From the definition of the operator R, it is easy to see that the assumption
follows directly by a simple calculation.

Proof of (HP). It is easy to see that E can be regarded as an ordered Banach Space with respect
to the order induced by the product cone P. Using the the strong maximum principle, we can
show that (c,w, v) ∈ [R × (P \ {0}) × (P \ {0})] ∩ Γ−1(0) imply that w,v > 0 for all x ∈ Ω and
∂w/∂νx , ∂v/∂νx < 0. The assumption (HP) is fulfilled.

Now, we can prove Theorem 5.1 according to the general framework of [22]. Firstly,
note that C(σ)/= 0 if and only if Ind(0,N(λ)) changes as λ crosses σ; we can see that C(c∗)/= 0
from Theorem 4.1. Considering the operator N(c) defined by (5.6), it is not difficult to check
that c = −λ∗1(−mp(Θ)) is the unique value of c for which 1 is an eigenvalue of N(c) to a
positive eigenfunction and

N
[

L
(−λ∗1

(

mp(Θ)
))]

=N
[

I − N
(−λ∗1

(

mp(Θ)
))]

= span
[(

φ, ψ
)]

, (5.9)

where (φ, ψ) are the corresponding eigenfunctions defined in Theorem 4.1. At last, for g(0) >
λ1 and −λ∗1 < c < −λ∗1(−mp(Θ)), we can see that

N(c)([P \ {0}] × [P \ {0}]) ⊂ IntP = IntP × IntP. (5.10)

Following from [22, Theorem 1.1], we know that there exists an unbounded component C+
c∗ ⊂

R × E of the set of positive solutions of (1.1) such that (c, u, v) = (−λ∗1(−mp(Θ)),Θ, 0) ∈ C+
c∗

and PcC+
c∗ = (−λ∗1,−λ∗1(−mp(Θ))) due to Theorem 3.7.To complete the proof of Theorem 5.1,
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we suppose that −λ∗1 < c < −λ∗1(−mp(Θ)) and let (u, v) be a positive solution of (1.1). Then,
by Theorem 3.2, we have u(x) ≤ g(0) for all x ∈ Ω and

‖v‖C(Ω) ≤ g(0)
(

cd1m

d2
+mg(0)

)

∥

∥

∥

∥

∥

(

−Δ +
c

d2

)−1∥∥
∥

∥

∥

C(Ω)

. (5.11)

Note that

lim
c→−λ∗1

g(0)
(

cd1m

d2
+mg(0)

)

∥

∥

∥

∥

∥

(

−Δ +
c

d2

)−1∥∥
∥

∥

∥

C(Ω)

= ∞. (5.12)

Therefore, we know that C+
c∗ must bifurcate from infinity at c = −λ∗1. The proof of Theorem 5.1

is completed.
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