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The following difference equation xn = xn−lxn−k − 1, n ∈ N0, where k, l ∈ N, k < l, gcd(k, l) = 1,
and the initial values x−l , . . . , x−2, x−1 are real numbers, has been investigated so far only for
some particular values of k and l. To get any general result on the equation is turned out as a
not so easy problem. In this paper, we give the first result on the behaviour of solutions of the
difference equation of general character, by describing the long-term behavior of the solutions of
the equation for all values of parameters k and l, where the initial values satisfy the following
condition min{x−l, . . . , x−2, x−1}.

1. Introduction and Preliminaries

Studying nonlinear difference equations which do not stem from differential equations
attracted considerable attention recently (see, e.g., [1–23] and the references therein).

Some particular cases of the following simple-look polynomial-type difference
equation

xn = xn−lxn−k − 1, n ∈ N0, (1.1)

where k, l ∈ N, k < l, gcd(k, l) = 1, and the initial values x−l, . . . , x−2, x−1 are real numbers,
have been investigated recently in papers [9–11]. More precisely, in [9] case k = 1, l = 2, was
investigated, in [10] case k = 2, l = 3 was investigated, while in [11] case k = 1, l = 3 was
investigated. Studying (1.1) turned out to be much more interesting than we had expected.
Beside this, the behaviour of solutions of the equation is quite different for different values of
k and l, and the methods we have used so far have been very different. Hence, it is of some
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interest to obtain some results which hold for all values of k and l. The problem turned out to
be a tough task, however, we managed to obtain a result of general character.

In this paper, we completely describe the long-term behavior of solutions of difference
equation (1.1)where k, l ∈ N, k < l, gcd(k, l) = 1, and the initial values x−l, . . . , x−2, x−1 satisfy
the condition

min{x−l, . . . , x−2, x−1} >
1 +

√
5

2
. (1.2)

Note that if x is an equilibrium of (1.1), then it satisfies the following equation:

x2 − x − 1 = 0. (1.3)

Hence (1.1) has exactly two equilibria, one positive and one negative, which we denote by x1

and x2, respectively:

x1 =:
1 − √

5
2

, x2 =:
1 +

√
5

2
. (1.4)

2. An Auxiliary Result

In this section, we prove an auxiliary result on the periodicity which will be used in the proof
of the main result in this paper. The result is incorporated in the following lemma. Before
we formulate and prove the lemma recall that a solution of difference equation (1.1) is called
trivial if it is eventually equal to one of the equilibria in (1.4).

Lemma 2.1. Assume that k, l ∈ N, k < l, and gcd(k, l) = 1, then difference equation (1.1) does not
have any nontrivial periodic solution of period l.

Proof. First, note that any solution of (1.1) with nonzero terms can be prolonged for all
negative indices by the equation

xn−l =
xn + 1
xn−k

. (2.1)

Assume that p0, p1, . . . , pl−1 is a nontrivial solution of difference equation (1.1)with period l.
The solution obviously satisfies the following nonlinear system of l (algebraic)

equations:

pi+k = pi+k pi − 1, i = 0, 1, . . . , l − 1, (2.2)

where if an index i + k is outside the set {0, 1, . . . , l − 1}, we regard that

pi+k = pi+k( mod l). (2.3)

If some of pis were equal to zero, we would get 0 = −1, which would be a contradiction.
Hence, we have that

pi /= 0, for each i ∈ {0, 1, . . . , l − 1}. (2.4)
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Moreover, according to the above-mentioned comment related to negative indices the
solution can be regarded as a two-sided periodic solution, that is, the solution is of the form
(xn)

∞
n=−∞.

System (2.2) is equivalent to

pi =
pi+k + 1
pi+k

= f
(
pi+k

)
, i = 0, 1, . . . , l − 1. (2.5)

From this and l periodicity of the sequence (pi), it follows that

pi = f [l](pi+lk
)
= f [l](pi

)
, i = 0, 1, . . . , l − 1, (2.6)

that is, pi, i = 0, 1, . . . , l − 1, are solutions of the equation

x = f [l](x). (2.7)

It is clear that the equation can be written in the form

x =
alx + bl
clx + dl

, (2.8)

for some real numbers al, bl, cl, and dl and that they are obtained in the following way:

[
al bl

cl dl

]

=

[
al−1 bl−1

cl−1 dl−1

][
1 1

1 0

]

