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This paper is concerned with analyzing the mathematical properties, such as the regularity and
stability of nonstationary biorthogonal wavelet systems based on exponential B-splines. We first
discuss the biorthogonality condition of the nonstationary refinable functions, and then we show
that the refinable functions based on exponential B-splines have the same regularities as the ones
based on the polynomial B-splines of the corresponding orders. In the context of nonstationary
wavelets, the stability of wavelet bases is not implied by the stability of a refinable function. For
this reason, we prove that the suggested nonstationary wavelets form Riesz bases for the space
that they generate.

1. Introduction

For the last two decades, the wavelet transforms have become very useful tools in a
variety of applications such as signal and image processing and numerical computation.
The construction of classical wavelets is now well understood thanks to such pioneering
works as [1–3]. Many properties, such as symmetry (or antisymmetry), vanishing moments,
regularity, and short support, are required in a practical use for application areas. In
particular, polynomial splines have been a common source for wavelet construction [1, 3–6].
A new class of compactly supported biorthogonal wavelet systems that are constructed from
pseudosplines was introduced in [7].

Exponential B-splines and polynomials have been found to be quite useful in a number
of applications such as computer-aided geometric design, shape-preserving curve fitting,
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and signal interpolation [8–10]. Exponential B-splines were used as a key ingredient for the
construction of wavelets [11, 12] and particularly used in wavelet construction on S

2 and
S
3 [13]. In particular, in the approximation and sparse representation of acoustic signals,

polynomial-based (stationary) wavelet systems have an important limitation because they
do not consider the spectral features (e.g., band limited) of a given signal. However, (non-
stationary) wavelet systems based on the exponential B-spline can be tuned to the specific
trait of the given signal, yielding better approximations and sparser representations than
classical wavelets at strictly the same computational costs. Details on exponential splines can
be found in the selected references [10, 11, 14–16]. Related studies on non-stationary wavelets
can be found in [11, 12, 15, 17–22].

One natural and convenient way to introduce wavelets is to follow the notion of
multiresolution analysis. However, because the refinement masks we are interested in are
non-stationary (i.e., scale dependent), we use the structure of non-stationary multiresolution
analysis as introduced in [17]. Given an integer j0 ∈ Z and compactly supported refinable
functions φj , j ≥ j0, in L2(R), we say that a sequence of subspaces

Vj = span
{
φj,k := 2j/2φj

(
2j · −k

)
: k ∈ Z

}
, j ≥ j0 (1.1)

forms a non-stationary multiresolution analysis (MRA) of L2(R) if the following conditions
are satisfied:

(1) Vj ⊂ Vj+1 for all j ≥ j0,

(2)
⋃
j≥j0 Vj is dense in L2(R);

(3) the set {φj,k : k ∈ Z} is a Riesz (or stable) basis for Vj for each j ≥ j0.

The nested embedding of the spaces Vj implies the existence of a sequence a[j] := (a[j]n )n∈Z
∈

�2(Z) that satisfies the non-stationary refinement equation

φj(x) =
∑
n∈Z

a
[j]
n φj+1(2x − n), j ≥ j0, (1.2)

where the sequence a[j] is usually called the refinement mask for φj . One should notice that the
function φj(2j ·) ∈ Vj is no longer a dilated version of φj0 in Vj0 . A refinable function φ̃j ∈ L2(R)

with the mask ã[j] := (ã[j]n )n∈Z
is called the dual refinable function of φj ∈ L2(R) (or just the

dual of φj for simplicity) if it satisfies

〈
φj, φ̃j(· − �)

〉
= δ0,� , � ∈ Z. (1.3)

Let (Vj)j≥j0 and (Ṽj)j≥j0 be a pair of MRAs generated by a pair of dual refinable functions φj

and φ̃j , j ≥ j0, respectively. The concept of biorthogonal wavelets is to find complement spaces
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Wj and W̃j of Vj and Ṽj , respectively, satisfying Vj+1 = Vj +̇Wj , Wj ⊥ Ṽj and Ṽj+1 = Ṽj +̇W̃j ,
W̃j ⊥ Vj . The corresponding biorthogonal wavelets are given by

ψj =
∑
n∈Z

(−1)nã[j]1−nφj+1(2 · −n),

ψ̃j =
∑
n∈Z

(−1)na[j]1−nφ̃j+1(2 · −n).
(1.4)

A generalization of the biorthogonal wavelets of Cohen-Daubechies-Feuveau [1] was
introduced that was based on exponential B-splines [12]. By generalizing the Strang-Fix
conditions, the authors discussed the relationship between the reproduction of exponential
polynomials (by φj or φ̃j) and the zeros of the corresponding Laurent polynomials. They
also proved that for each j ≥ j0, the proposed non-stationary refinable function φj generates
a Riesz basis for Vj and that the corresponding Riesz (upper and lower) bounds are
independent of j ≥ j0. However, the authors did not explicitly address the biorthogonality
condition of the corresponding non-stationary refinable functions. Moreover, some funda-
mental questions concerning the global stability, and regularity, were left unanswered. There-
fore, the primary goal of this paper is to address these issues. First, we provide a sufficient
condition for the biorthogonality (1.3) of non-stationary refinable functions, and then we
prove that the refinable functions based on exponential B-splines have the same regularities
as the ones based on the polynomial B-splines of the corresponding orders. In the context
of non-stationary wavelets, the stability of the wavelet bases {ψj,k : k ∈ Z, j ≥ j0}
is not implied by the stability of a refinable function. Therefore, we prove that the set
{ψj,k : k ∈ Z, j ≥ j0} forms a Riesz basis for the space +̇j≥j0Wj . Furthermore, we show that the
set {φj0,k : k ∈ Z} ∪ {ψj,k : k ∈ Z, j ≥ j0} becomes a Riesz basis for the space L2(R).

