
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 589862, 20 pages
doi:10.1155/2011/589862

Research Article
Project Scheduling Heuristics-Based
Standard PSO for Task-Resource Assignment in
Heterogeneous Grid

Ruey-Maw Chen and Chuin-Mu Wang

Department of Computer Science and Information Engineering, National Chin-Yi University of Technology,
No. 35, Lane 215, Section 1, Chung-Shan Road, Taiping, Taichung 411, Taiwan

Correspondence should be addressed to Ruey-Maw Chen, raymond@mail.ncut.edu.tw

Received 13 October 2010; Revised 31 December 2010; Accepted 2 January 2011

Academic Editor: Nobuyuki Kenmochi

Copyright q 2011 R.-M. Chen and C.-M. Wang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The task scheduling problem has been widely studied for assigning resources to tasks in hetero-
geneous grid environment. Effective task scheduling is an important issue for the performance of
grid computing. Meanwhile, the task scheduling problem is an NP-complete problem. Hence, this
investigation introduces a named “standard“ particle swarm optimization (PSO) metaheuristic
approach to efficiently solve the task scheduling problems in grid. Meanwhile, two promising
heuristics based on multimode project scheduling are proposed to help in solving interesting
scheduling problems. They are the best performance resource heuristic and the latest finish time
heuristic. These two heuristics applied to the PSO scheme are for speeding up the search of
the particle and improving the capability of finding a sound schedule. Moreover, both global
communication topology and local ring communication topology are also investigated for efficient
study of proposed scheme. Simulation results demonstrate that the proposed approach in this
investigation can successfully solve the task-resource assignment problems in grid computing and
similar scheduling problems.

1. Introduction

Grid computing has been widely applied many applications, such as drug discovery,
economic forecasting, seismic analysis, and back-office data processing in support of e-
commerce andweb services. A grid is a collaborative environment in which one or more tasks
can be submitted without knowing where the resources are or even who owns the resources
[1]. Meanwhile, a grid environment also provides a computing service infrastructure in the
cloud. There are often plenty of tasks needing to be dealt with since an application in grid
are usually decomposed into many tasks; it is necessary to efficiently assign and allocate



2 Abstract and Applied Analysis

adequate resources for tasks from anywhere. Restated, tasks assigned to inadequate resources
always cause application completion time increases. Therefore, the task assignment plays a
significant role in the issue of resource allocation and scheduling in grid. In [2], Chen et al.
have solved the task scheduling problem in a distributed computing system as in [3], which is
without the consideration of resource heterogeneity and the dependence between tasks. Then
Chen et al. proposed a new task scheduling model to reflect the actual grid environment with
more details, and solved it based on particle swarm optimization (PSO).

Many different task scheduling problems such as assignment, job-shop, flow-shop,
vehicle routing, and other scheduling problems have been studied intensively. The studied
grid task scheduling problem in this work comes from the task-resource assignment problem
[2]which is much more complicated than the above-stated classic task scheduling problems.
Restated, a grid application is a task scheduling problem involving partially ordered tasks
and distributed heterogeneous resources, and can be represented by a directed acyclic graph
(DAG) [4–6]. The scheduling target is to find optimal task-resource assignment and hence
minimize application completion time. Most scheduling problems are confirmed to be NP-
complete. Thus, many researchers have devoted their efforts to solving task scheduling
problems. The exact algorithm such as branch-and-bound method [7] is able to find the
optima of the scheduling problem. However, the execution time required is impractical as the
number of tasks and resources increases. Hence, many different schemes have been presented
for solving scheduling problems. Chen et al. [8] combined a competitive scheme with slack
neurons into Hopfield neural networks to solve multiprocessor real-time job scheduling
problems. Sandnes [9] presented a stochastic approach of employing randomization in the
scheduling of tasks in multiobjective scheduling problems. An artificial immune-system
based scheme was proposed to solve the dynamic economic dispatch problem of generating
units [10]. Comparatively, several metaheuristics such as genetic algorithm (GA) [11],
simulated annealing algorithm (SA) [12], tabu search (TS) [13, 14], ant colony optimization
(ACO) [15], and the particle swarm optimization [16] have been effectively proposed
for solving these difficult problems. Oh and Wu [17] presented a multiobjective genetic
algorithm, which aims to minimize the number of processors required and the total tardiness
of tasks. Liu and Wang [18] solved the resource-constrained project scheduling problem
of minimizing activities’ cost based on GA. And a thermal generating unit’s commitment
scheduling problem was studied by a modified GA [19]. A task scheduling problem with the
involvement of the processor in communication was investigated and a GA-based scheduling
heuristic was proposed to solve the problem by Sinnen et al. [20]. In [21], a derivative of
simulated annealing algorithm with the consideration of the specificity of the solution space
was proposed to solve the resource-constrained scheduling problem. Meanwhile, simulated
annealing was applied to the berth-scheduling problem to find near-optimal solutions [22].
Tabu search is an approach to prevent the search from trapping into the local minimum, and it
has been applied to solving a single machine scheduling problem with distinct due windows
to minimize total weighted earliness and tardiness [23] as well as job-shop scheduling
[24]. Using ACO to solve multiprocessor system scheduling with precedence and resources
constraints was proposed in [25]. In [26], an ACO algorithm was used for solving a dynamic
regional nurse-scheduling problem. Moreover, many PSO-based schemes were proposed for
solving a variety of scheduling-related problems including process planning, production
scheduling [27], job-shop scheduling [28, 29], project scheduling [30], call center scheduling
[31], flow-shop scheduling [32], and others [33, 34].

In light of different scheme development, PSO is a promising metaheuristic approach
for solving diverse task scheduling problems as well as other application problems. The



Abstract and Applied Analysis 3

particle swarm optimization (PSO) was first proposed by Kennedy and Eberhart [16]. In
PSO, a swarm of particles spread in the search space and the position of a particle presents a
solution. Each particle would move to a new position decided with the individual experience
and the global experience heading toward the global optimum. However, many variations of
PSO have been studied, and one of them was named “standard” PSO, proposed by Clerc and
Kennedy [35] indicating how PSO can be significantly improved. Hence, this investigation
aims at enhancing the “standard” PSO for solving the interesting task scheduling in grid.
Each particle represents a possible task schedule corresponding to a task-resource assignment
graph (T-RAG) and regards the longest path of the task-resource assignment graph as fitness
value. Hence, this investigated task scheduling problem became an optimal task-resource
assignment graph selection problem.