=

[
1 1

1 0

]l

. (2.9)

Hence,

al = al−1 + bl−1, bl = al−1, l ≥ 2, (2.10)

cl = cl−1 + dl−1, dl = cl−1, l ≥ 2. (2.11)

We now prove that

cl = al−1, dl = bl−1, l ≥ 2. (2.12)

For l = 2, the equality in (2.12) is obvious. If (2.12) is true for l − 1, then from the
inductive hypothesis and the equalities in (2.10) and (2.11), we obtain the following relations:

cl = cl−1 + dl−1 = al−2 + bl−2 = al−1,

dl = cl−1 = al−2 = bl−1, l ≥ 3,
(2.13)

finishing the inductive proof of the claim.
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If x is a solution to (2.8), then a simple calculation shows that the following equality
holds:

clx
2 + (dl − al)x − bl = 0, (2.14)

which is equivalent to

al−1
(
x2 − x − 1

)
= 0. (2.15)

From this, and since from (2.10) we have al ≥ al−1 ≥ · · · ≥ a1 = 1, for l ≥ 2, it follows that
x = x1 or x = x2. Hence, each pi is equal to one of these two numbers.

Assume that pi = x1 for some i ∈ {0, 1, . . . , l − 1}, then

pi = f [j](pi
)
= pi−jk, (2.16)

for each j ∈ {0, 1, . . . , l − 1}. If it were i − j1k = i − j2k (mod l) for some j1, j2 ∈ {0, 1, . . . , l −
1}, such that j1 /= j2, we would have (j1 − j2)k = 0 (mod l), which is impossible due to the
assumption gcd(k, l) = 1. Hence, pi = x1, for each i ∈ {0, 1, . . . , l − 1}.

Similarly, it is proved that if pi = x2 for some i ∈ {0, 1, . . . , l − 1}, then pi = x2, for each
i ∈ {0, 1, . . . , l − 1}. From all, the above mentioned, the lemma follows.

3. Unbounded Solutions of (1.1)

The following general theorem shows the existence of unbounded solutions of (1.1) relative
to the set of initial conditions of the equation. The existence of various type of solutions of
difference equations, such as monotonous, nontrivial, or periodic, has attracted also some
attention recently (see, for example, [2–6, 8, 12–17, 24, 25] and the related references therein).

Theorem 3.1. Assume that k, l ∈ N, k < l, and (xn)n≥−l is a solution of (1.1), then the following
statements hold true:

(a) if

min{|x−l|, . . . , |x−2|, |x−1|} >
1 +

√
5

2
= x2, (3.1)

then the subsequences
(∣∣x(m−1)l−i

∣∣)
m∈N

, i = 1, 2, . . . , l (3.2)

are strictly increasing,

(b) if condition (3.1) holds and there is an i0 ∈ {1, 2, . . . , l} such that the subsequence
(|x(m−1)l−i0 |)m∈N

is bounded, then the sequence (|xn|)n≥−l is bounded too,

(c) if gcd(k, l) = 1 and

min{x−l, . . . , x−2, x−1} >
1 +

√
5

2
= x2, (3.3)

then the sequence (xn)n≥−l tends to +∞ as n → +∞.
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Proof. (a) From the hypothesis, we have that

∣
∣xj−k

∣
∣ − 1 > x2 − 1, j = 0, 1, . . . , k − 1, (3.4)

and so

∣
∣xj−l

∣
∣(
∣
∣xj−k

∣
∣ − 1

)
> x2(x2 − 1) = 1, j = 0, 1, . . . , k − 1. (3.5)

Hence,

∣
∣xj−l

∣
∣
∣
∣xj−k

∣
∣ − ∣

∣xj−l
∣
∣ > 1, j = 0, 1, . . . , k − 1, (3.6)

or equivalently

∣∣xj−l
∣∣∣∣xj−k

∣∣ − 1 >
∣∣xj−l

∣∣, j = 0, 1, . . . , k − 1. (3.7)

On the other hand, we have

∣∣xj

∣∣ =
∣∣xj−lxj−k − 1

∣∣ >
∣∣xj−l

∣∣∣∣xj−k
∣∣ − 1, j = 0, 1, . . . , k − 1. (3.8)

