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2 Mathematics Section, College of Science and Technology, Hongik University,
Jochiwon 339-701, Republic of Korea

Correspondence should be addressed to Soon-Mo Jung, smjung@hongik.ac.kr

Received 3 April 2011; Accepted 7 June 2011

Academic Editor: Dumitru Baleanu
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We prove some Hyers-Ulam stability results for an operator linear equation of the second order
that is patterned on the difference equation, which defines the Lucas sequences (and in particular
the Fibonacci numbers). In this way, we obtain several results on stability of some linear functional
and differential and integral equations of the second order and some fixed point results for a
particular (not necessarily linear) operator.

1. Introduction

Let C, R, Z, N0, and N stand, as usual, for the sets of complex numbers, real numbers, integers,
nonnegative integers, and positive integers, respectively. Let S be a nonempty set,X a Banach
space over a field K ∈ {C,R}, p, q ∈ K, q /= 0 and p2 − 4q /= 0, and a1, a2 denote the complex
roots of the equation

qx2 − px + 1 = 0. (1.1)

Clearly we have a1 /=a2,

p =
1
a1

+
1
a2

, q =
1

a1a2
. (1.2)
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In what follows, XS denotes the family of all functions mapping S into X and XS is a
linear space over K with the operations given by

(
f + h

)
(x) := f(x) + h(x),

(
αf
)
(x) := αf(x) (1.3)

for all f, h ∈ XS, α ∈ K, x ∈ S. Throughout this paper, we assume that

(H) C is a nontrivial subgroup of the group (XS,+) and L : C → XS is an additive
operator (i.e., L(f + h) = Lf +Lh for f, h ∈ XS).

We investigate the Hyers-Ulam stability of the operator equation

F = pLF − qL2F (1.4)

for functions F ∈ C with LF,L2F ∈ C. Namely, we show under suitable assumptions that for
every function f ∈ C satisfying (1.4) approximately, that is,

sup
x∈S

∥∥∥pLf(x) − qL2f(x) − f(x)
∥∥∥ < ∞, (1.5)

there exists a unique solution of the equation that is “near” to f . This kind of issues arise
during study of the real-world phenomena, wherewe very often apply equations; however, in
general, those equations are satisfied only with some error. Sometimes that error is neglected
and it is believed that this will have only a minor influence on the final outcome. Since it is
not always the case, it seems to be of interest to investigate when we can neglect the error,
why, and to what extent.

One of the tools for systematic treatment of the problem described above seems to
be the notion of Hyers-Ulam stability and some ideas inspired by it. That notion of stability
was motivated by a question of Ulam (cf. [1, 2]), and a solution to it published by Hyers
in [3]. At the moment, it is a very popular subject of investigation in the areas of, for
example, functional, differential, integral equations, but also in other fields of mathematics
(for information on this kind of stability and further references see, e.g., [4–8]). Also, the
Hyers-Ulam stability is related to the notions of shadowing and controlled chaos (see, e.g.,
[9–12]).

If Lf = f ◦ ξ for f ∈ C (with C = XS and a fixed mapping ξ : S → S), then (1.4) takes
the form

f(x) = pf(ξ(x)) − qf
(
ξ2(x)

)
, (1.6)

which is a linear functional equation in a single variable of second order (for some
information and further references on the functional equations in single variable, we refer
to [13–15]). Stability of (1.6) has been already investigated in [16–23]. A particular case of
(1.6), with S = Z and ξ(x) = x + 1, is the difference equation

f(x) = pf(x + 1) − qf(x + 2). (1.7)
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If p, 1/q ∈ Z, then solutions f : N0 → Z of the difference equation (1.7) are called the Lucas
sequences (see, e.g., [24]); in some special cases they are given specific names; that is, the
Fibonacci numbers (p = −1, q = −1, f(0) = 0, and f(1) = 1), the Lucas numbers (p = −1,
q = −1, f(0) = 2, and f(1) = 1), the Pell numbers (p = −2, q = −1, f(0) = 0, and f(1) = 1), the
Pell-Lucas (or companion Lucas) numbers (p = −2, q = −1, f(0) = 2, and f(1) = 2), and the
Jacobsthall numbers (p = −1, q = −2, f(0) = 0, and f(1) = 1).