To increase the efficiency of “standard” PSO, heuristics can be used as an aid for
problem solving. Thus, this study enhances “standard” PSO by introducing additional
heuristics to solve the task scheduling problem for minimizing task completion time.
Nevertheless, a heuristic is usually problem specific, hence different heuristics were surveyed
and evaluated. Least total resource usage (LTRU) and shortest feasiblemode (SFM) heuristics
are frequently applied for determining operating mode for multimode project scheduling
problems. Greatest rank positional weight (GRPW), latest finish time (LFT), latest start time
(LST), minimum slack (MSLK), and most total successors (MTS) heuristics are commonly
used for deciding tasks’ priority in project scheduling problems. Two intuitional heuristics
were then proposed for speeding up the PSO’s search when solving investigated task
scheduling problems. They are the best performance resource (BPR) heuristic and the latest
finish time (LFT) heuristic based on multimode project scheduling problems; they are herein
called project scheduling heuristics.

Moreover, the performance of the proposed PSO scheme with different swarm
communication topology is also evaluated. Restated, global communication and local
communication topologies for obtaining the global experience are analyzed and compared.
Finally, the experiment results indicate that the scheme proposed in this work is effective for
solving similar class task scheduling problems.

This article is organized as follows. Section 2 introduces the task scheduling problem.
The traditional PSO is described in Section 3. Section 4 illustrates application of the PSO to
the task scheduling problem, and introduces the additional heuristics proposed in this study.
The simulations are presented in Section 5. Finally, Section 6 presents the conclusions.

2. The Task Scheduling Problem

Most grid applications usually involve partially ordered tasks and heterogeneous resources
distributed in grid. Hence, the studied new task scheduling problem addresses precedence
considerations and resource heterogeneity in grid environment. A simple example is
given to illustrate the complexity and difficulty of the investigated scheduling problem;
suppose a grid application is decomposed into 5 partially ordered tasks (with different
workloads) as shown in Figure 1—two heterogeneous resources (with different abilities) in
the grid environment. Therefore, tasks assigned to different resources would require different
processing times to run. Additionally, involvement of communication costs (such as data
transfer) for partially ordered tasks is considered. Meanwhile, assume that resource M2 has
better performance than resource M1, but resource M1 has higher bandwidth than resource
M2. Thus, communication time depends on the communication cost and the minimum



4 Abstract and Applied Analysis

Start

1

2

4

5

3

End

Figure 1: An example of a studied task scheduling problem.

Table 1

Task no. Resource Execution time

Task 1 M1 22.22
M2 10

Task 2 M1 50
M2 22.5

Task 3 M1 40
M2 18

Task 4 M1 88.88
M2 40

Task 5 M1 11.11
M2 5

Table 2

Task no. Successors Communication time

Task 1 Task 3 2
Task 4 5.5

Task 2 Task 5 4

bandwidth between resources is computed if partially ordered tasks are not assigned to the
same resources for processing. Execution time and communication time required for this
example are assumed as shown in Tables 1 and 2.

Many task scheduling result cases exist for this simple problem. For instance, consider
the following cases.

Case 2.1. Tasks 1 and 3 are assigned to resource M1, and tasks 2, 4, and 5 are distributed to
M2. Meanwhile, the processing order of tasks for resource M1 is 1 → 3; the processing order
of tasks for resource M2 is 2 → 5 → 4. There are three process paths to complete application,
and therefore three corresponding time costs (see Table 3).

It requires 62.22 (22.22 + 40) to process tasks on path 1 since task 1 and task 3 are on
the same resource without data transfer. Nevertheless, task 4 on path 2 has to wait until
both path 3 finished (22.5 + 5) and task 1 finished including data transfer (22.22 + 5.5).
Hence, the completion time of path 2 is 67.72 (27.72 + 40). Accordingly, the completion
time of application is the maximum time cost (67.72) corresponding to the largest cost path.
Additional scheduling result cases are also given as follows.



Abstract and Applied Analysis 5

Table 3

Paths Time cost
(1): start→Task1/M1→Task3/M1→ end 22.22 + 40 = 62.22
(2): start→Task1/M1→Task4/M2→ end max(22.5 + 5, 22.22 + 5.5) + 40 = 67.72
(3): start→Task2/M2→Task5/M2→ end 22.5 + 5 = 27.5

Table 4

Paths Time cost
(1): start→Task1/M1→Task3/M1→ end 22.22 + 40 = 62.22
(2): start→Task1/M1→Task4/M2→ end max(22.22 + 5.5, 10) + 40 = 67.72
(3): start→Task2/M2→Task5/M2→ end max(22.5, 22.22 + 5.5 + 40) + 5 = 72.72

Table 5

Paths Time cost
(1): start→Task1/M2→Task3/M1→ end max(10 + 2, 50) + 40 = 90
(2): start→Task1/M2→Task4/M2→ end 10 + 40 = 50
(3): start→Task2/M1→Task5/M2→ end max(50 + 4, 10 + 40) + 5 = 59

Table 6

Paths Time cost
(1): start→Task1/M2→Task3/M1→ end max(10 + 2, 50) + 40 = 90
(2): start→Task1/M2→Task4/M2→ end max(10, 50 + 4 + 5) + 40 = 99
(3): start→Task2/M1→Task5/M2→ end max(50 + 4, 10) + 5 = 59

Case 2.2. With the same task-resource assignment and processing order of tasks for resource
M1 as Case 2.1, but the processing order of tasks for resource M2 is 2 → 4 → 5. The
completion time of application is 72.72 (see Table 4).

Task 4 on path 2 can only be executedwhen both task 1 is finished plus data transferred
(22.22+5.5 = 27.72) and task 2 on M2 is done (10). Hence, task 4 starts to execute at 27.72 and
completes at 67.72 (27.72 + 40). In path 3, task 2 has to wait until task 2 finishes (22.5) and
task 4 is completed (67.72). Therefore, time cost for path 3 is 72.72 (67.72 + 5).

Case 2.3. With different task-resource assignment and processing order of tasks for resources
as Case 2.1. Assume that tasks 2 and 3 are assigned to resource M1, and tasks 1, 4 and, 5 are
allocated to resource M2. Meanwhile, the processing order of tasks for resource M1 is 2 → 3;
the processing order of tasks for resource M2 is 1 → 4 → 5. Then, the completion time of
application is 90 which can be determined (see Table 5).

Case 2.4. With the same task-resource assignment and processing order of tasks for resource
M1 as Case 2.4. And, the processing order of tasks for resource M2 is 1→ 5→ 4. Then, the
completion time of application is 99 which can be determined (see Table 6).

However, there are still many other scheduling result cases of this simple example.
Hence, the studied task scheduling problem in grid is indeed complicated. To obtain the best
schedule with minimal completion time of application, the task-resource assignment and the
processing order (priority) determination of tasks have to be decided accurately.



6 Abstract and Applied Analysis

S0

S1

S2

S3

S4 S5

C34

C14

C24

Figure 2: Directed acyclic graph (DAG).