This paper is organized as follows. In Section 2, we provide basic notions of expo-
nential B-splines. Section 3 discusses the biorthogonality condition of non-stationary
refinable functions and then studies their regularities. In Section 4, we prove the (global)
stability of the proposed non-stationary wavelet bases.

2. Preliminaries: Exponential B-Splines

Given a set of complex numbers G = {γj ∈ C : j = 1, . . . ,N}, the corresponding Nth-order
exponential B-splines can be defined as successive convolutions of the first-order B-spline

φj := φ
[G]
j := τj

(
eγ12−j B1 ∗ · · · ∗ eγN2−j B1

)
, (2.1)

with a normalization factor τj defined so that ‖φj‖L1(R) = 1 (see [10]), where B1 indicates the
first-order B-spline, that is, B1 := χ[0,1], and eγ : x 	→ eγx, γ ∈ C, is the exponential function.
For simplicity, we will omit G in φ

[G]
j . Obviously, the function φj is a compactly supported

piecewise exponential polynomial. The global regularity of φj is CN−2 (see [10, 15]). A conve-
nient way to represent an (Nth-order) exponential B-spline is with the Laurent polynomial

a[j](z) :=
∑
n∈Z

a
[j]
n zn := 2cj

N∏
n=1

1
2

(
1 + eγn2

−j−1
z
)
, j ≥ j0, (2.2)
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where cj is the normalization factor defined by

cj := cj,G :=
N∏
n=1

2(
1 + eγn2−j−1

) . (2.3)

We call a[j] the symbol of φj . Throughout this paper, γn is assumed to be a real or a pure

imaginary number, that is, γn ∈ R or γn ∈ iR. Since we want the mask (a[j]n )n∈Z
to be

symmetric with respect to its center, it is reasonable to assume that if γn ∈ G, then −γn ∈ G.
The relationship between the reproduction of exponential polynomials by φj and the zeros
of the corresponding Laurent polynomial a[j] is discussed in [12].

It is well known that the integer translates φ0(· − k), k ∈ Z, are linearly independent if
and only if γ� − γn /∈ 2πiZ for γ� /= γn [10, 16]. From (2.1) and (2.2), we can easily deduce that
for each j ≥ j0, the integer translates φj(· − k), k ∈ Z, are linearly independent if and only if

2−j
(
γ� − γn

)
/∈ 2πiZ, γ� /= γn. (2.4)

A concept related to (but weaker than) the linear independence is the notion of the stability
of φj . It is known (see, e.g., [23]) that the set {φj(· − k) : k ∈ Z} forms a Riesz basis if and only
if there exist constants Aj, Bj > 0 such that

Aj ≤
[
φ̂j , φ̂j

]
≤ Bj, (2.5)

where the bracket product [f, g] for f, g ∈ L2(R) is defined by

[
f, g

]
(ξ) :=

∑
n∈Z

f(ξ + 2πn)g(ξ + 2πn). (2.6)

We say that the function φj ∈ L2(R) is stable if (2.5) is satisfied. If the integer translates of φj are
linearly independent, the stability of φj is immediate [24, Theorem 1.2], that is, {φj(2j · −k) :
k ∈ Z} is a Riesz basis for Vj . Finally, the basic requirement on the set G = {γ1, . . . , γN} can be
summarized as follows: (i) each γn is a real or a pure imaginary number; (ii) both γn and −γn
belong to G, and (iii) for any j ≥ j0, 2−j(γn − γ�) /∈ 2πiZ with γn /= γ� .

3. Dual Refinable Functions

3.1. Construction of Dual Refinable Functions

Given refinable functions φj with j ≥ j0 the first step in the construction of a biorthogonal
wavelet system is to find their dual refinable functions φ̃j ∈ L2(R), j ≥ j0 (whose symbol is
denoted by ã[j]). A necessary condition for φj and φ̃j to satisfy (1.3) is

a[j](z)ã[j](z) + a[j](−z)ã[j](−z) = 4, (3.1)
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where z is the conjugate of the complex number z. Thus, the construction of φ̃j starts with the

construction of a dual symbol ã[j](z) :=
∑

n∈Z
ã
[j]
n zn such that (3.1) is satisfied. The algorithm

to find ã[j] is analogous to the classical method [1], except for the main difference that ã[j],
j ≥ j0, are scale dependent. However, in order to ensure the existence of ã[j] satisfying (3.1),
we need to prove that a[j] has no roots of opposite signs. For this purpose, denoting