2. The Main Result

Now we will present a theorem that is the main result of this paper. In this section, we
consider only the case

a1, a2 ∈ K. (2.1)

Some complementary results for the case where a1 /∈ K or a2 /∈ K will be given in the fourth
section.

For simplicity, we write in the sequel

∥∥f
∥∥ := sup

x∈S

∥∥f(x)
∥∥, f ∈ XS. (2.2)

Next, for a given g ∈ XS and {gn}n∈N
⊂ XS, the equality

g = lim
n→∞

gn (2.3)

means that g(x) = limn→∞gn(x) for every x ∈ S.
We say that E ⊂ XS is closed with respect to the uniform convergence (abbreviated in

the sequel to c.u.c.) provided the following holds true:

(E) if fn ∈ E for n ∈ N, f ∈ XS and fn ⇒ f , then f ∈ E,
where the symbol fn ⇒ f means that the sequence {fn}n∈N

tends uniformly to f .
Moreover, we use in the sequel the following two hypotheses:

(C1) C ⊂ (a1 − a2)C and ajC = C for j ∈ {1, 2};

(L1) L(ajf) = ajLf for f ∈ C, j ∈ {1, 2}.

Now, we are in a position to formulate the main result of this paper.

Theorem 2.1. Let ε > 0, L1 > 0, L2 > 0, and let g ∈ C with Lg,L2g ∈ C satisfying the inequality

∥∥∥g − pLg + qL2g
∥∥∥ ≤ ε. (2.4)

Suppose that (2.1), (C1), and (L1) are valid and one of the following three collections of hypotheses is
fulfilled.



4 Abstract and Applied Analysis

(α) L1 < |aj | for j ∈ {1, 2}, L(C) ⊂ C, C is c.u.c., and

∥
∥Lf − Lh

∥
∥ ≤ L1

∥
∥f − h

∥
∥, f, h ∈ C. (2.5)

(β) L is injective, L2 > |aj | for j ∈ {1, 2}, L(C) is c.u.c., C ⊂ L(C), and

∥
∥
∥L−1f − L−1h

∥
∥
∥ ≤ L−1

2

∥
∥f − h

∥
∥, f, h ∈ L(C). (2.6)

(γ) L is injective, L1 < |a1|, L2 > |a2|, C is c.u.c., L(C) = C, and conditions (2.5) and (2.6)
hold true.

Then there exists a unique function F ∈ C with LF,L2F ∈ C, that satisfies (1.4) and

∥∥g − F
∥∥< ∞; (2.7)

moreover, F is given by (3.30) and

∥∥g − F
∥∥ ≤ ε

∣∣q
∣∣|a2 − a1|

(
1

∣∣L′
1 − |a1|

∣∣ +
1

∣∣L′
2 − |a2|

∣∣

)

, (2.8)

where

L′
i:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L1 if (α) holds,

L2 if
(
β
)
holds,

Li if
(
γ
)
holds,

i ∈ {1, 2}. (2.9)

Remark 2.2. Clearly, if C is a linear subspace of XS and L is linear (over K), then (C1) and
(L1) are valid. However, if C is “only” additive, C is a linear subspace of XS but over Q (i.e.,
actually a divisible subgroup of XS), and a1, a2 ∈ Q, then (C1) and (L1) hold, as well. This
shows that it makes sense to assume only (L1) instead of linearity of L.

Below, before the proof of Theorem 2.1, we provide simple and natural examples of
linear operators L that satisfy the assumptions of Theorem 2.1 (with suitable a1, a2).