2.1. The Representation of the Task Scheduling Problem

In this interesting scheduling problem [2], there are K + 2 tasks S = {S0, S1, . . . , SK, SK+1},
and N heterogeneous resources M = {M1,M2, . . . ,MN−1,MN}, where S0 and SK+1 are
pseudotasks for scheduling indicating the start and finish states. The workload of task Su

is w(Su), and the computing ability of resource Mi is a(Mi), once the Su is assigned to Mi,
then the Su’s execution time Eu = w(Su)/a(Mi) can then be obtained.

Hence, this work focuses on how to assign these K tasks (ignoring the pseudotasks) to
N resources for gaining the shortest completion time of scheduling (i.e., SK’s finish time).

Herein, with the precedence between tasks addressed, the task scheduling problem
is expressed as a directed acyclic graph (DAG) as in Figure 2. An arrow from Su to Sv

indicates that Su is the immediate predecessor of Sv, and the connection weight is the
communication cost cuv for Su transferring data to Sv, where pseudotasks are without data
transfer. If the Su, and Sv are assigned to different resources Mi and Mj , respectively, the
bandwidth between Mi and Mj is bw(Mi ,Mj), Mi,Mj ∈ M, then the communication time
Tuv = cuv / bw(Mi ,Mj) can be determined. Restated, the Sv can’t start until the Su has
finished with execution time Eu and communication time Tuv.

In [19], the bw(Mi ,Mj) is derived from a predefined table as the N ×N matrix BW
as follows:

BW =

⎡
⎢⎢⎢⎢⎢⎢⎣

∞ bw(M1,M2) · · · bw(M1,MN)

bw(M2,M1) ∞ · · · bw(M2,MN)

...
...

. . .
...

bw(MN,M1) bw(MN,M2) · · · ∞

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.1)

where bw(Mi ,Mj) = ∞ when i = j, that is, the communication time Tuv = 0 once the Su,
Sv are assigned to the same resource.

In a real situation, the bandwidth between two resources is limited by the resource
which has lower bandwidth. Therefore, the approach for deriving the bw(Mi ,Mj) is
modified instead of using the matrix BW , in this study. Restated, resource Mihas its own
bandwidth bwl(Mi), then the bandwidth between two resourcesMiandMj can be treated as
bw(Mi ,Mj) = min(bwl(Mi), bwl(Mj)). For example, bwl(M1) = 1.544Mbps, bwl(M2) =
2.048Mbps, bw(M1,M2) = min(bwl(M1), and bwl(M2)) = min(1.544Mbps, 2.048Mbps) =
1.544Mbps.



Abstract and Applied Analysis 7

S0

S1,M1

S2,M1

S3,M2

S4,M3 S5

0

0

0

0

0

0

w(S1)/a(M1)

w(S2)/a(M1)

w(S3)/a(M2)

C34/bw(M2,M3)

C24/bw(M1,M3)

C14/bw(M1,M3)

w(S4)/a(M3)

Figure 3: Task-resource assignment graph (T-RAG).

The objective of the task-resource assignment in heterogeneous grid is to minimize
tasks’ completion time of application. The task-resource assignment in heterogeneous
grid can be expressed by the task-resource assignment graph (T-RAG) as displayed in
Figure 3. Restated, a task-resource assignment graph corresponds to a solution of the studied
scheduling problem. Figure 3 is an example of a task scheduling problem including 6 tasks
and 3 heterogeneous resources. After assigning the resources to tasks, the tasks’ execution
and communication times are settled. Hence, the scheduling completion time of tasks can be
calculated after the T-RAG is determined.

In the T-RAG, G, a set of nodes and edges, consists of paths from S0to SK+1. For
example, there are 3 paths in Figure 2, where S0and S5 are pseudotasks for scheduling
indicating the start and finish states in the graph.

For path p, V(p) and E(p) are the sets of nodes and edges on path p. Once the node
u ∈ V (p) is correlated to Su, the node cost of node u is cost(u) = Eu. And when the edge
e ∈ E(p), which is correlated to Su and Sv, the edge cost is cost(e) = Tuv.

Hence, the path cost of path p can be calculated by

cost
(
p
)
=

∑
u∈V (p)

cost(u) +
∑

e∈E(p)
cost(e). (2.2)

The path with the largest cost in the T-RAG G corresponds to a feasible scheduling
completion time, that is, a solution of the task scheduling problem is associated with a fitness
f as

f = max
(
cost

(
p
) | p ∈ G

)
. (2.3)

However, the fitness f is set to a very big value if the schedule is an infeasible solution (such
as in a deadlock). The primary objective of this study is to minimize the fitness f, min(f).



8 Abstract and Applied Analysis

Table 7

Task S0 S1 S2 S3 S4 S5

Depth 0 1 1 1 2 3

Therefore, the objective of studied scheduling problem is summarized as indicated in

min
(
f
)
= min

{
max

(
cost

(
p
) | p ∈ G

)}
,

where,

cost
(
p
)
=

∑
u∈V (p)

cost(u) +
∑

e∈E(p)
cost(e),

cost(u) = E(u) =
w(Su)
a(Mi)

,

cost(e) = Tuv =
cuv

bw
(
Mi,Mj

) , bw
(
Mi,Mj

)
= min

{
bwl(Mi), bwl

(
Mj

)}
.

(2.4)

2.2. Task Queue

The feasible task-resource assignment in heterogeneous grid is subject to precedence
constraint. In the example in Figure 3, the S1 and S2 are assigned to use resource M1 at
the same time, and hence the sequence for the S1 and S2 must be indicated. Therefore, the
task queue Qi = {p1, p2, . . . , pn(i)} for Mi (resource i) is designated, where the p1 is the first
executed task on Mi, and the number of tasks to be executed on Mi is n(i). For example,
if Q1 = {S2, S1}, then S2 must be executed prior to S1. However, a new precedence for the
resource can be constructed as shown by the dashed arrow in Figure 4 and the calculation
of cost in (2.2) should include the new precedence (edge). Meanwhile, fitness calculation is
based on the new T-RAG constructed according to the new precedence.

After constructing the new precedence, if the corresponding T-RAG does not satisfy
the ordering relationship among tasks, it is called illegal T-RAG, that is, an infeasible solution.
For example, S1, S2, and S4 tasks are assigned to resource M2, and Q2 = {S2, S4, S1}.
The corresponding T-RAG as displayed in Figure 5 is an illegal T-RAG; hence an infeasible
solution is produced since S4 is executed prior to S1, violating the ordering relationship
between S1 and S4 tasks indicated in Figure 2. Restated, the illegal T-RAG may occur for an
improper task queue. However, this situation could be detected via depth of tasks in DAG,
that is, the task with less depth has higher priority than the task with more depth in DAG. In
Figure 5, the depth of each task is shown (see Table 7 ). Hence S1 should be executed on M3

prior to S4.

