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We introduce and study new sequence spaces which arise from the notions of generalized de la
Vallée-Poussin means, invariant means, and modulus functions.

1. Introduction

Let w be the set of all real or complex sequences and let l∞, c, and c0 be the Banach spaces of
bounded, convergent, and null sequences x = (xk), respectively, with the usual norm ‖x‖ =
supn|xn|.

A sequence x = (xk) ∈ l∞ is said to be almost convergent if its Banach limit coincides.
Let ĉ denote the space of all almost convergent sequences. Lorentz [1] proved that

ĉ =
{

x ∈ l∞ : lim
m

tmn(x) exist uniformly in n

}

, (1.1)

where

tmn(x) =
xn + xn+1 + · · · + xn+m

m + 1
. (1.2)

The space [ĉ] of strongly almost convergent sequences was introduced by Maddox [2]
as

[ĉ] =
{

x ∈ l∞ : lim
m

tmn(|x − �e|) exist uniformly in n for some � ∈ C

}

, (1.3)

where e = (1, 1, . . .).
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Let σ be a one-to-one mapping from the set of positive integers into itself such that
σm(n) = σm−1(σ(n)), m = 1, 2, 3, . . ., where σm(n) denotes the mth iterate of the mapping σ in
n, see [3]. A continuous linear functional ϕ on l∞ is said to be an invariant mean or a σ-mean,
if and only if,

(i) ϕ(x) ≥ 0, when the sequence x = (xn) is such that xn ≥ 0 for all n,

(ii) ϕ(e) = 1, where e = (1, 1, . . .),

(iii) ϕ(xσ(n)) = ϕ(x), for all x ∈ l∞.

For a certain kind of mapping σ, every invariant mean ϕ extends the functional limit
on the space c, in the sense that ϕ(x) = limx for all x ∈ c. Consequently, c ⊂ Vσ , where Vσ is
the set of bounded sequences with equal σ-means. Schaefer [3] proved that

Vσ =
{

x ∈ l∞ : lim
k

tkm(x) = L uniformly in m for some L = σ − limx

}

, (1.4)

where

tkm(x) =
xm + xσ(m) + · · · + xσk(m)

k + 1
, t−1,m = 0. (1.5)

Thuswe say that a bounded sequence x = (xk) is σ-convergent, if and only if, x ∈ Vσ such that
σk(n)/=n for all n ≥ 0, k ≥ 1. Note that similarly as the concept of almost convergence leads
naturally to the concept of strong almost convergence, the σ-convergence leads naturally to
the concept of strong σ-convergence.

A sequence x = (xk) is said to be strongly σ-convergent (see, Mursaleen [4]), if there
exists a number � such that

1
k

k
∑

i=1

∣

∣xσi(m) − �
∣

∣ −→ 0, (1.6)

as k → ∞ uniformly in m. We write [Vσ] to denote the set of all strong σ-convergent
sequences and when (1.6) holds, we write [Vσ] − limx = �. Taking σ(m) = m + 1, we
obtain [Vσ] = [ĉ]. Then the strong σ-convergence generalizes the concept of strong almost
convergence. We also note that

[Vσ] ⊂ Vσ ⊂ l∞. (1.7)

It is also well known that the concept of paranorm is closely related to linear metric spaces.
In fact, it is a generalization of absolute value. Let X be a linear space. A function p : X → R

is called a paranorm, if

(P:1) p(0) ≥ 0,

(P:2) p(x) ≥ 0, for all x ∈ X,

(P:3) p(−x) = p(x), for all x ∈ X,
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(P:4) p(x + y) ≤ p(x) + p(y), for all x, y ∈ X (triangle inequality),

(P:5) if (λn) is a sequence of scalars, with λn → λ (n → ∞), and (xn) is a sequence of
vectors with p(xn −x) → 0 (n → ∞), then p(λnxn −λx) → 0 (n → ∞) (continuity
of multiplication by scalars).