(i) Let C = XS, n ∈ N, and Lf =
∑n

i=1 Ψi ◦ f ◦ ξi, where Ψi : X → X is linear and
bounded and ξi : S → S is fixed for each i ∈ {1, . . . , n}. Then

∥∥Lf(x) − Lh(x)
∥∥≤

n∑

i=1

λi
∥∥f(ξi(x)) − h(ξi(x))

∥∥, f, h ∈ XS, x ∈ S, (2.10)

with λi := inf{L ∈ R : ‖Ψi(w)‖ ≤ L‖w‖, w ∈ X}. Hence (2.5) holds with L1 :=∑n
i=1 λi.
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Next, let C = XS, Ψ : X → X, and ξ : S → S be bijective, Ψ linear, Ψ−1 bounded,
and Lf = Ψ ◦ f ◦ ξ. Then
∥
∥
∥L−1f(x) − L−1h(x)

∥
∥
∥≤ L0

∥
∥
∥f
(
ξ−1(x)

)
− h
(
ξ−1(x)

)∥∥
∥, f, h ∈ XS, x ∈ S, (2.11)

where L0 := inf{L ∈ R : ‖Ψ−1(w)‖ ≤ L‖w‖, w ∈ X}. Clearly, as above, that inequality
yields (2.6)with L2 := L−1

0 . If additionallyΨ is bounded, then analogously as before
we obtain that (2.5) holds, as well, with some L1 > 0.

(ii) Let a, b ∈ R, a < b, S = [a, b], C the family of all continuous functions mapping
the interval [a, b] into R, n ∈ N, A1, . . . , An ∈ R, ξ1, . . . , ξn : S → S continuous,
and Lf(x) =

∑n
i=1

∫x
a Aif ◦ ξi(t)dt for f ∈ C, x ∈ S. Then it is easily seen that (α) is

fulfilled with |ai| > L1 := (b − a)
∑n

j=1 |Aj |, i ∈ {1, 2}.
(iii) Let a, b ∈ R, a < b, C be the family of all continuously differentiable functions

f : [a, b] → R with f(a) = 0 and L = d/dt. Then (β) is satisfied with |ai| < L2 :=
1/(b − a) , i ∈ {1, 2}.

3. Proof of Theorem 2.1

The subsequent lemma will be useful in the proof of Theorem 2.1.

Lemma 3.1. Assume that (2.1), (C1), and (L1) are valid and one of the collections of hypotheses
(α)–(γ) is fulfilled with some L1, L2 ∈ (0,∞). Let f1, f2 ∈ C, with Li(fj) ∈ C for i, j ∈ {1, 2}, be
solutions of (1.4) and ‖f1 − f2‖ < ∞. Then f1 = f2.

Proof. Let hi := Lfi − a2fi for i ∈ {1, 2}. Then, by (1.2) and (1.4),

Lhi = L2fi − a2Lfi = a1a2
(
pLfi − fi

)
− a2Lfi = a1hi (3.1)

for i ∈ {1, 2}. Consequently, for each k ∈ N,

‖h1 − h2‖= |a1|−k
∥∥∥Lkh1 − Lkh2

∥∥∥ ≤ |a1|−kLk
1‖h1 − h2‖ (3.2)

if (α) or (γ) holds, and

‖h1 − h2‖= |a1|k
∥∥∥L−kh1 − L−kh2

∥∥∥ ≤ |a1|kL−k
2 ‖h1 − h2‖ (3.3)

if (β) holds. This means that h1 = h2.
Now, in view of the definition of hi,

Lf1 − a2f1 −
(
Lf2 − a2f2

)
= h1 − h2 = 0, (3.4)

which means that

Lf1 − Lf2 = a2
(
f1 − f2

)
. (3.5)
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So, analogously as before, for each k ∈ N, in the case of (α), we have

∥
∥f1 − f2

∥
∥ = |a2|−k

∥
∥
∥Lkf1 − Lkf2

∥
∥
∥ ≤ |a2|−kLk

1

∥
∥f1 − f2

∥
∥, (3.6)

and, in the case of (β) or (γ),

∥
∥f1 − f2

∥
∥= |a2|k

∥
∥∥L−kf1 − L−kf2

∥
∥∥ ≤ |a2|kL−k

2

∥
∥f1 − f2

∥
∥. (3.7)

It is easily seen that in each of those cases the above two inequalities imply that f1 = f2.