3. Particle Swarm Optimization

The particle swarm optimization (PSO) was first proposed by Kennedy and Eberhart (1995)
[16]. It is a multiagent general metaheuristic, and can be applied extensively to solve many
complex problems. The PSO consists of a swarm of particles in the search space; the position



Abstract and Applied Analysis 9

S0 S5

S1,M1

S2,M1

S3,M2

S4,M3

Figure 4: Constructing new precedence.

S1,M3

S3,M2

S4,M3S2,M3S0 S5

Figure 5: Illegal T-RAG.

of a particle is indicated by a vector which represents a solution. PSO is initialized with a
population of random positioned particles and searches for the best position with best fitness.

In each generation or iteration, every particle moves to a new position and the new
position is guided by the velocity (which is vector), then the corresponding fitness of the
particles would be calculated. Therefore, the velocity plays an important role in searching for
a solutionwith better fitness. There are two experience positions used in the PSO for updating
the velocity; one is the global experience position of all particles, which remembers the global
best solution obtained by all particles; the other is each particle’s individual experience, which
recalls the best position that particle has been in. These two experience positions are used to
determine the velocity.

Let an N dimensional space (the number of dimensions is typically concerned with
the definition of the problem) haveM particles. For the ith particle (i = 1, . . . ,M), its position
consists of N components Xi = {Xi1, . . . , XiN}, where Xij is the jth component of the position,
the velocity of particle i is Vi = {Vi1, . . . , ViN}, and the particle’s individual best experience
is Li = {Li1, . . . , LiN}. Additionally, G = {G1, . . . , GN} represents the global best experience
shared among all the particles. The particle’s individual best experience (Li) and the global
best experience of the swarm (G) are recorded and are updated in every step.When updating,
the jth component of the position and velocity of the ith particle are according to (2.4) shown
in

V new
ij = w × Vij + c1 × r1 ×

(
Lij −Xij

)
+ c2 × r2 ×

(
Gj −Xij

)
,

Xnew
ij = Xij + V new

ij ,
(3.1)



10 Abstract and Applied Analysis

for each time do
for each particle i in the swarm do

update position Xi
new using (2.4)

calculate particle’s fitness f (Xi
new)

update Li&G

end for
end for

Algorithm 1: The pseudocode of the PSO update process.

where w is an inertial weight used to determine the influence of the previous velocity to
the new velocity. The c1 and c2 are learning factors used to derive how the ith particle
approaching the position closes in on the individual experience position or global experience
position, respectively. Furthermore, r1 and r2 are the random numbers uniformly distributed
in [0, 1], influencing the tradeoff between the global and local exploration abilities during
search. In every step, a fitness (fitness(i)) of new particle i position (Xnew

i ) obtained via
(3.1) is computed and compared with the fitness (fitness(Li)) of the recorded individual
best experience (Li). The recorded individual best experience (Li) is replaced by Xnew

i if
fitness(i) � fitness(Li).Otherwise, Li is maintained. Meanwhile, is comparedwith the fitness
(fitness(G)) of the recorded global best experience (G). The recorded global best experience
(G) is replaced by Xnew

i if fitness(i) � fitness(G).Otherwise, G is maintained. The procedure
of the particle swarm optimization is as shown in Algorithm 1.

4. Enhanced Particle Swarm Optimization Scheme

4.1. Encoding Task-Resource Assignment and Task Priority

In PSO, the position of a particle is indicated by a vector which represents the solution. How
to map the position vector to the solution is significant for the PSO process. Since the task
scheduling problem can be solved by task-resource assignment, a scheme for encoding task-
resource assignment into the position vector is necessary.

In this study, an easy discrete transfer scheme is applied for transferring the position
vector to the task-resource assignment. For the position vector XA with K components (K
tasks), the values of XA are bounded in (0, 1], and the ith component of XA, which can be
transferred to the resourcem assigned to the Si by the discrete transfer scheme as listed in(3.1)

m =
⌈
XA

i ×N
⌉
, XA

i ∈ (0, 1], i = 1, 2, . . . , K, (4.1)

where N is the number of resources, if N = 2 and XA
4 = 0.7, the resource assigned to the S4

would be resourceM2. Suppose that the generated task-resource assignment vector,A, based
on (3.1) is as follows (Table 8).

Moreover, when the same resource is assigned to more than one task, the task priority
needs to be decided for the task queue. Hence, the task priority vector Pr = {p1, p2, . . . , pK}
is used, where p1 is the task with highest priority. For example, if Pr = {S5, S1, S3, S2, S4},



Abstract and Applied Analysis 11

Table 8

Dimension 1 2 3 4 5
XA 0.4 0.2 0.3 0.7 0.8
A 1 1 1 2 2

Table 9

Key 1 2 3 4 5
XR 1.5 3.6 0.15 8.9 0.2

Table 10

Key 3 5 1 2 4
Sorted XR 0.15 0.2 1.5 3.6 8.9

where S1, S2, S3 are to use the resource M1, and S4, S5 use resource M2, then the task queue
ofM1 and M2 would be determined to be Q1 = {S1, S3, S2} and Q2 = {S5, S4} based on Pr.

Since the task priority vector Pr is required, the position vectorXR with K components
is used for mapping. It’s important to note that Pr is a permutation without repeating values;
the discrete transfer scheme is not applicable. Instead, the random key scheme is suitable for
permutation type solutions. Assume there are 5 keys corresponding to 5 task numbers, and
the position vector XR with 5 components is given as follows (Table 9).

After sorting XR by increasing order, the keys also rearranged as follows (Table 10).
Then the order of keys (3, 5, 1, 2, 4) can be treated as the task priority vector Pr, that

is, Pr = {S3, S5, S1, S2, S4}.
Hence, two position vectors XA and XR for PSO are required to represent the task-

resource assignment and task priority, and they can be combined to one position vector X =
XA ∪XR; for convenience, X = {XA

1 , . . . , X
A
K,X

R
1 , . . . , X

R
K} has 2K components.

4.2. Heuristics for Task Scheduling Problem

A heuristic is an experience-based strategy or technique that can be used as an aid in
problem solving. Generally, heuristics use accessible information to control problem-solving
processes. For PSO, a randomly assigned initial particle position may lead the algorithm to
be inefficient. Therefore, for solving the problem efficiently, the corresponding heuristics are
often studied and integrated into metaheuristics in most research. In this study, there are
two intuitional heuristics proposed for speeding up the PSO’s search when solving a task
scheduling problem. They are the best performance resource (BPR) heuristic and the latest
finish time (LFT) heuristic, which are used for PSO to initialize the position vectors XA and
XR, respectively.