N = 2L + τ, τ ∈ {0, 1}, (3.2)

and setting z = e−iξ and y = sin2ξ/2 (i.e., y = −(1 − z)2/4z), we represent a[j] as follows:

a[j]
(
e−iξ

)
= 2e−iLξ

(
1 + e−iξ

2

)τ L∏
n=1

(
1 − νj,ny

)
, (3.3)

where

νj,n =
4

eγn2
−j−1 + e−γn2−j−1 + 2

. (3.4)

Indeed, we are looking for a Laurent polynomial ã[j] of the form ã[j](e−iξ) = a[j](e−iξ)Q[j](y)
such that (3.1) holds. Therefore, if we define P [j](y) := a[j](e−iξ)a[j](e−iξ)/4, that is,

P [j](y) :=
(
1 − y)τ

L∏
n=1

(
1 − νj,ny

)2
, (3.5)

then the problem of finding ã[j](z) is reduced to constructing Q[j](y) which satisfies the
equation

P [j](y)Q[j](y) + P [j](1 − y)Q[j](1 − y) = 1, ∀y ∈ [0, 1]. (3.6)

Let us now prove that there is no common zero of P [j] and P [j](1 − ·) on [0, 1].

Proposition 3.1. Let the polynomials P [j], j ≥ j0, be given as in (3.5). Assume that for any j ≥ j0,
2−j(γn − γ�) /∈ 2πiZ for any γn, γ� ∈ G with γn /= γ� , then P [j] and P [j](1 − ·) have no common roots
on [0, 1].

Proof. Assume that P [j] and P [j](1 − ·) have a common root on [0, 1]. This is equivalent to the
existence of a number z0 ∈ C \ {0} such that

a[j](z0) = a[j](−z0) = 0. (3.7)

From (2.2), we can deduce that for some γ� /= γn, 1 + e−2
−j−1γ� z0 = 0 and 1 + e−2

−j−1γn(−z0) = 0. It
follows that 2−j(γn − γ�) ∈ 2πiZ, which contradicts the initial assumption.

By virtue of Proposition 3.1, the Bezout theorem guarantees the existence of a unique
polynomial Q[j] of degree N − 1 that satisfies (3.6). One may look for a polynomial Q[j] of
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degree higher thanN − 1. However, if the corresponding dual refinable functions are to have
the shortest possible support, the degree ofQ[j] must be constrained to beN−1. On the other
hand, it is of interest to see that by regrouping the simple fractions of Q[j] into two groups,
that is,

Q[j](y) = b[j](z)b̃[j](z), y = − (1 − z)
2

4z
, (3.8)

then we can define the adjusted Laurent polynomials a[j] and ã[j] by

a[j](z) := 2cjb[j](z)
N∏
n=1

1
2

(
1 + eγn2

−j−1
z
)
,

ã[j](z) := 2cj b̃[j](z)
N∏
n=1

1
2

(
1 + eγn2

−j−1
z
)
,

(3.9)

so that the lengths of a[j] and ã[j] are very close. This allows us to construct generalized
non-stationary refinable functions φj and φ̃j . If b[j] = 1, the resulting function φj becomes an
exponential B-spline of orderN. On the other hand, the classical counterparts of a[j] and ã[j]

(which are obtained by setting γn = 0 for all γn ∈ G) can be written as

a(z) = 2−N+1(1 + z)Nb(z), ã(z) = 2−N+1(1 + z)Nb̃(z). (3.10)

For notational simplicity, we will write

b[j](z) =
∑
n∈Z

b
[j]
n zn, b(z) =

∑
n∈Z

bnz
n. (3.11)

Lemma 3.2. Let b[j] := (b[j]n : n ∈ Z) and b := (bn : n ∈ Z) with j ≥ j0, then, as j tends to ∞, one
has ‖b[j] − b‖1 = O(2−j).

Proof. This is a direct consequence of [12, Lemma 2].

For the given Laurent polynomials ã[j] with j ≥ j0, there corresponds a potential
candidate for the refinable function φ̃j which is defined in terms of the Fourier transform as

̂̃
φj(ξ) =

∞∏
n=0

1
2
Ã[j+n]

(
ξ

2n+1

)
, (3.12)

where

Ã[j](ξ) = ã[j]
(
e−iξ

)
, (3.13)

provided that ̂̃
φj(ξ/2

n) → 1 as n → ∞. In fact, φ̃j in (3.12) is the only candidate for the

refinable function associated with ã[j] such that φ̃j is a dual of φj . Although the infinite
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product in (3.12) converges pointwise and φ̃j is in L2(R) whenever φ̃ is in L2(R) [12], it still
needs to be ensured that the function φ̃j in (3.12) is indeed a dual of φj . The following results
address this issue. For simplicity, using b[j] and b̃[j] in (3.9), we introduce the notation

Bk,j := sup
n≥j

max
ξ

∣∣∣∣∣
k∏
�=1

b[n+�−1](e−iξ/2
�

)

∣∣∣∣∣
1/k

,

B̃k̃,j := sup
n≥j

max
ξ

∣∣∣∣∣∣
k̃∏
�=1

b̃[n+�−1](e−iξ/2
�

)

∣∣∣∣∣∣

1/k̃

.