Now, we have all tools to prove Theorem 2.1.
To this end, fix i ∈ {1, 2}. Then |ai| > L1 or |ai| < L2. First consider the situation:

L1 < |ai|. Clearly this means that (α) or (γ) must be valid, which yields L(C) ⊂ C. Write

Ai
k := a−k

i

[
Lkg −

(
p − a−1

i

)
Lk+1g

]
, k ∈ N0. (3.8)

Note that, by (C1) and (L1), Ai
k ∈ C for k ∈ N0. Further, for each k ∈ N0, from (1.2)we get

Ai
k −Ai

k+1 = a−k
i

[
Lkg −

(
p − a−1

i

)
Lk+1g

]
− a−k−1

i

[
Lk+1g −

(
p − a−1

i

)
Lk+2g

]

= a−k
i Lk

(
g − pLg + qL2g

)
,

(3.9)

whence, according to (2.4) and (2.5),

∥∥∥Ai
k −Ai

k+1

∥∥∥≤ |ai|−kLk
1

∥∥∥g − pLg + qL2g
∥∥∥ ≤ |ai|−kLk

1ε, (3.10)

and consequently

∥∥∥Ai
k −Ai

k+n

∥∥∥≤
k+n−1∑

j=k

|ai|−jL
j

1ε, n ∈ N. (3.11)

This means that, for each x ∈ S, {Ai
n(x)}n∈N

is a Cauchy sequence, and therefore, there exists
the limit Fi(x) = limn→∞Ai

n(x). Moreover, (3.11) yields Ai
n ⇒ Fi, whence

Fi,LFi,L2Fi ∈ C, (3.12)

because C is c.u.c. and L(C) ⊂ C.
Observe that, for every n, k ∈ N0,

LnAi
k = an

i A
i
n+k. (3.13)
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Further, by (2.5), for each n ∈ N,

∥
∥
∥LFi − LAi

n

∥
∥
∥≤ L1

∥
∥
∥Fi −Ai

n

∥
∥
∥, (3.14)

which yields

LkFi = lim
n→∞

LkAi
n, k ∈ {1, 2}. (3.15)

So, in view of (1.2) and (3.13), we have

pLFi − qL2Fi = p lim
n→∞

LAi
n − q lim

n→∞
L2Ai

n

= pai lim
n→∞

Ai
n+1 − qa2

i limn→∞
Ai

n+2

= paiFi − qa2
i Fi

= Fi,

(3.16)

and, by (3.11)with k = 0 and n → ∞,

∥∥∥g −
(
p − a−1

i

)
Lg − Fi

∥∥∥ ≤ |ai|ε
|ai| − L1

. (3.17)

Now, consider the case when |ai| < L2. Then, according to the assumptions, L is
injective, (2.6) holds, and C ⊂ L(C), that is,

L−k(C) ⊂ C ⊂ L(C) , k ∈ N. (3.18)

Write

Ai
k := ak

i

[
L−kg −

(
p − a−1

i

)
L−k+1g

]
, k ∈ N0. (3.19)

Then, for each k ∈ N, we have Ai
k ∈ C (because g is such that Lg ∈ C),

Ai
k −Ai

k−1 = ak
i

[
L−kg −

(
p − a−1

i

)
L−k+1g

]
− ak−1

i

[
L−k+1g −

(
p − a−1

i

)
L−k+2g

]