These two heuristics are based on a multimode project scheduling problem, with the
multimode project scheduling problem is similar to the task-resource assignment problem
in this study. In [36], the definitions of a multimode project scheduling problem include the
precedence between tasks (in which, the task is called activity), and each task needs to be
assigned a “mode” for determining the task’s resource type and requirements, hence the
task’s duration would be a variable depending on the resource type. Restated, a multimode
project scheduling problem is regarded as a “task-mode” assignment problem rather than
a “task-resource” assignment problem. Without the communication cost consideration, the



12 Abstract and Applied Analysis

studied task scheduling problem and multimode project scheduling problem are similarly
defined. Both are constrained by precedence, and execution time of task or activity (based on
the assigned resource or mode).

Some heuristics are proposed for multimode project scheduling problems. They are
usually classified into two types of rules: the mode priority rule for choosing mode and
activity priority rule for deciding priority among activities. Two heuristics were chosen after
various heuristics had been reviewed.

The shortest feasible mode (SFM) heuristic [37] in a multimode project scheduling
problem is the basis of the proposed best performance resource (BPR) heuristic for task-
resource assignment in this study. The rationale behind the SFM heuristic is clear; the shortest
feasible mode is selected to minimize the project duration. Restated, the SFM guides tasks to
choose the mode with shortest activity duration. Similarly, the logic of the BPR heuristic is
apparent with the best performance resource assigned to shorten completion time. Therefore,
the BPR heuristic is proposed to assign the best performance resource to all of the tasks during
assignment, and then shorten the execution time of tasks reasonably, that is, assigning the
resource with maximum ability among resources to Su ∈ S and then decide the min(Eu) =
w(Su)/max(a(Mi | Mi ∈ M)).

In MRCPSP, the latest finish time (LFT) heuristic [38] is often used for deciding the
priority of tasks. Meanwhile, the LFT heuristic is applied in this work to give higher priority
to the tasks with smaller latest finish times LFTs, where the LFT is similar to that in the
program evaluation and review technique (PERT). Moreover, the LFT is calculated by the
upper bound of scheduling completion time:

T =
K∑
i=1

max(Ti). (4.2)

In (4.2), Ti is determined by the critical path. Then perform a traditional backward recursion
using shortest execution time min(Eu) for all tasks.

4.3. The Version of Used Particle Swarm Optimization

Many variations of PSO have been proposed, and one of them is the “standard” PSO
proposed by Bratton and Kennedy [39] implying that PSO can be significantly improved.
In the standard PSO, a different version of velocity update rule is suggested as follows:

V new
ij = χ × (

Vij + c1 × r1 ×
(
Lij −Xij

)
+ c2 × r2 ×

(
Gj −Xij

))
,

Xnew
ij = Xij + V new

ij ,
(4.3)

where the χ is constriction factor for adjusting the velocity, and this velocity update rule is
suggested for its stability [35]. Hence, this velocity update rule is applied in this study.

In [39], the standard PSO presented two swarm communication topologies for PSO;
the “gbest” topology in Figure 6(a) has been studied in most research. The gbest is the global
best model where every particle is able to share information with each other quickly, and
it is outstanding because of its global communication ability. However, the gbest’s global
communication ability usually leads to premature convergence. Hence, the “lbest” topology,



Abstract and Applied Analysis 13

(a) The gbest topology (b) The lbest topology

Figure 6: Two topologies of PSO.

like in Figure 6(b), has greatly attracted researchers’ attention recently. The feature of lbest
is its limited communication; every particle can just communicate with a portion of the
swarm. Meanwhile, the lbest topology can be varied such as a ring formation, Von Neumann
neighborhood, and so forth. The “lbest” model used in [35] is the simplest form of a local
topology, known as the aforementioned ring model. The lbest ring model connects each
particle to only two other particles in the swarm. Obviously, lbest has a slower convergence
rate relative to the gbest.

Bratton et al. note that the gbest usually results in better performance on simple
unimodal problems than using lbest, since the situation about falling into local optima does
not happen frequently under a unimodal condition. However, the lbest surpasses the gbest
in a number of function evaluations, especially in multimodal problems.

For clearly understanding the performance of both topologies for our task scheduling
focus, both topologies were tested in Section 5. The global best experience (G) in (4.2) is
obtained on the basis of either global communication topology or local communication
topology. In this paper, the lbest topology is based on the ring topology, it is a “small-world
network” [40] as indicated in Figure 6(b). In other words, the global experience (G) based on
local communication topology (lbest) is determined by Xi+1, Xi, and Xi−1 particle positions.
On the other hand, the global experience (G) is determined by all particles when applying
global communication topology (gbest).

Accordingly, the procedure of our proposed enhanced particle swarm optimization is
summarized as shown in Algorithm 2.

5. Experimental Results and Comparisons

For verifying the suggested scheme in this investigation, simulated cases based on [2, 41] are
generated. The simulation case has 15 tasks and 2 pseudotasks as described in Table 11 . In
Table 11, the workload, successors, and the communication costs are depicted. For example,
task 1 has a workload w(S1) = 10000, its successors are S2, S3, S4, and the corresponding
communication costs are c12 = 5, c13 = 4, and c14 = 10.

Three instances of resources A, B, and C with 2, 5, and 10 resources, respectively, are
displayed in Table 12. They are used for testing 3 differing resource situations.

The simulation parameters are set as follows: the number of particles is 20 and the
initial positions and velocities of particles are randomly assigned except for the heuristics
used. Meanwhile, the velocity update rule with constriction factor is used, the constriction



14 Abstract and Applied Analysis

(1) Initialize particles’ positions (X = XA
⋃
XR) by applying

heuristics: LFT (for XR) and BRP (for XA).
(2) Iteration Loop

(2.1) For each particle i in the swarm do:

(2.2) Update velocity vector (Vi
Anew

,Vi
Rnew

) and position

vector (Xi
Anew

,Xi
Rnew

) according to (4.2) (“standard” PSO).
(2.3) Calculate task-resource assignment vector A based

on Xi
Anew

(3.1).
(2.4) Calculate task priority vector Pr by applying the

random key scheme to Xi
Rnew

and constructing a
new precedence for the task queue.

(2.5) Calculate particle’s fitness (based on vector A and
vector Pr) via scheduling completion time calculation (2.3).

(2.6) Update Li.
(2.7) Update G (gbest or lbest).

(3) Until End condition is reached, return solution.

Algorithm 2: The pseudocode of the proposed enhanced PSO.

Table 11: A case consisting of 15 tasks.