(3.14)

Lemma 3.3. Let φ̃j , j ≥ j0, be given as in (3.12) with the symbol ã[j] in (3.9). Suppose that for some
integer k̃ > 0, B̃k̃,j < 2N−1/2, then

∣∣∣∣̂̃φj
∣∣∣∣ ≤ c (1 + |·|)−N+log2B̃k̃,j , (3.15)

which implies that φ̃j ∈ L2(R). Moreover, the function φ̂j can be defined as in (3.12), then this lemma
also holds for φj .

Proof. Letm ∈ N and define ũj,m by

ũj,m(ξ) :=

[
m∏
�=1

1
2
Ã[j+�−1]

(
ξ2−�

)]
χ[−π,π]

(
ξ2−m

)
. (3.16)

For the given γn ∈ C with n = 1, . . . ,N, set ξγn,j := ξ + iγn2
−j−1. Then, we get the identity

m∏
�=1

∣∣∣∣∣
1 + eγ2

−j−�−1
e−iξ2

−�

2

∣∣∣∣∣ =
m∏
�=1

∣∣∣∣∣
sin

(
ξn,j2−�

)

2 sin
(
ξn,j2−�−1

)
∣∣∣∣∣ =

∣∣∣∣∣
sin

(
ξn,j2−1

)

2m sin
(
ξn,j2−m−1)

∣∣∣∣∣. (3.17)

Here, we can see that there exist η > 0 and M ∈ N such that if m ≥ M and |ξ2−m−1| ≤ η,
| sin(ξn,j2−m−1)| ≥ 2−1|ξn,j2−m−1|. Also, it is obvious that | sin(ξn,j2−1)| ≤ c1|ξn,j2−1| for some
constant c1 > 0 independent of ξ but dependent on γn. Therefore, we have

∣∣∣∣∣
sin

(
ξn,j2−1

)

2m sin
(
ξn,j2−m−1)

∣∣∣∣∣ ≤ c1
∣∣∣∣∣

ξn,j2−m−1

sin
(
ξn,j2−m−1)

∣∣∣∣∣ ≤ c2, (3.18)
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with a constant c2 > 0 depending on γn. Next, consider the case of η < |ξ2−m−1| ≤ π/2 and
let ε > 0 be a sufficiently small number so that ε < η/2. Noting that | sin ξ| ≥ (2/π)|ξ| for all
η < |ξ| ≤ π/2, it is not difficult to see that for a sufficiently large j ≥ J ,

2m
∣∣∣sin

(
ξn,j2−m−1

)∣∣∣ ≥ 2m
(
2−1

∣∣∣sin
(
ξ2−m−1

)∣∣∣ −
∣∣∣sin

(
γn2−j−m−2

)∣∣∣
)

≥ c3(|ξ| − ε) ≥ c4|ξ|,
(3.19)

then we obtain that

∣∣∣∣∣
sin

(
ξn,j2−1

)

2m sin
(
ξn,j2−m−1)

∣∣∣∣∣ ≤
c

1 + |ξ| , (3.20)

for a constant c > 0 depending on γn. Consequently, invoking the fact that Ã[j](ξ) = ã[j](e−iξ)
with ã[j] in (3.9), we obtain

∣∣ũj,m(ξ)
∣∣ ≤ c

(1 + |ξ|)N
m∏
�=1

∣∣∣b̃[j+�−1]
(
e−iξ2

−�)∣∣∣χ[−π,π]
(
2−mξ

)
, (3.21)

for any j ≥ J . Here, using the same argument in [1, Proposition 4.8] (see point 3), we can get

m∏
�=1

b̃[j+�−1]
(
e−iξ2

−�) ≤ c(1 + |ξ|)log2B̃k̃,j . (3.22)

This together with (3.21) implies that |ũj,m(ξ)| ≤ c(1 + |ξ|)−N+log2B̃k̃,j for any j ≥ J , where c > 0

is independent ofm. Since ũj,m(ξ) → ̂̃
φj(ξ) pointwise asm → ∞, we get the relation in (3.15)

with j ≥ J . For j < J , applying an inductive argument based on the refinement equation ̂̃
φj =

Ã[j](·/2) ̂̃
φj+1(·/2), we obtain the required result. The case of φ̂j can be done similarly.

Lemma 3.4. Let a[j] and ã[j], j ≥ j0, be given as in (3.9). Suppose that for some integers k, k̃ > 0,

Bk,j , B̃k̃,j < 2N−1/2, (3.23)

with Bk,j and B̃k,j in (3.14), then, for any j ≥ j0, one has 〈φj,� , φ̃j,n〉 = δ�,n for all �, n ∈ Z.

Proof. Recalling the definition of ũj,m in (3.16), define uj,m by

uj,m(ξ) :=

[
m∏
�=1

1
2
A[j+�−1]

(
ξ2−�

)]
χ[−π,π]

(
ξ2−m

)
, (3.24)
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Then uj,m and ũj,m converge pointwise to φ̂j and
̂̃
φj , respectively. Moreover, using (3.1), we

can derive the relation

̂
uj,mũj,m(�) =

∫2m+1π

0

(
m∏
�=1

1
4
A[j+�−1]

(
ξ2−�

)
Ã

[j+�−1](
ξ2−�

))
ei�ξdξ

=
∫2mπ

0

(
m−1∏
�=1

1
4
A[j+�−1]

(
ξ2−�

)
Ã

[j+�−1](
ξ2−�

))
ei�ξdξ

= ̂
uj,m−1ũj,m−1(�).