= ak
i L

−k
(
g − pLg + qL2g

)
,

(3.20)

and next, by (2.6),

∥∥∥Ai
k −Ai

k−1

∥∥∥ ≤ |ai|kL−k
2

∥∥∥g − pLg + qL2g
∥∥∥ ≤ |ai|kL−k

2 ε. (3.21)
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This yields

∥
∥
∥Ai

k −Ai
k+n

∥
∥
∥ ≤

k+n∑

j=k+1

|ai|jL
−j
2 ε, k, n ∈ N0, n > 0. (3.22)

So, for each x ∈ S, {Ai
n(x)}n∈N

is a Cauchy sequence, and consequently there exists the limit
Fi(x) = limn→∞Ai

n(x). Note that, by (3.22), Ai
n ⇒ Fi, whence

Fi ∈ L(C) (3.23)

(because Ai
n ∈ C ⊂ L(C) for n ∈ N and L(C) is c.u.c.), and again by (3.22), with k = 0 and

n → ∞,

∥∥∥g −
(
p − a−1

i

)
Lg − Fi

∥∥∥≤
εL−1

2 |ai|
1 − L−1

2 |ai|
=

|ai|ε
L2 − |ai|

. (3.24)

It is easy to observe that

L−nAi
k = a−n

i Ai
k+n, k, n ∈ N0. (3.25)

Further, by (2.6), for each k ∈ N,

L−kFi = lim
n→∞

L−kAi
n. (3.26)

So, by (3.18), (3.23), and (3.25), we have

pL−1Fi − qFi = p lim
n→∞

L−1Ai
n − q lim

n→∞
Ai

n

= pa−1
i lim

n→∞
Ai

n+1 − q lim
n→∞

Ai
n

= pa−1
i Fi − qFi = a−2

i Fi

= lim
n→∞

a−2
i Ai

n = lim
n→∞

L−2Ai
n−2

= L−2Fi.

(3.27)

This and (3.23) yield qFi = pL−1Fi − L−2Fi ∈ C, that is, Fi ∈ C. Repeating yet that reasoning
twice, we get

Fi ∈ L−2(C) ∩ L−1(C) (3.28)

(i.e., (3.12) holds) and consequently

pLFi − qL2Fi = L2
(
pL−1Fi − qFi

)
= L2

(
L−2Fi

)
= Fi. (3.29)
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Thus we have proved that, for i ∈ {1, 2}, in either case inequalities (3.17) or (3.24),
respectively, hold and Fi is a solution to (1.4), with (3.12) fulfilled. Define F : S → X by

F :=
a2

a2 − a1
F1 −

a1

a2 − a1
F2. (3.30)

Then, by (3.12),

F,LF,L2F ∈ C, (3.31)

and it follows from (3.16) and (3.29), respectively, that

pLF − qL2F =
a2

a2 − a1

[
pLF1 − qL2F1

]
− a1

a2 − a1

[
pLF2 − qL2F2

]
= F. (3.32)

Moreover,

a2

(
p − a−1

1

)
− a1

(
p − a−1

2

)
= 0, (3.33)

and consequently

∥∥g − F
∥∥ =

1
|a2 − a1|

∥∥(a2 − a1)g − a2F1 + a1F2
∥∥

=
1

|a2 − a1|
∥∥(a2 − a1)g − a2F1 + a1F2

−
[
a2

(
p − a−1

1

)
− a1

(
p − a−1

2

)]
Lg
∥∥∥

≤ |a2|
|a2 − a1|

∥∥∥g − F1 −
(
p − a−1

1

)
Lg
∥∥∥

+
|a1|

|a2 − a1|

∥∥∥g − F2 −
(
p − a−1

2

)
Lg
∥∥∥,

(3.34)

whence, by (3.17) and (3.24), respectively, we obtain (2.8).
For the proof of the statement concerning uniqueness of F, take F0 ∈ C with

LF0,L2F0 ∈ C. Suppose that F0 is a solution of (1.4) such that ‖g − F0‖ < ∞. Then we have

‖F − F0‖ ≤
∥∥F − g

∥∥ +
∥∥g − F0

∥∥ < ∞, (3.35)

and therefore, by Lemma 3.1, F = F0. This completes the proof of Theorem 2.1.