A complete linear metric space is said to be a Fréchet space. A Fréchet sequence space
X is said to be an FK space, if its metric is stronger than the metric of w on X, that is,
convergence in the sequence space X implies coordinatewise convergence (the letters F and
K stand for Fréchet and Koordinate, the German word for coordinate).

Note that, by Ruckle in [5], a modulus function f is a function from [0,∞) to [0,∞)
such that

(i) f(x) = 0, if and only if, x = 0,

(ii) f(x + y) ≤ f(x) + f(y), for all x, y ≥ 0,

(iii) f increasing,

(iv) f is continuous from the right at zero.

Since |f(x) − f(y)| ≤ f(|x − y|), it follows from condition (iv) that f is continuous on
[0,∞). Furthermore, from condition (ii), we have f(nx) ≤ nf(x) for all n ∈ N, and thus

f(x) = f

(

nx
1
n

)

≤ nf

(

x

n

)

, (1.8)

hence

1
n
f(x) ≤ f

(

x

n

)

, ∀n ∈ N. (1.9)

In [5], Ruckle used the idea of a modulus function f in order to construct a class of FK spaces

L
(

f
)

=

{

x = (xk) :
∞
∑

k=1

f(|xk|) < ∞
}

. (1.10)

From the definition, we can easily see that the space L(f) is closely related to the space l1, if we
consider f(x) = x for all real numbers x ≥ 0. Several authors study these types of spaces. For
example, Maddox introduced and examined some properties of the sequence spaces w0(f),
w(f) and w∞(f), defined by using a modulus f , which generalized the well-known spaces
w0, w and w∞ of strongly summable sequences, see [6]. Similarly, Savaş in [7] generalized
the concept of strong almost convergence by using a modulus f and examined some further
properties of the corresponding new sequence spaces.

The generalized de la Vallé-Poussin mean is defined by

tn(x) =
1
λn

∑

k∈In
xk, (1.11)
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where In = [n − λn + 1, n] for n = 1, 2, . . .. Then a sequence x = (xk) is said to be (V, λ)-
summable to a number L (see [8]), if tn(x) → L as n → ∞, and we write

[V, λ]0 =

{

x : lim
n

1
λn

∑

k∈In
|xk| = 0

}

,

[V, λ] = {x : x − �e ∈ [V, λ]0 for some � ∈ C},

[V, λ]∞ =

{

x : sup
n

1
λn

∑

k∈In
|xk| < ∞

}

,

(1.12)

for the sets of sequences that are, respectively, strongly summable to zero, strongly summable,
and strongly bounded by the de la Vallé-Poussin method. In the special case where λn = n,
for n = 1, 2, 3, . . ., the sets [V, λ]0, [V, λ], and [V, λ]∞ reduce to the sets w0, w, and w∞, which
were introduced and studied by Maddox, see [6].

We also note that the sets of sequence spaces such as strongly σ-summable to zero,
strongly σ-summable, and strongly σ-bounded with respect to the modulus function were
defined by Nuray and Savaş in [9].

2. Main Results

Let p = (pk) be a sequence of real numbers such that pk > 0 for all k, and supk pk < ∞. This
assumption is made throughout the rest of this paper. Then we now write

[

Vσ, λ, f, p
]

0 =

{

x : lim
n

1
λn

∑

k∈In

{

f
(∣

∣xσk(m)
∣

∣

)}pk = 0, uniformly in m

}

,

[

Vσ, λ, f, p
]

=
{

x : x − �e ∈ [

Vσ, λ, f, p
]

0 for some � ∈ C
}

,

[

Vσ, λ, f, p
]

∞ =

{

x : sup
n,m

1
λn

∑

k∈In

{

f
(∣

∣xσk(m)
∣

∣

)}pk < ∞
}

.

(2.1)

In particular, if we take pk = 1 for all k, we have

[

Vσ, λ, f
]

0 =

{

x : lim
n

1
λn

∑

k∈In
f
(∣

∣xσk(m)
∣

∣

)

= 0, uniformly in m

}

,

[

Vσ, λ, f
]

=
{

x : x − �e ∈ [

Vσ, λ, f
]

0 for some � ∈ C
}

,

[

Vσ, λ, f
]

∞ =

{

x : sup
n,m

1
λn

∑

k∈In
f
(∣

∣xσk(m)
∣

∣

)

< ∞
}

.