(3.25)

Repeating this process yields the identity ̂
uj,mũj,m(�) = ̂

uj,1ũj,1(�) = 2πδ0,� . By Lemma 3.3,
φj, φ̃j ∈ L2(R), then it is immediate from the Lebesgue-dominated convergence theorem

that uj,m and ũj,m converge to φ̂j and ̂̃
φj , respectively, in L2. This in turn implies that

uj,mũj,m → φ̂j
̂̃
φj in L1, asm → ∞. Applying Plancherel’s theorem, we arrive at the conclusion

that 〈φj, φ̃j(· − �)〉 = δ0,� for any � ∈ Z.

This result proves that 〈φj,0, φ̃j,n〉 = δ0,n, n ∈ Z, for some j (in fact, for a sufficiently
large j) which guarantees the condition (3.23). But the following proposition indeed proves
that this duality condition holds for any j ≥ j0, under some suitable condition on the symbols
a and ã in (3.10). In the following analysis, it is useful to use the notation

Bk := max
ξ

∣∣∣∣∣
k∏
�=1

b
(
e−iξ/2

�
)∣∣∣∣∣

1/k

, B̃k̃ := max
ξ

∣∣∣∣∣∣
k̃∏
�=1

b̃
(
e−iξ/2

�
)
∣∣∣∣∣∣

1/k̃

, (3.26)

with b and b̃ in (3.10).

Proposition 3.5. Let a[j] and ã[j], j ≥ j0, be given as in (3.9). Assume that for some integers k, k̃ > 0,

Bk, B̃k̃ < 2N−1/2, (3.27)

then, for any j ≥ j0, one has 〈φj,0, φ̃j,n〉 = δ0,n for all n ∈ Z.

Proof. Due to Lemma 3.2, we find that as j → ∞, b[j] and b̃[j] converge uniformly on |z| = 1
to b and b̃, respectively. Thus, we can deduce that there exists a large J ∈ N such that

Bk,j , B̃k̃,j < 2N−1/2, ∀j ≥ J. (3.28)
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It follows from Lemma 3.4 that for any j ≥ J , 〈φj,0, φ̃j,n〉 = δ0,n for all n ∈ Z. For the case j < J ,
this property can be derived by using an inductive argument based on the non-stationary
refinement equation. Specifically, applying (1.2), we get

〈
φj,0, φ̃j,�

〉
=

1
2

∑
n∈Z

a
[j]
n

∑
k∈Z

ã
[j]
k−2�

〈
φj+1,n, φ̃j+1,k

〉

=
1
2

∑
n∈Z

a
[j]
n

∑
k∈Z

ã
[j]
k−2�δn,k

=
1
2

∑
n∈Z

a
[j]
n ã

[j]
n−2� = δ0,� ,

(3.29)

for any � ∈ Z. This completes the proof.

3.2. Smoothness of Refinable Functions

For a given κ = n + s with n ∈ N and s ∈ [0, 1], the Hölder spaceHκ (e.g., see [3]) is defined
to be the space of n-times continuously differentiable functions f whose nth derivative f (n)

satisfies the Lipschitz condition

sup
x,h∈R

∣∣f (n)(x + h) − f (n)(x)
∣∣

|h|s ≤ C. (3.30)

In particular, the regularity of f also can be analyzed by estimating the decay of f̂ around∞.
If |f̂(ξ)| ≤ c(1 + |ξ|)−1−κ−ε, ξ ∈ R, for an arbitrary small ε > 0, then f belongs to the space Hκ.
In the following theorem, under somemore stringent condition on Bk (than (3.27)), we derive
the smoothness of non-stationary refinable functions φ̃j , j ≥ j0, in (3.12). The smoothness of
φj can be shown in a similar way.

Theorem 3.6. Assume that the Laurent polynomial ã in (3.10) can be rewritten as

ã(z) = 2−K̃(1 + z)K̃+1b̃(z), K̃ < N, (3.31)

such that B̃k̃ < 1 for some k̃ ∈ N. Let φ̃j , j ≥ j0, be given as in (3.12) with the symbol ã[j] in (3.9),
then φ̃j ∈ HK̃+ν̃ for some ν̃ ∈ (0, 1).

Proof. The Laurent polynomial ã[j] in (3.9) can be written as

ã[j](z) = 2cj b̃[j](z)
K̃+1∏
n=1

1
2

(
1 + eγn2

−j−1
z
)
, K̃ < N. (3.32)

From Lemma 3.2, we can deduce that b̃[j](z) → b̃(z) uniformly on |z| = 1 as j → ∞. This
implies that B̃k̃,j in (3.14) converges to B̃k̃ (< 1) as j → ∞. Thus, there exists a sufficiently



Abstract and Applied Analysis 11

large J ∈ N such that B̃k̃,j < 1 for any j ≥ J , which means that log2B̃k̃,j < 0. Hence, recalling
from (3.15) that

∣∣∣∣̂̃φj
∣∣∣∣ ≤ c(1 + |·|)−K̃−1+log2B̃k̃,j , (3.33)

we see that for any j ≥ J , φ̃j ∈ HK̃+ν̃ with ν̃ ∈ (0, 1). Next, consider the case of j < J . By
applying an inductive argument based on the refinement equation

φ̃j =
∑
n∈Z

a
[j]
n φ̃j+1(· − n), (3.34)

we show that φ̃j ∈ HK̃+ν̃ for any j < J .