4. Complementary Results

In this section, we consider the cases that are complementary to those of Theorem 2.1, that is,
when K = R and (2.1)may not be fulfilled. We will use the following assumptions:
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(C2) aC ⊂ C for a ∈ {R(a1), R(a2), I(a1), I(a2), |a1 − a2|−2, |a1|−2, |a2|−2},

(L2) L(af) = aLf for a ∈ {R(a1), R(a2), I(a1), I(a2)}, f ∈ C,

where R(z) and I(z) denote the real and imaginary parts of the complex number z (if z is a
real number, then simply R(z) = z and I(z) = 0). Observe that, in the case a1, a2 ∈ K = R,
(C2) and (L2) become just (C1) and (L1). Note also that if C is a real linear subspace of XS,
then (C2) and (L2) are fulfilled.

The next theorem complements Theorem 2.1 when (α) is valid (however, with a bit
stronger assumption on L1). The cases of (β) and (γ) are more complicated, and some results
concerning them will be published separately.

Theorem 4.1. Let K = R, ε > 0, L > 0, and g ∈ C, with Lg,L2g ∈ C, satisfy (2.4). Suppose that
2L < |aj | for j ∈ {1, 2}, L(C) ⊂ C, and

∥∥Lf − Lh
∥∥≤ L

∥∥f − h
∥∥, f, h ∈ C. (4.1)

Then there exists a unique function F ∈ C, with LF,L2F ∈ C, that satisfies (1.4) and inequality
(2.7); moreover,

∥∥g − F
∥∥ ≤ ε

∣∣q
∣∣|a2 − a1|

(
1

|2L − |a1||
+

1
|2L − |a2||

)
. (4.2)

Proof. We apply a well-known method of complexification of the real Banach space X.
Namely, (see, e.g., [25, page 39], [26], or [27, 1.9.6, page 66]) X2 is a complex Banach space
with the linear structure and the Taylor norm ‖ · ‖T given by

(
x, y
)
+ (z,w) :=

(
x + z, y +w

)
for x, y, z,w ∈ X,

(
α + iβ

)(
x, y
)
:=
(
αx − βy, βx + αy

)
for x, y ∈ X, α, β ∈ R,

∥∥(x, y
)∥∥

T := sup
0≤θ≤2π

∥∥(cos θ)x + (sin θ)y
∥∥ for x, y ∈ X.

(4.3)

Note that

max
{
‖x‖,

∥∥y
∥∥} ≤

∥∥(x, y
)∥∥

T ≤ ‖x‖ +
∥∥y
∥∥, x, y ∈ X. (4.4)

Analogously as before we write

∥∥μ
∥∥
T := sup

x∈S

∥∥μ(x)
∥∥
T (4.5)

for each function μ : S → X2. Next,

pi(w1, w2) := wi, i ∈ {1, 2}; w1, w2 ∈ X. (4.6)
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Let

C0 :=
{
μ : S −→ X2 : pi ◦ μ ∈ C, i ∈ {1, 2}

}
, (4.7)

χ : S → X2 be given by χ(x) := (g(x), 0) for x ∈ S, and

L0μ(x) :=
(
L
(
p1 ◦ μ

)
(x),L

(
p2 ◦ μ

)
(x)
)

(4.8)

for every μ ∈ C0 and x ∈ S. Since L(C) ⊂ C and C is a subgroup of the group (XS,+) (i.e.,
the function μ0 : S → X defined by μ0(x) = 0 for x ∈ S, is in C), it is easily seen that
χ,L0χ,L2

0χ ∈ C0 and

L0(C0) ⊂ C0. (4.9)

Next, for each f ∈ C0, we have f1 := p1 ◦ f, f2 := p2 ◦ f ∈ C, whence, in view of (C2)
and (L2), for each j ∈ {1, 2},