Task no. Workload Successors no. Comm. cost
0 0 1 0
1 10000 2 3 4 5 4 10
2 20000 5 8
3 5000 5 8 1 13
4 40000 6 9 4 15
5 15000 7 10
6 1000 10 5
7 12000 9 10 10 20
8 8000 10 12 7 15
9 30000 12 2
10 11000 11 13 2 20
11 1000 12 5
12 1000 14 15 15 11
13 20000 15 8
14 6000 15 2
15 13000 16 0
16 0

factor χ is a variable based on the circumstances, and different constriction factor values were
tested. The learning factors c1 and c2 are set to 2 as suggested in [16]. Meanwhile, r1 and r2
are the random numbers uniformly distributed in [0, 1].

There are a total of 24 sets of testing cases simulated as shown in Table 13. The
experimental results are also displayed in Table 13. Each set of a testing case is tested for
30 trials to obtain the minimum and average scheduling completion times. The simulation



Abstract and Applied Analysis 15

Table 12: Three instances of resources.

(a) Instance A

Resource no. Ability Bandwidth

0 450 8
1 1000 2

(b) Instance B

Resource no. Ability Bandwidth

0 450 8
1 1000 2
2 650 10
3 1500 8
4 800 10

(c) Instance C

Resource no. Ability Bandwidth

0 450 8
1 1000 2
2 650 10
3 1500 8
4 800 10
5 4000 2
6 2000 15
7 1250 6
8 250 20
9 750 5

result is expressed as the format: minimum completion time/average completion time. And each
trial was iterated 100 and 300 times. Moreover, the two heuristics and two topologies of
PSO were also tested. To verify the influences of both LFT and BPR heuristics, four different
situations are tested: without both LFT and BPR; with LFT and without BPR; without LFT
and with BPR; with both LFT and BPR. Different global best experiences based on global
and local communication topologies impact to the performance are also tested. The global
experience (G) for local communication topology (lbest) is determined by Xi+1, Xi, and Xi−1
particle positions. Additionally, the best constriction factor for balancing the global and local
searches to enhance the performance is surveyed.

The simulation results indicate that the lbest topology is apparently better than the
gbest on average. The LFT heuristic is efficient in the test especially for instance C. However,
if the BPR is polarized, it leads to worse scheduling for testing instance A, but outstanding
scheduling for instances B and C. The situation indicates that applying the BPR to the task
scheduling problem with fewer resources is improper. Moreover, the BPR is able to perform
better than LFT for instances B and C. Hence, these two heuristics are worth applying to
improve the efficiency of solving task scheduling problems in grid, but the BPR is not suitable
for problems with poor resources.

To verify the effectiveness and efficiency of the proposed scheme, some similar
scheduling problems were tested since there is no benchmark for task-resource assignment



16 Abstract and Applied Analysis

Table 13: Comparisons of experimental results.

Instance Iter. LFT BPR χ Gbest results χ Lbest results

A

100

0.9

155.94/165.96

0.7

155.94/159.9
300 155.94/164.45 155.94/159.18
100 v 155.94/163.94 155.94/159.34
300 v 155.94/163.17 155.94/159.04
100 v 155.94/182.18 155.94/164.39
300 v 155.94/181.43 155.94/163.16
100 v v 155.94/186.01 155.94/161.33
300 v v 155.94/180.87 155.94/161.55

B

100

0.75

93.33/103.61

0.55

93.33/98.77
300 93.33/102.54 93.33/96.56
100 v 93.33/100.04 93.33/98.87
300 v 93.33/99.72 93.33/96.29
100 v 93.33/96.6 93.33/95.47
300 v 93.33/94.93 93.33/94.57
100 v v 93.33/95.6 93.33/96.4
300 v v 93.33/95.5 93.33/94.09

C

100

0.75

45.5/60.15

0.55

44.5/54.26
300 44.5/55.45 44.5/50.36
100 v 44.5/57.51 44.5/54.09
300 v 44.5/52.59 44.5/48.32
100 v 44.5/49.52 44.5/48.39
300 v 44.5/47.19 44.5/46.48
100 v v 44.5/48.54 44.5/48.07
300 v v 44.5/47.23 44.5/46.02

Table 14: Complexity of the scheduling problem.

Solution space Example (solutions)
TRA-G (n tasks,m processors) n! ×mn 16! × 1016 � 2.1 × 1029 (n = 16, m = 10)
MRCPSP (n tasks,mmodes) n! ×mn 30! × 330 � 5.5 × 1046(n = 30, m = 3)

of heterogeneous grid. As stated in Section 4.2, the multimode project scheduling problem is
similar to the studied task-resource assignment problem. There are somemultimode resource
constrained project scheduling problem (MRCPSP) instances in the project scheduling
problem library (PSPLIB) [42], including scheduling problems with 10, 12, 14, 16, 18,
20, and 30 jobs (they are denoted by J10, J12, J14, J16, J18, J20, and J30, resp.). Every
job case has different instances (e.g., 536 instances for J10 case and 552 instances for J30
case) with different available modes. Meanwhile, MRCPSP has been confirmed to be an
NP-hard optimization problem [43]. Table 14 shows the difficulty of solving the studied
problem. Meanwhile, the “Example” column represents the possible solutions of the studied
problems. The time required by exhaustive search for simulated TRA-G problem would be
2.1 × 1029 × 10−8 seconds � 2.4 × 1016days (a solution that can be found in 0.01μsec (10−8 sec)
is assumed). The time required by exhaustive search for simulated MRCPSP-J30 problem
would be 5.5 × 1046 × 10−8 seconds � 6.3 × 1033 days.



Abstract and Applied Analysis 17

Table 15: Comparison of algorithms with respect to schedules—5000 on J30.

Algorithm Lower bound solutions found (%) CPU-time (sec.)
PSO (this work) 52.46/55.02/57.97∗ 0.769
CPSO [44] 57.41 N/A
GA [45] 42.93 0.34
SA [46] 25.60 41.8
∗minimum/average/maximum percentages.

Table 16: Comparison of algorithms with respect to computation time—1 sec. on J30.

Algorithm Min. Dev. (%) Avg. Dev. (%) Max. Dev. (%) Feasible solutions found (%)
PSO (this work) 0% 4.48 78.95 92.39
GA [36] N/A 16.93 151.9 86.3
Truncated B&B [48] N/A 57.22 244.0 55.8

In this study, the suggested algorithmwas applied to solve the “largest” scale instance,
the J30 case. In J30 case, there are 3 modes available for each activity. Additionally, most of
the research performance comparison among different methods is conducted by evaluating
the same number of schedules for each case, for example, 1000 schedules, 5000 schedules, or
50000 schedules. Meanwhile, MRCPSP is a task-mode assignment problem; hence, the SFM
heuristic is tested instead of the BPR heuristic. Table 15 shows the simulation results of all
552 instances of the J30 case. Each instance simulation was stopped whenever a total number
of 5000 schedules were evaluated. The comparison is on the basis of lower bound solutions
since no optimal solution is known, and formany instances of that set, a feasible solution does
not exist. Hence, the ratio of lower bound solutions was measured, (lower bound solutions
found/552)∗100%, in the test; test results are demonstrated in Table 15. Moreover, CPU times
employed by algorithms are also displayed.