Remark 3.7. It is known (e.g., see [1]) that the Fourier transform of φ̃ with the symbol ã in
(3.31) has the decay rate

∣∣∣∣̂̃φ
∣∣∣∣ ≤ c(1 + |·|)−K̃−1+log2B̃k̃ . (3.35)

Since B̃k̃,j converges to B̃k̃ as j tends to ∞, we can deduce that the functions φ̃j , j ≥ j0, have

the same regularity as φ̃. For the details about the (optimal) regularity of φ̃, the reader is
referred to [1]. One may investigate the regularity of φ̃j by using the concept of asymptotical
equivalent subdivision schemes (see [15, 19]). However, the methods in [15, 19] are mainly
concerned with the integer smoothness of the refinable functions.

4. Stability of Nonstationary Biorthogonal Wavelets

For each j ≥ j0, if the condition (2.4) holds, the integer translates φj(· − k), k ∈ Z, are linearly
independent, and in particular, the set {φj(· − k) : k ∈ Z} forms a Riesz basis for Vj , that is,
there exist constants Aj, Bj > 0 such that

Aj ≤
[
φ̂j , φ̂j

]
≤ Bj. (4.1)

In [12], it was proved that there exists some constants 0 < A,B < ∞ independent of j ≥ j0
(but dependent on j0) such that

A ≤
[
φ̂j , φ̂j

]
≤ B, ∀j ≥ j0. (4.2)

However, in the context of non-stationary wavelets, the stability of φj does not imply the
global stability of the wavelet bases {ψj,k : (j, k) ∈ I}, where

I :=
{(
j, k

) ∈ Z
2 : j ≥ j0, k ∈ Z

}
. (4.3)
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The results in this section fill the gap. Specifically, we prove that the set {ψj,k : (j, k) ∈ I} is a
Riesz basis for +̇j≥j0Wj . Further, we show that the set

B :=
{
φj0,k : k ∈ Z

} ∪ {
ψj,k :

(
j, k

) ∈ I} (4.4)

becomes a Riesz basis for the space L2(R).
In the sequel, we will use the notation φa, φ̃ã when referring to the pair of dual

refinable functions based on the Nth-order polynomial B-spline, and ψa, ψ̃ã for their corre-
sponding biorthogonal wavelets (i.e., γn = 0 for all n = 1, . . . ,N).

Lemma 4.1. Let ψj and ψ̃j be a pair of biorthogonal wavelet functions associated with φj and φ̃j ,
j ≥ j0, then ψj (resp., ψ̃j) converges to ψa (resp., ψ̃ã) in L2(R), as j → ∞, with the convergence rate
O(2−j).

Proof. With the refinement masks a[j] and a of φj and φa, respectively, it is apparent from (1.4)
that

∥∥ψj − ψa
∥∥
L2(R) ≤

∥∥∥a[j] − a
∥∥∥
1

∥∥φj
∥∥
L2(R) + ‖a‖1

∥∥φj − φa
∥∥
L2(R). (4.5)

It has been proved in the proof of Theorem 3 in [12] that ‖φj − φa‖L2(R) = O(2−j) as j → ∞.
Thus, by Lemma 3.2, it is obvious that ‖ψj − ψa‖L2(R) = O(2−j). Similarly, the convergence of

ψ̃j to ψ̃ã (as j → ∞) can be proved.

Proposition 4.2. Assume that ψj and ψ̃j are a pair of biorthogonal wavelet functions associated with
φj and φ̃j , j ≥ j0. Let ψj,k := 2j/2ψj(2j · −k) and ψ̃j,k := 2j/2ψ̃j(2j · −k), then, for any j ≥ j0, the sets
{ψj,k : k ∈ Z} and {ψ̃j,k : k ∈ Z} form Riesz bases for Wj and W̃j , respectively. Furthermore, there
exist constants C,D, C̃, D̃ > 0 independent of j ≥ j0 (but dependent on j0) such that

C ≤ [
ψ̂j , ψ̂j

] ≤ D, C̃ ≤
[ ̂̃ψj, ̂̃ψj

]
≤ D̃, ∀j ≥ j0. (4.6)

Proof. Since ψj and ψ̃j are compactly supported functions, there exist constants Dj, D̃j > 0
such that

[
ψ̂j , ψ̂j

] ≤ Dj,
[ ̂̃ψj, ̂̃ψj

]
≤ D̃j . (4.7)

Notice that the duality condition 〈ψj(· − k), ψ̃j〉 = δ0,k is equivalent to [ψ̂j , ̂̃ψj] = 1, then, by
using the Cauchy-Schwartz inequality, we get