L
(
R
(
aj

)
f1 − I

(
aj

)
f2
)
= R
(
aj

)
Lf1 − I

(
aj

)
Lf2,

L
(
I
(
aj

)
f1 + R

(
aj

)
f2
)
= I
(
aj

)
Lf1 + R

(
aj

)
Lf2,

(4.10)

and consequently

L0
(
ajf
)
= L0

(
R
(
aj

)
f1 − I

(
aj

)
f2,R

(
aj

)
f2 + I

(
aj

)
f1
)

=
(
L
(
R
(
aj

)
f1 − I

(
aj

)
f2
)
,L
(
R
(
aj

)
f2 + I

(
aj

)
f1
))

=
(
R
(
aj

)
Lf1 − I

(
aj

)
Lf2, I

(
aj

)
Lf1 + R

(
aj

)
Lf2
)

= aj

(
Lf1, Lf2

)
= ajL0f.

(4.11)

Thus, we have obtained that

(L1′) L0(ajf) = ajL0f for f ∈ C0 and j ∈ {1, 2}.

Analogously, for every μ ∈ C0, i ∈ {1, 2}, we get

aiμ =
(
R(ai)p1 ◦ μ − I(ai)p2 ◦ μ, R(ai)p2 ◦ μ + I(ai)p1 ◦ μ

)
,

1
ai
μ =

ai

|ai|2
μ =

(
R(ai)

|ai|2
p1 ◦ μ +

I(ai)

|ai|2
p2 ◦ μ,

R(ai)

|ai|2
p2 ◦ μ − I(ai)

|ai|2
p1 ◦ μ

) (4.12)

which means that aiμ, a
−1
i μ ∈ C0 (because C0 is a group and (C2) holds). Moreover,

1
a1 − a2

C0 =
a1 − a2

|a1 − a2|2
C0 ⊂ C0. (4.13)
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Thus we have proved that

(C1′) ajC0 = C0 and C0 ⊂ (a1 − a2)C0 for j ∈ {1, 2}.

Now, we show that C0 is c.u.c. with regard to the Taylor norm. To this end, take μ ∈ XS

and μn ∈ C0 for n ∈ N such that μn ⇒ μ (with respect to the Taylor norm). Then, by (4.4),

max
{∥∥p1 ◦ μn − p1 ◦ μ

∥
∥,
∥
∥p2 ◦ μn − p2 ◦ μ

∥
∥} ≤

∥
∥μn − μ

∥
∥
T , n ∈ N, (4.14)

which means that p1 ◦μn ⇒ p1 ◦μ and p2 ◦μn ⇒ p2 ◦μ. Consequently, p1 ◦μ, p2 ◦μ ∈ C. Hence,
μ ∈ C0.

Note yet that, according to (4.1) and (4.4), for every μ ∈ C0, we have

‖L0μ‖T =
∥
∥(L

(
p1 ◦ μ

)
,L
(
p2 ◦ μ

))∥∥
T ≤
∥
∥L
(
p1 ◦ μ

)∥∥ +
∥
∥L
(
p2 ◦ μ

)∥∥

≤ L
∥∥p1 ◦ μ

∥∥ + L
∥∥p2 ◦ μ

∥∥ ≤ 2Lmax
{∥∥p1 ◦ μ

∥∥,
∥∥p2 ◦ μ

∥∥}

≤ 2L
∥∥μ
∥∥
T ,

∥∥∥χ − pL0χ + qL2
0χ
∥∥∥
T
=
∥∥∥
(
g − pLg + qL2g, 0

)∥∥∥
T

≤
∥∥∥g − pLg + qL2g

∥∥∥ ≤ ε,

(4.15)

because p2 ◦ χ(x) = 0 for each x ∈ S.
In this way, we have shown that the assumptions of Theorem 2.1(α) are satisfied (with

g, L, L1, and C replaced by χ, L0, 2L, and C0, resp.) and consequently there is a solution
H ∈ C0 of the equation