Combining (3.7) and (3.8), we have that

∣∣xj

∣∣ >
∣∣xj−l

∣∣ > x2, j = 0, 1, . . . , k − 1. (3.9)

Assume that we have proved

x2 <
∣∣xj−l

∣∣ <
∣∣xj

∣∣, (3.10)

for 0 ≤ j ≤ j0 < l − 1.
Since j0 + 1 − k ≤ j0, we can apply (3.10) and get

∣∣xj0+1−l
∣∣(∣∣xj0+1−k

∣∣ − 1
)
> x2(x2 − 1) = 1. (3.11)

Hence, from (1.1), the triangle inequality, (3.11), and hypothesis (3.10), we obtain

∣∣xj0+1
∣∣ =

∣∣xj0+1−lxj0+1−k − 1
∣∣ >

∣∣xj0+1−l
∣∣∣∣xj0+1−k

∣∣ − 1 >
∣∣xj0+1−l

∣∣ > x2. (3.12)

Hence, by the induction, we get

x2 <
∣∣xj−l

∣∣ <
∣∣xj

∣∣, j = 0, 1, . . . , l − 1. (3.13)
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Now assume that we have proved

x2 <
∣
∣xj−l

∣
∣ <

∣
∣xj

∣
∣ <

∣
∣xl+j

∣
∣ < · · · < ∣

∣xml+j
∣
∣, j = 0, 1, . . . , l − 1, (3.14)

for some m ∈ N0.
Since (1.1) is autonomous, the sequence yn = xn+(m+1)l, n ≥ −l is the solution of the

equation with initial conditions

y−l = xml, . . . , y−1 = xml+l−1. (3.15)

By what we have proved, it follows that

x2 <
∣
∣yj−l

∣
∣ <

∣
∣yj

∣
∣, j = 0, 1, . . . , l − 1, (3.16)

or equivalently

x2 <
∣∣xml+j

∣∣ <
∣∣x(m+1)l+j

∣∣, j = 0, 1, . . . , l − 1, (3.17)

from which the inductive proof of the statement follows.
(b) Without loss of generality, we may assume that the subsequence (|x(m−1)l|)m∈N0

is
bounded, since the other cases are obtained by shifting indices. Since by (a) the subsequence
is increasing, then it increasingly converges, say to a > x2.

From this, and since

xml−k =
1 + xml

x(m−1)l
, m ∈ N0, (3.18)

we get

|xml−k| = |1 + xml|∣∣x(m−1)l
∣∣ <

1 + a

x2
, m ∈ N0. (3.19)

Hence, the subsequence (|xml−k|)m∈N0
is bounded too, which along with the statement in (a)

implies that it is convergent. Inductively, we get that the subsequences (|xml−sk|) are bounded
and consequently convergent for each s ∈ {0, 1, . . . , l−1}. Now, note that these l subsequences
have disjoint sets of indices. Indeed, if we had

m1l − s1k = m2l − s2k, (3.20)

for some m1, m2 ∈ N and s1, s2 ∈ {0, 1, . . . , l − 1}, then we would have (s1 − s2)k ≡ 0 (mod l).
Since |s1 − s2| < l, it would mean that gcd(k, l) > 1, which would be a contradiction.

This implies that all the subsequences (|x(m−1)l−i|)m∈N
, i = 1, 2, . . . , l are convergent,

from which the boundedness of (|xn|)n≥−l follows.
(c) Since in this case solution (xn)n≥−l of (1.1) is positive, by the proof of (b), we

have that the subsequences (x(m−1)l−i)m∈N
, i = 1, 2, . . . , l are convergent. Hence, the solution
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either converges to a period l solution or to an equilibrium of (1.1). However, according
to Lemma 2.1, (1.1) does not have any nontrivial solution of period l. Therefore, it must
converge to an equilibrium, but, this is not possible because the largest equilibrium point
is smaller than min{x−l, . . . , x−2, x−1}, which is a contradiction, finishing the proof of the
theorem.

Question. An interesting problem is to investigate whether condition (3.1) guarantees that
|xn| → ∞ as n → ∞.
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[15] S. Stević, “Asymptotics of some classes of higher-order difference equations,” Discrete Dynamics in
Nature and Society, Article ID 56813, 20 pages, 2007.
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[20] S. Stević, “Global stability of a max-type difference equation,” Applied Mathematics and Computation,
vol. 216, no. 1, pp. 354–356, 2010.
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