[
ψ̂j , ψ̂j

][ ̂̃ψj, ̂̃ψj
]
≥ 1. (4.8)
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Putting Cj = D̃−1
j , we obtain from (4.7) that Cj ≤ [ψ̂j , ψ̂j] ≤ Dj . Next, we prove that the Riesz

bounds Cj and Dj , j ≥ j0, are in some interval [C,D] with 0 < C,D < ∞. For this, we see that
the 2π periodic function [ψ̂j , ψ̂j] is of the form

[
ψ̂j , ψ̂j

]
(ξ) =:

∑
n∈Z

c
[j]
n einξ, where c[j]n =

〈
ψj, ψj(· − n)

〉
. (4.9)

Here, by Lemma 4.1, ψj converges to ψa in L2(R) as j → ∞. Thus, it follows that for any n ∈ Z,

c
[j]
n converge to cn = 〈ψa, ψa(· − n)〉 as j → ∞. Moreover, since ψj is compactly supported,

only a finite number of c[j]n is nonzero. It yields that

[
ψ̂j , ψ̂j

]
(ξ) −→

∑
n∈Z

cne
inξ =

[
ψa, ψa

]
(ξ), as j −→ ∞. (4.10)

Therefore, we can deduce that the Riesz bounds Cj and Dj converge to Cψa and Dψa (resp.),
as j → ∞, which are the Riesz (upper and lower) bounds of ψa. It concludes that

C ≤ [
ψ̂j , ψ̂j

] ≤ D, ∀j ≥ j0, (4.11)

with some constants C,D > 0 independent of j ≥ j0. In a similar fashion, it can be proved that
C̃ ≤ [ ̂̃ψj, ̂̃ψj] ≤ D̃ with some constants C̃, D̃ > 0 independent of j ≥ j0.

The above proposition discusses the stability of wavelet functions at each fixed level.
The real problem is the global stability of the set {ψj,k : (j, k) ∈ I} (resp., {ψ̃j,k : (j, k) ∈ I})
with I in (4.3). The following results treat this problem.

Lemma 4.3. Let ψj and ψ̃j be a pair of biorthogonal wavelet functions associated with φj and φ̃j ,
j ≥ j0, then there exist two constants D, D̃ > 0 depending on j0 such that for all f ∈ L2(R),

∑
(j,k)∈I

∣∣〈f, ψj,k
〉∣∣2 ≤ D∥∥f∥∥2

L2(R),
∑

(j,k)∈I

∣∣〈f, ψ̃j,k〉
∣∣2 ≤ D̃∥∥f∥∥2

L2(R), (4.12)

where I is given in (4.3).

Proof. Let ψaj,k := 2j/2ψa(2j − k), and invoke that ψa has the same support as ψj for any j ≥ j0.
Put Sk := supp ψa(· − k) with k ∈ Z, then, we observe that

∣∣∣
〈
f, ψj,k − ψaj,k

〉∣∣∣ =
∣∣∣∣
∫

R

f(x)
(
ψj,k(x) − ψaj,k(x)

)
dx

∣∣∣∣

≤ 2−j/2
∫

Sk

∣∣∣f
(
2−jx

)[
ψj(x − k) − ψaj (x − k)

]∣∣∣dx
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≤ 2−j/2
∥∥ψj − ψa

∥∥
L2(R)

(∫

Sk

∣∣∣f
(
2−jx

)∣∣∣
2
dx

)1/2

≤ c2−j
(∫

2−jSk

∣∣f(x)∣∣2dx
)1/2

,

(4.13)

where the last bound is obtained by Lemma 4.1. Then, we get

∑
(j,k)∈I

∣∣∣
〈
f, ψj,k − ψaj,k

〉∣∣∣
2 ≤ c

∑

(j,k)∈I
2−2j

∫

2−jSk

∣∣f(x)∣∣2dx

= c
∑
j≥j0

2−2j
∑
k∈Z

∫

2−jSk

∣∣f(x)∣∣2dx

≤ c
∑
j≥j0

2−2j
∥∥f∥∥2

L2(R)

≤ c∥∥f∥∥2
L2(R).

(4.14)

Putting all together, it is immediate that

⎛
⎝ ∑

(j,k)∈I

∣∣〈f, ψj,k
〉∣∣2

⎞
⎠

1/2

≤
⎛
⎝ ∑

(j,k)∈I

∣∣∣
〈
f, ψaj,k

〉∣∣∣
2

⎞
⎠

1/2

+

⎛
⎝ ∑

(j,k)∈I

∣∣∣
〈
f, ψj,k − ψaj,k

〉∣∣∣
2

⎞
⎠

1/2

≤ Dψa
∥∥f∥∥L2(R) + c

∥∥f∥∥L2(R) = D
∥∥f∥∥L2(R),

(4.15)

for some constant D > 0, where Dψa is the Riesz upper bound of ψa. Similarly, we can prove
the second relation in (4.12).

We now arrive at the central results of this section.