H = pL0H − qL2
0H (4.16)

such that

∥∥χ −H
∥∥
T ≤ ε
∣∣q
∣∣|a1 − a2|

(
1

||a1| − 2L| +
1

||a2| − 2L|

)
. (4.17)

Observe that F := p1 ◦H is a solution of (1.4) and, by (4.4), (4.2) holds.
It remains to prove the statement concerning uniqueness of F. So, let F0 ∈ C, with

LF0,L2F0 ∈ C, be a solution of (1.4) such that ‖g −F0‖ < ∞. WriteH0(x) := (F0(x), p2(H(x)))
for x ∈ S. It is easily seen that H0 ∈ C0 and H0 = pL0H0 − qL2

0H0. Moreover,

‖H −H0‖T= ‖F − F0‖ ≤
∥∥F − g

∥∥ +
∥∥g − F0

∥∥ < ∞. (4.18)

Hence, by Lemma 3.1 (with L and C replaced by L0 and C0, resp.), H = H0, which yields
F0 = p1 ◦H0 = p1 ◦H = F.



Abstract and Applied Analysis 13

5. Final Remarks on Fixed Points and Open Problems

Theorems 2.1 and 4.1 can be actually expressed in the terms of fixed points. Namely, they
may be reformulated as follows.

Theorem 5.1. Let T := pL − qL2, ε > 0, L1 > 0, L2 > 0, and g ∈ C, with Lg,L2g ∈ C, satisfying
the inequality

∥
∥g − Tg

∥
∥ ≤ ε. (5.1)

Suppose that (C1), (L1), and one of the following two conditions are valid:

(a) Condition (2.1) and one of the collections of hypotheses (α)–(γ) are fulfilled;

(b) the collection of hypotheses (α) is fulfilled and 2L1 < |aj | for j ∈ {1, 2}.

Then there exists a unique F ∈ C with LF,L2F ∈ C such that F is a fixed point of T and

∥∥g − F
∥∥ < ∞; (5.2)

moreover, if (a) is valid, then (2.8) holds and if (b) is valid, then (4.2) holds with L = L1.

IfL is linear, then Theorems 2.1 and 4.1 can also be expressed in the following way (cf.
[7]).

Theorem 5.2. Let K := pL − qL2 − I, where I : XS → XS is the identity operator (given by
If = f for f ∈ XS). Suppose that (C1), (L1), and one of conditions (a), (b) are valid with some
L1 > 0, L2 > 0. Then, for every g ∈ C with Lg,L2g ∈ C and

ε :=
∥∥Kg

∥∥ < ∞, (5.3)

there exists a unique F ∈ C with LF,L2F ∈ C and such that F ∈ kerK(i.e., Kf(x) = 0 for x ∈ S)
and ‖g − F‖ < ∞; moreover, if (a) is valid, then (2.8) holds and if (b) is valid, then (4.2) holds with
L = L1.

In connection with the results presented in this paper, there arise several natural
questions (apart from those regarding the situation where (2.1) is not fulfilled). We mention
here some of them.

The first one concerns optimality of estimations (2.8) and (4.2). It is known that in
general they are not the best possible, and for suitable comments and examples, see [17]. It
seems that this issue deserves a more systematic treatment.

Another question concerns the case where L1 ≥ |ai| for some i ∈ {1, 2}when (α) is valid
(and analogous situations for (β) and (γ)). In general, the assumption L1 ≤ |ai| for i ∈ {1, 2} is
necessary in the case of (α), as it follows from nonstability results in [18]. But maybe in some
particular situation some partial stability results are possible.

One more question is whether methods similar to those used in this paper can be
applied for a bit more general equation of the form

g = pLg + qL2g +H(x) (5.4)
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with a nontrivially given function H : S → X. Also, it is interesting if these methods can be
applied for a higher-order operator linear equation, for example, for the third-order equation

g = pLg + qL2g + rL3g. (5.5)

For related results, in some particular situations and obtained with different methods, we
refer to [19, 28].
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