(2.2)
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Similarly, when σ(m) = m + 1, then [Vσ, λ, f, p]0, [Vσ, λ, f, p] and [Vσ, λ, f, p]∞ are reduced to

[

̂V , λ, f, p
]

0
=

{

x : lim
n

1
λn

∑

k∈In

{

f(|xk+m|)
}pk = 0, uniformly in m

}

,

[

̂V , λ, f, p
]

=
{

x : x − �e ∈
[

̂V , λ, f, p
]

0
for some � ∈ C

}

,

[

̂V , λ, f, p
]

∞
=

{

x : sup
n,m

1
λn

∑

k∈In

{

f(|xk+m|)
}pk < ∞

}

, respectively.

(2.3)

In particular, when pk = p for all k, then we have the spaces

[

̂V , λ, f, p
]

0
=
[

̂V , λ, f
]

0
,

[

̂V , λ, f, p
]

=
[

̂V , λ, f
]

,
[

̂V , λ, f, p
]

∞
=
[

̂V , λ, f
]

∞
, (2.4)

which were introduced and studied by Malkowsky and Savaş in [10]. Further, when λn = n,
for n = 1, 2, 3, . . ., the sets [ ̂V , λ, f]0 and [ ̂V , λ, f] are reduced to [ĉ(f)] and [ĉ0(f)] respectively,
see [7]. Now, if we consider f(x) = x, then one can easily obtain

[

Vσ, λ, p
]

0 =

{

x : lim
n

1
λn

∑

k∈In

∣

∣xσk(m)
∣

∣

pk uniformly in m

}

,

[

Vσ, λ, p
]

=
{

x : x − �e ∈
[

̂Vσ, λ, p
]

0
for some � ∈ C

}

,

[

Vσ, λ, p
]

∞ =

{

x : sup
n,m

1
λn

∑

k∈In

∣

∣xσk(m)
∣

∣

pk < ∞
}

.

(2.5)

If pk = 1 for all k, then we can obtain the spaces [Vσ, λ]0, [Vσ, λ], and [Vσ, λ]∞. Throughout
this paper, we use the notation f(|xk|)pk instead of {f(|xk|)}pk .

If p ∈ l∞, then it is clear that [Vσ, λ, f, p]0, [Vσ, λ, f, p], and [V, σ, λ, f, p]∞ are linear
spaces over the complex field C.

Lemma 2.1. Let f be any modulus. Then

[

Vσ, λ, f
]

∞ = �σ∞
(

f
)

=
{

x ∈ w :
(

f
(∣

∣xσk(m)
∣

∣

)) ∈ �∞
}

. (2.6)

Proof. Let x ∈ [Vσ, λ, f]∞. Then there is a constant M > 0 such that

1
λ1

f
(∣

∣xσk(m)
∣

∣

) ≤ sup
m,n

1
λn

∑

k∈In
f
(∣

∣xσk(m)
∣

∣

) ≤ M, (2.7)
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for all m, and so (f(|xσk(m)|)) ∈ l∞. Let x ∈ �σ∞(f). Then there is a constant M > 0 such that
(f(|xσk(m)|)) ≤ M for all k and m, and so

1
λn

∑

k∈In
f
(∣

∣xσk(m)
∣

∣

) ≤ M
1
λn

∑

k∈In
1 ≤ M, (2.8)

for all m and n. Thus x ∈ [Vσ, λ, f]∞. This completes the proof.

If x ∈ [Vσ, λ, f, p], with (1/λn)
∑

k∈In f(|xσk(m) − �e|)pk → 0 as n → ∞ uniformly in m,
then we write xk → l[Vσ, λ, f, p].

The following well-known inequality ([11], page 190) will be used later.
If 0 ≤ pk ≤ sup pk = H and C = max(1, 2H−1), then

|ak + bk|pk ≤ C
{|ak|pk + |bk|pk

}

, (2.9)

for all k and ak, bk ∈ C.
In the following theorem, we prove xk → � implies xk → � ∈ [Vσ, λ, f, p] and we also

prove the uniqueness of the limit �. To prove the theorem, we need the following lemma.