Theorem 4.4. Let ψj and ψ̃j be a pair of biorthogonal wavelet functions associated with φj and φ̃j ,
j ≥ j0, then the sets {ψj,k : (j, k) ∈ I} and {ψ̃j,k : (j, k) ∈ I} form Riesz bases for the spaces +̇j≥j0Wj

and +̇j≥j0W̃j , respectively, where I is given in (4.3).
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Proof. Let f be a function in the space +̇j≥j0Wj . By the Cauchy-Schwartz inequality and
Lemma 4.3, we obtain

∥∥f∥∥2
L2(R) = lim

J→∞

J∑
j=j0

∑
k∈Z

〈
f, ψ̃j,k

〉〈
f, ψj,k

〉

≤
⎛
⎝ ∑

(j,k)∈I

∣∣〈f, ψ̃j,k
〉∣∣2

⎞
⎠

1/2⎛
⎝ ∑

(j,k)∈I

∣∣〈f, ψj,k
〉∣∣2

⎞
⎠

1/2

≤ D̃1/2∥∥f∥∥L2(R)

⎛
⎝ ∑

(j,k)∈I

∣∣〈f, ψj,k
〉∣∣2

⎞
⎠

1/2

,

(4.16)

for some constant D̃ > 0. Putting C = D̃−1, we have

C
∥∥f∥∥2

L2(R) ≤
∑

(j,k)∈I

∣∣〈f, ψj,k
〉∣∣2. (4.17)

Since the upper bound is proved in Lemma 4.3, it concludes that

C
∥∥f∥∥2

L2(R) ≤
∑

(j,k)∈I

∣∣〈f, ψj,k
〉∣∣2 ≤ D∥∥f∥∥2

L2(R), (4.18)

for some constant D > 0. Further, it is obvious that ψj,k, (j, k) ∈ I, are linearly independent.
It indeed proves that the set {ψj,k : (j, k) ∈ I} constitutes a Riesz basis for the space +̇j≥j0Wj

(see [4, Theorem 3.20]). Similarly, we can show that {ψ̃j,k : (j, k) ∈ I} forms a Riesz basis for
the space +̇j≥j0W̃j .

Since φj → φa and φ̃j → φ̃a in L2(R) as j → ∞, it is immediate that for any f ∈ L2(R),
the biorthogonal projection

Pjf =
∑
k∈Z

〈
f, φ̃j,k

〉
φj,k ∈ Vj (4.19)

converges to f in the L2-norm as j → ∞, then based on this observation, we get the following
result.

Theorem 4.5. Let ψj and ψ̃j be a pair of biorthogonal wavelet functions associated with φj and φ̃j ,
j ≥ j0, then the set B = {φj0,k : k ∈ Z} ∪ {ψj,k : (j, k) ∈ I} forms a Riesz basis for L2(R). This result
also applies to the set of dual functions B̃ := {φ̃j0,k : k ∈ Z} ∪ {ψ̃j,k : (j, k) ∈ I}.

Proof. For a given function f ∈ L2(R), for notational simplicity, we define the following
sequences:

c :=
(〈
f, φj0,k

〉)
k∈Z

, dj :=
(〈f, ψj,k〉

)
k∈Z

, j ≥ j0. (4.20)
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Similarly, let c̃ and d̃j , j ≥ j0, be the sequences consisting of the terms 〈f, φ̃j0,k〉 and 〈f, ψ̃j,k〉,
k ∈ Z, respectively. It has been proven in [12] that there exist constants Ã, B̃ > 0 such that

Ã
∥∥f∥∥2

L2(R) ≤ ‖c̃‖22 ≤ B̃
∥∥f∥∥2

L2(R). (4.21)

Also, by Theorem 4.4,

∞∑
j=j0

∥∥∥d̃j
∥∥∥
2

2
≤ D̃∥∥f∥∥2

L2(R), (4.22)

for some constant D̃ > 0, then, by the Cauchy-Schwartz inequality and Theorem 4.4, we get

∥∥f∥∥2
L2(R) = lim

J→∞

⎛
⎝∑

k∈Z

〈
f, φ̃j0,k

〉〈
f, φj0,k

〉
+

J∑
j=j0

∑
k∈Z

〈
f, ψ̃j,k

〉〈
f, ψj,k

〉
⎞
⎠

≤
⎛
⎝‖c‖22 +

∞∑
j=j0

∥∥dj
∥∥2
2

⎞
⎠

1/2⎛
⎝‖c̃‖22 +

∞∑
j=j0

∥∥∥d̃j
∥∥∥
2

2

⎞
⎠

1/2

≤ max
(
B̃, D̃

)1/2∥∥f∥∥L2(R)

⎛
⎝‖c‖22 +

∞∑
j=j0

∥∥dj
∥∥2
2

⎞
⎠

1/2

.

(4.23)

Putting E := max(B̃, D̃)−1, we have

E
∥∥f∥∥2

L2(R) ≤ ‖c‖22 +
∞∑
j=j0

∥∥dj
∥∥2
2. (4.24)

Since the upper bound is clear from Lemma 4.3, it concludes that

E
∥∥f∥∥2

L2(R) ≤ ‖c‖22 +
∞∑
j=j0

∥∥dj
∥∥2
2 ≤ F

∥∥f∥∥2
L2(R), (4.25)

for some constant F > 0. It proves that the set B constitutes a Riesz basis for L2(R) (see [25,
Theorem 6.1.1]). Similarly, we can show that B̃ forms a Riesz basis for L2(R).
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