Table 15 illustrates that the proposed scheme yields 57.97% lower bound solutions on
J30 case. Currently, no study’s results exceed 60% optimal solutions of all 552 instances.
Nevertheless, some studies present their scheme performance with over 60% optimal
solutions found, since they did not include all 552 instances (such as [47]) for their tests.
Meanwhile, the CPU time for finding 5000 schedules by proposed PSO is about 0.769 second.
However, the performance comparison based on computation time was also conducted by
Hartman [36]. Hence, the comparisons of simulation results from different algorithms for a
time limit of one second are displayed in Table 16. The simulation results for the set with
J30 reflect deviations from a lower bound makespan. The average deviation, maximum
deviation, and found feasible solutions ratio comparisons are given in Table 16. In this work,
more than 6000 schedules (for one instance of J30 case) can be obtained from our algorithm
in one second. Restated, the consumed CPU time to find a feasible solution for every instance
for J30 would be less than 0.167ms. The average andmaximal deviations are less than 5% and
80%, respectively; more than 90% feasible solution can be obtained in one second. Hence, the
proposed scheme is effective for solving similar problems in task-resource assignment.

6. Conclusions and Discussion

The task scheduling of resource allocation is a critical issue in grid. Most task scheduling
problems are complicated and NP-complete. The studied task scheduling problem is



18 Abstract and Applied Analysis

regarded as a task-resource assignment graph optimization problem. This study proposes
an enhanced scheme based on the “standard” PSO to solve the task scheduling problem
in grid. Meanwhile, there are two extra heuristics proposed to enhance the efficiency of
problem solving: the LFT heuristic and BPR heuristic are applied, where the LFT heuristic
helps PSO to decide the priority of tasks in the task queue, and performing well for each
test in this study. The BPR heuristic helps PSO to determine task-resource assignment, and
performs well for problems with more available resources. However, applying the proposed
BPR for task-resource assignment would be worse with a problem with poor resources,
since fewer resources can be chosen for obtaining the best performance resource. Moreover,
two PSO communication topologies in obtaining global best experience are evaluated for
solving task scheduling in this study; they are global communication topology (gbest) and
local communication topology (lbest). The “lbest” performs better than the “gbest” in most
tests of this problem class. According to simulation results as displayed in Table 13, this
proposed scheme, involving two heuristics and “lbest” communication topology on top of
the “standard” PSO, is effective and efficient for solving task-resource assignment problems
in grid. Meanwhile, the proposed scheme can obtain 57.97% lower bound solutions of the
largest instances of PSPLIB [42] in 0.769 second, as displayed in Table 15. More than 90%
feasible solutions can be yielded in one second; resulting minimal and maximal deviations
are less than 5% and 80%. Restated, the simulation results verify that the proposed scheme is
adequate and efficient for solving this class of scheduling problems.

Although the scheme proposed in the study is able to solve the task scheduling
problem efficiently, further improvement is possible if the BPR heuristic can be improved and
made to perform well for any problem. Hence, future work should investigate more suitable
heuristics. Meanwhile, this study does not consider the contention for communication
resources. To be more close to the real situation, the contention consideration as in [20]
should be included in future work. Moreover, more complex task scheduling problems such
as processor utilization consideration are planned to be further investigated.

Acknowledgment

This work was partly supported by the National Science Council, Taiwan, under contract
NSC 99-2221-E-167-007.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: enabling scalable virtual or-
ganizations,” International Journal of High Performance Computing Applications, vol. 15, no. 3, pp. 200–
222, 2001.

[2] T. Chen, B. Zhang, X. Hao, and Y. Dai, “Task scheduling in grid based on particle swarm
optimization,” in Proceedings of the 5th International Symposium on Parallel and Distributed Computing
(ISPDC ’06), pp. 238–245, July 2006.

[3] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization for task assignment problem,”
Microprocessors and Microsystems, vol. 26, no. 8, pp. 363–371, 2002.

[4] M. Aggarwal, R. D. Kent, and A. Ngom, “Genetic algorithm based scheduler for computational
grids,” in Proceedings of the 19th International Symposium on High Performance Computing Systems and
Applications (HPCS ’05), pp. 209–215, May 2005.

[5] G. Malewicz, A. L. Rosenberg, and M. Yurkewych, “On scheduling complex dags for internet-based
computing,” in Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS ’05), April 2005.



Abstract and Applied Analysis 19

[6] L. He, S. A. Jarvis, D. P. Spooner, D. Bacigalupo, G. Tan, and G. R. Nudd, “Mapping DAG-based
applications to multiclusters with background workload,” in Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid, pp. 855–862, May 2005.

[7] G. T. Ross and R. M. Soland, “A branch and bound algorithm for the generalized assignment
problem,”Mathematical Programming, vol. 8, pp. 91–103, 1975.

[8] R. M. Chen, S. T. Lo, and Y. M. Huang, “Combining competitive scheme with slack neurons to solve
real-time job scheduling problem,” Expert Systems with Applications, vol. 33, no. 1, pp. 75–85, 2007.

[9] F. E. Sandnes, “Secure distributed configurationmanagement with randomised scheduling of system-
administration tasks,” IEICE Transactions on Information and Systems, vol. E86-D, no. 9, pp. 1601–1610,
2003.

[10] M. Basu, “Hybridization of artificial immune systems and sequential quadratic programming for
dynamic economic dispatch,” Electric Power Components and Systems, vol. 37, no. 9, pp. 1036–1045,
2009.

[11] J. H. Holland, “Genetic algorithms and classifier systems: foundations and future directions,” in
Proceedings of the 2nd International Conference on Genetic Algorithms and Their Application, 1987.

[12] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol.
220, no. 4598, pp. 671–680, 1983.

[13] F. Glover, “Tabu search—part I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.
[14] F. Glover, “Tabu search—part II,” ORSA Journal on Computing, vol. 2, no. 1, pp. 4–32, 1990.
[15] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the

traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66,
1997.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the 4th IEEE International
Conference on Neural Networks, pp. 1942–1948, December 1995.

[17] J. Oh and C. Wu, “Genetic-algorithm-based real-time task scheduling with multiple goals,” Journal of
Systems and Software, vol. 71, no. 3, pp. 245–258, 2004.

[18] Z. Liu and H. Wang, “GA-based resource-constrained project scheduling with the objective of
minimizing activities’ cost,” in Proceedings of the International Conference on Intelligent Computing (ICIC
’05), vol. 3644 of Lecture Notes in Computer Science, pp. 937–946, August 2005.