Lemma 2.2 (see [2]). Let pk > 0, qk > 0. Then co(q) ⊂ c0(p), if and only if, limk→∞ inf pk/qk > 0,
where c0(p) = {x : |xk|pk → 0 as k → ∞}.

Note that no other relation between (pk) and (qk) is needed in Lemma 2.2.

Theorem 2.3. Let limk→∞ inf pk > 0. Then xk → � implies xk → � ∈ [Vσ, λ, f, p]. Let
limk→∞pk = r > 0. If xk → � ∈ [Vσ, λ, f, p], then � is unique.

Proof. Let xk → �. By the definition of modulus, we have f(|xk − �|) → 0. Since
limk→∞ inf pk > 0, it follows from the above lemma that f(|xk − �|)pk → 0 and consequently,
xk → � ∈ [Vσ, f, p].

Let limk→∞pk = r > 0. Suppose that xk → �1 ∈ [Vσ, λ, f, p], xk → �2 ∈ [Vσ, λ, f, p] and
|�1 − �2|pk = a > 0. Now, from (2.9) and the definition of modulus, we have

1
λn

∑

k∈In
f(|�1 − �2|)pk ≤ C

λn

∑

k∈In
f
(∣

∣xσk(m) − �1
∣

∣

)pk

+
C

λn

∑

k∈In
f
(∣

∣xσk(m) − �2
∣

∣

)pk .

(2.10)

Hence,

1
λn

∑

k∈In
f(|�1 − �2|)pk = 0. (2.11)
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Further, f(|�1 − �2|)pk → f(a)r as k → ∞ and, therefore,

lim
n→∞

1
λn

∑

k∈In
f(|�1 − �2|)pk = f(a)r . (2.12)

From (2.11) and (2.12), it follows that f(a) = 0 and by the definition of modulus, we have
a = 0. Hence �1 = �2 and this completes the proof.

Theorem 2.4. (i) Let 0 < infk pk ≤ pk ≤ 1. Then,

[

Vσ, λ, f, p
] ⊂ [

Vσ, λ, f
]

. (2.13)

(ii) Let 0 < pk ≤ supk pk < ∞. Then,

[

Vσ, λ, f
] ⊂ [

Vσ, λ, f, p
]

. (2.14)

Proof. (i) Let x ∈ [Vσ, λ, f, p]. Since 0 < infk pk ≤ 1, we get

1
λn

∑

k∈In

{

f
(∣

∣xσk(m) − �e
∣

∣

)} ≤ 1
λn

∑

k∈In

{

f
(∣

∣xσk(m) − �e
∣

∣

)}pk , (2.15)

and hence x ∈ [Vσ, λ, f].
(ii) Let p ≥ 1 for each k, and supk pk < ∞. Let x ∈ [Vσ, λ, f]. Then, for each k, 0 < ε < 1,

there exists a positive integer N such that

1
λn

∑

k∈In

{

f
(∣

∣xσk(m) − �e
∣

∣

)} ≤ ε < 1, (2.16)

for all m ≥ N. This implies that

1
λn

∑

k∈In

{

f
(∣

∣xσk(m) − �e
∣

∣

)}pk ≤ 1
λn

∑

k∈In

{

f
(∣

∣xσk(m) − �e
∣

∣

)}

. (2.17)

Therefore, x ∈ [Vσ, λ, f, p]. This completes the proof.

Finally, we conclude this paper by stating the following theorem. We omit the proof,
since it involves routine verification and can be obtained by using standard techniques.

Theorem 2.5. [Vσ, λ, f, p]0 and [Vσ, λ, f, p] are complete linear topological spaces, with paranorm
g, where g is defined by

g(x) = sup
m,n

(

1
λn

∑

k∈In

{

f
(∣

∣xσk(m)
∣

∣

)}pk

)M

, (2.18)

whereM = max(1, {supk pk}).
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