[19] N. Amjady and A. Shirzadi, “Unit commitment using a new integer coded genetic algorithm,”
European Transactions on Electrical Power, vol. 19, no. 8, pp. 1161–1176, 2009.

[20] O. Sinnen, L. A. Sousa, and F. E. Sandnes, “Toward a realistic task scheduling model,” IEEE
Transactions on Parallel and Distributed Systems, vol. 17, no. 3, pp. 263–275, 2006.

[21] K. Bouleimen and H. Lecocq, “A new efficient simulated annealing algorithm for the resource-
constrained project scheduling problem and its multiple mode version,” European Journal of
Operational Research, vol. 149, no. 2, pp. 268–281, 2003.

[22] K. H. Kim and K. C. Moon, “Berth scheduling by simulated annealing,” Transportation Research B, vol.
37, no. 6, pp. 541–560, 2003.

[23] G. Wan and B. P.-C. Yen, “Tabu search for single machine scheduling with distinct due windows and
weighted earliness/tardiness penalties,” European Journal of Operational Research, vol. 142, no. 2, pp.
271–281, 2002.

[24] S. G. Ponnambalam, P. Aravindan, and S. V. Rajesh, “Tabu search algorithm for job shop scheduling,”
International Journal of Advanced Manufacturing Technology, vol. 16, no. 10, pp. 765–771, 2000.

[25] S. T. Lo, R. M. Chen, Y. M. Huang, and C. L. Wu, “Multiprocessor system scheduling with precedence
and resource constraints using an enhanced ant colony system,” Expert Systems with Applications, vol.
34, no. 3, pp. 2071–2081, 2008.

[26] W. J. Gutjahr andM. S. Rauner, “AnACO algorithm for a dynamic regional nurse-scheduling problem
in Austria,” Computers and Operations Research, vol. 34, no. 3, pp. 642–666, 2007.

[27] F. Zhao, Y. Hong, D. Yu, Y. Yang, and Q. Zhang, “A hybrid particle swarm optimisation algorithm and
fuzzy logic for process planning and production scheduling integration in holonic manufacturing
systems,” International Journal of Computer Integrated Manufacturing, vol. 23, no. 1, pp. 20–39, 2010.

[28] T. L. Lin, S. J. Horng, T. W. Kao et al., “An efficient job-shop scheduling algorithm based on particle
swarm optimization,” Expert Systems with Applications, vol. 37, no. 3, pp. 2629–2636, 2010.

[29] H. Liu, A. Abraham, and Z. Wang, “A multi-swarm approach to multi-objective flexible job-shop
scheduling problems,” Fundamenta Informaticae, vol. 95, no. 4, pp. 465–489, 2009.

[30] R. M. Chen, C. L. Wu, C. M. Wang, and S. T. Lo, “Using novel particle swarm optimization scheme to
solve resource-constrained scheduling problem in PSPLIB,” Expert Systems with Applications, vol. 37,
no. 3, pp. 1899–1910, 2010.



20 Abstract and Applied Analysis

[31] C. Chiu, M. J. J. Wu, Y. T. Tsai, N. H. Chiu, M. S. H. Ho, and H. J. Shyu, “Constrain-based particle
swarm optimization (CBPSO) for call center scheduling,” International Journal of Innovative Computing,
Information and Control, vol. 5, no. 12, pp. 4541–4549, 2009.

[32] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, and G. Gencyilmaz, “A particle swarm optimization algorithm
for makespan and total flowtime minimization in the permutation flowshop sequencing problem,”
European Journal of Operational Research, vol. 177, no. 3, pp. 1930–1947, 2007.

[33] J. Behnamian, M. Zandieh, and S. M. T. Fatemi Ghomi, “Due windows group scheduling using an
effective hybrid optimization approach,” International Journal of Advanced Manufacturing Technology,
vol. 46, no. 5–8, pp. 721–735, 2010.

[34] Y. Hei, X. Li, K. Yi, and H. Yang, “Novel scheduling strategy for downlink multiuser MIMO system:
particle swarm optimization,” Science in China F, vol. 52, no. 12, pp. 2279–2289, 2009.

[35] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimen-
sional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[36] S. Hartmann, “Project scheduling with multiple modes: a genetic algorithm,” Annals of Operations
Research, vol. 102, no. 1, pp. 111–135, 2001.

[37] F. F. Boctor, “Heuristics for scheduling projects with resource restrictions and several resource-
duration modes,” International Journal of Production Research, vol. 31, no. 11, pp. 2547–2558, 1993.

[38] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, “Resource-constrained project
scheduling: notation, classification, models, and methods,” European Journal of Operational Research,
vol. 112, no. 1, pp. 3–41, 1999.

[39] D. Bratton and J. Kennedy, “Defining a standard for particle swarm optimization,” in Proceedings of
the IEEE Swarm Intelligence Symposium (SIS ’07), pp. 120–127, April 2007.

[40] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no.
6684, pp. 440–442, 1998.

[41] J. N. Lin and H. Z. Wu, “Scheduling in grid computing environment based on genetic algorithm,”
Journal of Computer Research and Development, vol. 41, no. 12, pp. 2195–2199, 2004 (Chinese).

[42] Project Scheduling Problem Library, PSPLIB, http://129.187.106.231/psplib/.
[43] W. Herroelen, B. De Reyck, and E. Demeulemeester, “Resource-constrained project scheduling: a

survey of recent developments,” Computers & Operations Research, vol. 25, no. 4, pp. 279–302, 1998.
[44] B. Jarboui, N. Damak, P. Siarry, and A. Rebai, “A combinatorial particle swarm optimization for

solving multi-mode resource-constrained project scheduling problems,” Applied Mathematics and
Computation, vol. 195, no. 1, pp. 299–308, 2008.

[45] J. Alcaraz, C. Maroto, and R. Ruiz, “Solving the multi-mode resource-constrained project scheduling
problemwith genetic algorithms,” Journal of the Operational Research Society, vol. 54, no. 6, pp. 614–626,
2003.

[46] J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Wȩglarz, “Simulated annealing for multi-
mode resource-constrained project scheduling,” Annals of Operations Research, vol. 102, no. 1–4, pp.
137–155, 2001.

[47] C. W. Chiang, Y. Q. Huang, andW. Y. Wang, “Ant colony optimization with parameter adaptation for
multi-mode resource-constrained project scheduling,” Journal of Intelligent and Fuzzy Systems, vol. 19,
no. 4-5, pp. 345–358, 2008.

[48] S. Hartmann and A. Drexl, “Project scheduling with multiple modes: a comparison of exact
algorithms,” Networks, vol. 32, no. 4, pp. 283–297, 1998.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


